Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
235
venv/Lib/site-packages/sklearn/decomposition/_truncated_svd.py
Normal file
235
venv/Lib/site-packages/sklearn/decomposition/_truncated_svd.py
Normal file
|
|
@ -0,0 +1,235 @@
|
|||
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA).
|
||||
"""
|
||||
|
||||
# Author: Lars Buitinck
|
||||
# Olivier Grisel <olivier.grisel@ensta.org>
|
||||
# Michael Becker <mike@beckerfuffle.com>
|
||||
# License: 3-clause BSD.
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from scipy.sparse.linalg import svds
|
||||
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..utils import check_array, check_random_state
|
||||
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip
|
||||
from ..utils.sparsefuncs import mean_variance_axis
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
from ..utils.validation import check_is_fitted
|
||||
|
||||
|
||||
__all__ = ["TruncatedSVD"]
|
||||
|
||||
|
||||
class TruncatedSVD(TransformerMixin, BaseEstimator):
|
||||
"""Dimensionality reduction using truncated SVD (aka LSA).
|
||||
|
||||
This transformer performs linear dimensionality reduction by means of
|
||||
truncated singular value decomposition (SVD). Contrary to PCA, this
|
||||
estimator does not center the data before computing the singular value
|
||||
decomposition. This means it can work with sparse matrices
|
||||
efficiently.
|
||||
|
||||
In particular, truncated SVD works on term count/tf-idf matrices as
|
||||
returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In
|
||||
that context, it is known as latent semantic analysis (LSA).
|
||||
|
||||
This estimator supports two algorithms: a fast randomized SVD solver, and
|
||||
a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or
|
||||
`X.T * X`, whichever is more efficient.
|
||||
|
||||
Read more in the :ref:`User Guide <LSA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, default = 2
|
||||
Desired dimensionality of output data.
|
||||
Must be strictly less than the number of features.
|
||||
The default value is useful for visualisation. For LSA, a value of
|
||||
100 is recommended.
|
||||
|
||||
algorithm : string, default = "randomized"
|
||||
SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy
|
||||
(scipy.sparse.linalg.svds), or "randomized" for the randomized
|
||||
algorithm due to Halko (2009).
|
||||
|
||||
n_iter : int, optional (default 5)
|
||||
Number of iterations for randomized SVD solver. Not used by ARPACK. The
|
||||
default is larger than the default in
|
||||
:func:`~sklearn.utils.extmath.randomized_svd` to handle sparse
|
||||
matrices that may have large slowly decaying spectrum.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used during randomized svd. Pass an int for reproducible results across
|
||||
multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
tol : float, optional
|
||||
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized
|
||||
SVD solver.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, shape (n_components, n_features)
|
||||
|
||||
explained_variance_ : array, shape (n_components,)
|
||||
The variance of the training samples transformed by a projection to
|
||||
each component.
|
||||
|
||||
explained_variance_ratio_ : array, shape (n_components,)
|
||||
Percentage of variance explained by each of the selected components.
|
||||
|
||||
singular_values_ : array, shape (n_components,)
|
||||
The singular values corresponding to each of the selected components.
|
||||
The singular values are equal to the 2-norms of the ``n_components``
|
||||
variables in the lower-dimensional space.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.decomposition import TruncatedSVD
|
||||
>>> from scipy.sparse import random as sparse_random
|
||||
>>> from sklearn.random_projection import sparse_random_matrix
|
||||
>>> X = sparse_random(100, 100, density=0.01, format='csr',
|
||||
... random_state=42)
|
||||
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
||||
>>> svd.fit(X)
|
||||
TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
||||
>>> print(svd.explained_variance_ratio_)
|
||||
[0.0646... 0.0633... 0.0639... 0.0535... 0.0406...]
|
||||
>>> print(svd.explained_variance_ratio_.sum())
|
||||
0.286...
|
||||
>>> print(svd.singular_values_)
|
||||
[1.553... 1.512... 1.510... 1.370... 1.199...]
|
||||
|
||||
See also
|
||||
--------
|
||||
PCA
|
||||
|
||||
References
|
||||
----------
|
||||
Finding structure with randomness: Stochastic algorithms for constructing
|
||||
approximate matrix decompositions
|
||||
Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf
|
||||
|
||||
Notes
|
||||
-----
|
||||
SVD suffers from a problem called "sign indeterminacy", which means the
|
||||
sign of the ``components_`` and the output from transform depend on the
|
||||
algorithm and random state. To work around this, fit instances of this
|
||||
class to data once, then keep the instance around to do transformations.
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=2, *, algorithm="randomized", n_iter=5,
|
||||
random_state=None, tol=0.):
|
||||
self.algorithm = algorithm
|
||||
self.n_components = n_components
|
||||
self.n_iter = n_iter
|
||||
self.random_state = random_state
|
||||
self.tol = tol
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit LSI model on training data X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the transformer object.
|
||||
"""
|
||||
self.fit_transform(X)
|
||||
return self
|
||||
|
||||
def fit_transform(self, X, y=None):
|
||||
"""Fit LSI model to X and perform dimensionality reduction on X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array, shape (n_samples, n_components)
|
||||
Reduced version of X. This will always be a dense array.
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse=['csr', 'csc'],
|
||||
ensure_min_features=2)
|
||||
random_state = check_random_state(self.random_state)
|
||||
|
||||
if self.algorithm == "arpack":
|
||||
U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol)
|
||||
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
||||
# conventions, so reverse its outputs.
|
||||
Sigma = Sigma[::-1]
|
||||
U, VT = svd_flip(U[:, ::-1], VT[::-1])
|
||||
|
||||
elif self.algorithm == "randomized":
|
||||
k = self.n_components
|
||||
n_features = X.shape[1]
|
||||
if k >= n_features:
|
||||
raise ValueError("n_components must be < n_features;"
|
||||
" got %d >= %d" % (k, n_features))
|
||||
U, Sigma, VT = randomized_svd(X, self.n_components,
|
||||
n_iter=self.n_iter,
|
||||
random_state=random_state)
|
||||
else:
|
||||
raise ValueError("unknown algorithm %r" % self.algorithm)
|
||||
|
||||
self.components_ = VT
|
||||
|
||||
# Calculate explained variance & explained variance ratio
|
||||
X_transformed = U * Sigma
|
||||
self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)
|
||||
if sp.issparse(X):
|
||||
_, full_var = mean_variance_axis(X, axis=0)
|
||||
full_var = full_var.sum()
|
||||
else:
|
||||
full_var = np.var(X, axis=0).sum()
|
||||
self.explained_variance_ratio_ = exp_var / full_var
|
||||
self.singular_values_ = Sigma # Store the singular values.
|
||||
|
||||
return X_transformed
|
||||
|
||||
def transform(self, X):
|
||||
"""Perform dimensionality reduction on X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
New data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array, shape (n_samples, n_components)
|
||||
Reduced version of X. This will always be a dense array.
|
||||
"""
|
||||
X = check_array(X, accept_sparse=['csr', 'csc'])
|
||||
check_is_fitted(self)
|
||||
return safe_sparse_dot(X, self.components_.T)
|
||||
|
||||
def inverse_transform(self, X):
|
||||
"""Transform X back to its original space.
|
||||
|
||||
Returns an array X_original whose transform would be X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_components)
|
||||
New data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_original : array, shape (n_samples, n_features)
|
||||
Note that this is always a dense array.
|
||||
"""
|
||||
X = check_array(X)
|
||||
return np.dot(X, self.components_)
|
||||
Loading…
Add table
Add a link
Reference in a new issue