Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
830
venv/Lib/site-packages/sklearn/decomposition/_lda.py
Normal file
830
venv/Lib/site-packages/sklearn/decomposition/_lda.py
Normal file
|
|
@ -0,0 +1,830 @@
|
|||
"""
|
||||
|
||||
=============================================================
|
||||
Online Latent Dirichlet Allocation with variational inference
|
||||
=============================================================
|
||||
|
||||
This implementation is modified from Matthew D. Hoffman's onlineldavb code
|
||||
Link: https://github.com/blei-lab/onlineldavb
|
||||
"""
|
||||
|
||||
# Author: Chyi-Kwei Yau
|
||||
# Author: Matthew D. Hoffman (original onlineldavb implementation)
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from scipy.special import gammaln, logsumexp
|
||||
from joblib import Parallel, delayed, effective_n_jobs
|
||||
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..utils import check_random_state, gen_batches, gen_even_slices
|
||||
from ..utils.validation import check_non_negative
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
from ._online_lda_fast import (mean_change, _dirichlet_expectation_1d,
|
||||
_dirichlet_expectation_2d)
|
||||
|
||||
EPS = np.finfo(np.float).eps
|
||||
|
||||
|
||||
def _update_doc_distribution(X, exp_topic_word_distr, doc_topic_prior,
|
||||
max_iters,
|
||||
mean_change_tol, cal_sstats, random_state):
|
||||
"""E-step: update document-topic distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
exp_topic_word_distr : dense matrix, shape=(n_topics, n_features)
|
||||
Exponential value of expectation of log topic word distribution.
|
||||
In the literature, this is `exp(E[log(beta)])`.
|
||||
|
||||
doc_topic_prior : float
|
||||
Prior of document topic distribution `theta`.
|
||||
|
||||
max_iters : int
|
||||
Max number of iterations for updating document topic distribution in
|
||||
the E-step.
|
||||
|
||||
mean_change_tol : float
|
||||
Stopping tolerance for updating document topic distribution in E-setp.
|
||||
|
||||
cal_sstats : boolean
|
||||
Parameter that indicate to calculate sufficient statistics or not.
|
||||
Set `cal_sstats` to `True` when we need to run M-step.
|
||||
|
||||
random_state : RandomState instance or None
|
||||
Parameter that indicate how to initialize document topic distribution.
|
||||
Set `random_state` to None will initialize document topic distribution
|
||||
to a constant number.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(doc_topic_distr, suff_stats) :
|
||||
`doc_topic_distr` is unnormalized topic distribution for each document.
|
||||
In the literature, this is `gamma`. we can calculate `E[log(theta)]`
|
||||
from it.
|
||||
`suff_stats` is expected sufficient statistics for the M-step.
|
||||
When `cal_sstats == False`, this will be None.
|
||||
|
||||
"""
|
||||
is_sparse_x = sp.issparse(X)
|
||||
n_samples, n_features = X.shape
|
||||
n_topics = exp_topic_word_distr.shape[0]
|
||||
|
||||
if random_state:
|
||||
doc_topic_distr = random_state.gamma(100., 0.01, (n_samples, n_topics))
|
||||
else:
|
||||
doc_topic_distr = np.ones((n_samples, n_topics))
|
||||
|
||||
# In the literature, this is `exp(E[log(theta)])`
|
||||
exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr))
|
||||
|
||||
# diff on `component_` (only calculate it when `cal_diff` is True)
|
||||
suff_stats = np.zeros(exp_topic_word_distr.shape) if cal_sstats else None
|
||||
|
||||
if is_sparse_x:
|
||||
X_data = X.data
|
||||
X_indices = X.indices
|
||||
X_indptr = X.indptr
|
||||
|
||||
for idx_d in range(n_samples):
|
||||
if is_sparse_x:
|
||||
ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
else:
|
||||
ids = np.nonzero(X[idx_d, :])[0]
|
||||
cnts = X[idx_d, ids]
|
||||
|
||||
doc_topic_d = doc_topic_distr[idx_d, :]
|
||||
# The next one is a copy, since the inner loop overwrites it.
|
||||
exp_doc_topic_d = exp_doc_topic[idx_d, :].copy()
|
||||
exp_topic_word_d = exp_topic_word_distr[:, ids]
|
||||
|
||||
# Iterate between `doc_topic_d` and `norm_phi` until convergence
|
||||
for _ in range(0, max_iters):
|
||||
last_d = doc_topic_d
|
||||
|
||||
# The optimal phi_{dwk} is proportional to
|
||||
# exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]).
|
||||
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS
|
||||
|
||||
doc_topic_d = (exp_doc_topic_d *
|
||||
np.dot(cnts / norm_phi, exp_topic_word_d.T))
|
||||
# Note: adds doc_topic_prior to doc_topic_d, in-place.
|
||||
_dirichlet_expectation_1d(doc_topic_d, doc_topic_prior,
|
||||
exp_doc_topic_d)
|
||||
|
||||
if mean_change(last_d, doc_topic_d) < mean_change_tol:
|
||||
break
|
||||
doc_topic_distr[idx_d, :] = doc_topic_d
|
||||
|
||||
# Contribution of document d to the expected sufficient
|
||||
# statistics for the M step.
|
||||
if cal_sstats:
|
||||
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS
|
||||
suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi)
|
||||
|
||||
return (doc_topic_distr, suff_stats)
|
||||
|
||||
|
||||
class LatentDirichletAllocation(TransformerMixin, BaseEstimator):
|
||||
"""Latent Dirichlet Allocation with online variational Bayes algorithm
|
||||
|
||||
.. versionadded:: 0.17
|
||||
|
||||
Read more in the :ref:`User Guide <LatentDirichletAllocation>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, optional (default=10)
|
||||
Number of topics.
|
||||
|
||||
.. versionchanged:: 0.19
|
||||
``n_topics `` was renamed to ``n_components``
|
||||
|
||||
doc_topic_prior : float, optional (default=None)
|
||||
Prior of document topic distribution `theta`. If the value is None,
|
||||
defaults to `1 / n_components`.
|
||||
In [1]_, this is called `alpha`.
|
||||
|
||||
topic_word_prior : float, optional (default=None)
|
||||
Prior of topic word distribution `beta`. If the value is None, defaults
|
||||
to `1 / n_components`.
|
||||
In [1]_, this is called `eta`.
|
||||
|
||||
learning_method : 'batch' | 'online', default='batch'
|
||||
Method used to update `_component`. Only used in :meth:`fit` method.
|
||||
In general, if the data size is large, the online update will be much
|
||||
faster than the batch update.
|
||||
|
||||
Valid options::
|
||||
|
||||
'batch': Batch variational Bayes method. Use all training data in
|
||||
each EM update.
|
||||
Old `components_` will be overwritten in each iteration.
|
||||
'online': Online variational Bayes method. In each EM update, use
|
||||
mini-batch of training data to update the ``components_``
|
||||
variable incrementally. The learning rate is controlled by the
|
||||
``learning_decay`` and the ``learning_offset`` parameters.
|
||||
|
||||
.. versionchanged:: 0.20
|
||||
The default learning method is now ``"batch"``.
|
||||
|
||||
learning_decay : float, optional (default=0.7)
|
||||
It is a parameter that control learning rate in the online learning
|
||||
method. The value should be set between (0.5, 1.0] to guarantee
|
||||
asymptotic convergence. When the value is 0.0 and batch_size is
|
||||
``n_samples``, the update method is same as batch learning. In the
|
||||
literature, this is called kappa.
|
||||
|
||||
learning_offset : float, optional (default=10.)
|
||||
A (positive) parameter that downweights early iterations in online
|
||||
learning. It should be greater than 1.0. In the literature, this is
|
||||
called tau_0.
|
||||
|
||||
max_iter : integer, optional (default=10)
|
||||
The maximum number of iterations.
|
||||
|
||||
batch_size : int, optional (default=128)
|
||||
Number of documents to use in each EM iteration. Only used in online
|
||||
learning.
|
||||
|
||||
evaluate_every : int, optional (default=0)
|
||||
How often to evaluate perplexity. Only used in `fit` method.
|
||||
set it to 0 or negative number to not evaluate perplexity in
|
||||
training at all. Evaluating perplexity can help you check convergence
|
||||
in training process, but it will also increase total training time.
|
||||
Evaluating perplexity in every iteration might increase training time
|
||||
up to two-fold.
|
||||
|
||||
total_samples : int, optional (default=1e6)
|
||||
Total number of documents. Only used in the :meth:`partial_fit` method.
|
||||
|
||||
perp_tol : float, optional (default=1e-1)
|
||||
Perplexity tolerance in batch learning. Only used when
|
||||
``evaluate_every`` is greater than 0.
|
||||
|
||||
mean_change_tol : float, optional (default=1e-3)
|
||||
Stopping tolerance for updating document topic distribution in E-step.
|
||||
|
||||
max_doc_update_iter : int (default=100)
|
||||
Max number of iterations for updating document topic distribution in
|
||||
the E-step.
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
The number of jobs to use in the E-step.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
verbose : int, optional (default=0)
|
||||
Verbosity level.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Pass an int for reproducible results across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, [n_components, n_features]
|
||||
Variational parameters for topic word distribution. Since the complete
|
||||
conditional for topic word distribution is a Dirichlet,
|
||||
``components_[i, j]`` can be viewed as pseudocount that represents the
|
||||
number of times word `j` was assigned to topic `i`.
|
||||
It can also be viewed as distribution over the words for each topic
|
||||
after normalization:
|
||||
``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``.
|
||||
|
||||
n_batch_iter_ : int
|
||||
Number of iterations of the EM step.
|
||||
|
||||
n_iter_ : int
|
||||
Number of passes over the dataset.
|
||||
|
||||
bound_ : float
|
||||
Final perplexity score on training set.
|
||||
|
||||
doc_topic_prior_ : float
|
||||
Prior of document topic distribution `theta`. If the value is None,
|
||||
it is `1 / n_components`.
|
||||
|
||||
topic_word_prior_ : float
|
||||
Prior of topic word distribution `beta`. If the value is None, it is
|
||||
`1 / n_components`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.decomposition import LatentDirichletAllocation
|
||||
>>> from sklearn.datasets import make_multilabel_classification
|
||||
>>> # This produces a feature matrix of token counts, similar to what
|
||||
>>> # CountVectorizer would produce on text.
|
||||
>>> X, _ = make_multilabel_classification(random_state=0)
|
||||
>>> lda = LatentDirichletAllocation(n_components=5,
|
||||
... random_state=0)
|
||||
>>> lda.fit(X)
|
||||
LatentDirichletAllocation(...)
|
||||
>>> # get topics for some given samples:
|
||||
>>> lda.transform(X[-2:])
|
||||
array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],
|
||||
[0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586 ]])
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] "Online Learning for Latent Dirichlet Allocation", Matthew D.
|
||||
Hoffman, David M. Blei, Francis Bach, 2010
|
||||
|
||||
[2] "Stochastic Variational Inference", Matthew D. Hoffman, David M. Blei,
|
||||
Chong Wang, John Paisley, 2013
|
||||
|
||||
[3] Matthew D. Hoffman's onlineldavb code. Link:
|
||||
https://github.com/blei-lab/onlineldavb
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=10, *, doc_topic_prior=None,
|
||||
topic_word_prior=None, learning_method='batch',
|
||||
learning_decay=.7, learning_offset=10., max_iter=10,
|
||||
batch_size=128, evaluate_every=-1, total_samples=1e6,
|
||||
perp_tol=1e-1, mean_change_tol=1e-3, max_doc_update_iter=100,
|
||||
n_jobs=None, verbose=0, random_state=None):
|
||||
self.n_components = n_components
|
||||
self.doc_topic_prior = doc_topic_prior
|
||||
self.topic_word_prior = topic_word_prior
|
||||
self.learning_method = learning_method
|
||||
self.learning_decay = learning_decay
|
||||
self.learning_offset = learning_offset
|
||||
self.max_iter = max_iter
|
||||
self.batch_size = batch_size
|
||||
self.evaluate_every = evaluate_every
|
||||
self.total_samples = total_samples
|
||||
self.perp_tol = perp_tol
|
||||
self.mean_change_tol = mean_change_tol
|
||||
self.max_doc_update_iter = max_doc_update_iter
|
||||
self.n_jobs = n_jobs
|
||||
self.verbose = verbose
|
||||
self.random_state = random_state
|
||||
|
||||
def _check_params(self):
|
||||
"""Check model parameters."""
|
||||
if self.n_components <= 0:
|
||||
raise ValueError("Invalid 'n_components' parameter: %r"
|
||||
% self.n_components)
|
||||
|
||||
if self.total_samples <= 0:
|
||||
raise ValueError("Invalid 'total_samples' parameter: %r"
|
||||
% self.total_samples)
|
||||
|
||||
if self.learning_offset < 0:
|
||||
raise ValueError("Invalid 'learning_offset' parameter: %r"
|
||||
% self.learning_offset)
|
||||
|
||||
if self.learning_method not in ("batch", "online"):
|
||||
raise ValueError("Invalid 'learning_method' parameter: %r"
|
||||
% self.learning_method)
|
||||
|
||||
def _init_latent_vars(self, n_features):
|
||||
"""Initialize latent variables."""
|
||||
|
||||
self.random_state_ = check_random_state(self.random_state)
|
||||
self.n_batch_iter_ = 1
|
||||
self.n_iter_ = 0
|
||||
|
||||
if self.doc_topic_prior is None:
|
||||
self.doc_topic_prior_ = 1. / self.n_components
|
||||
else:
|
||||
self.doc_topic_prior_ = self.doc_topic_prior
|
||||
|
||||
if self.topic_word_prior is None:
|
||||
self.topic_word_prior_ = 1. / self.n_components
|
||||
else:
|
||||
self.topic_word_prior_ = self.topic_word_prior
|
||||
|
||||
init_gamma = 100.
|
||||
init_var = 1. / init_gamma
|
||||
# In the literature, this is called `lambda`
|
||||
self.components_ = self.random_state_.gamma(
|
||||
init_gamma, init_var, (self.n_components, n_features))
|
||||
|
||||
# In the literature, this is `exp(E[log(beta)])`
|
||||
self.exp_dirichlet_component_ = np.exp(
|
||||
_dirichlet_expectation_2d(self.components_))
|
||||
|
||||
def _e_step(self, X, cal_sstats, random_init, parallel=None):
|
||||
"""E-step in EM update.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
cal_sstats : boolean
|
||||
Parameter that indicate whether to calculate sufficient statistics
|
||||
or not. Set ``cal_sstats`` to True when we need to run M-step.
|
||||
|
||||
random_init : boolean
|
||||
Parameter that indicate whether to initialize document topic
|
||||
distribution randomly in the E-step. Set it to True in training
|
||||
steps.
|
||||
|
||||
parallel : joblib.Parallel (optional)
|
||||
Pre-initialized instance of joblib.Parallel.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(doc_topic_distr, suff_stats) :
|
||||
`doc_topic_distr` is unnormalized topic distribution for each
|
||||
document. In the literature, this is called `gamma`.
|
||||
`suff_stats` is expected sufficient statistics for the M-step.
|
||||
When `cal_sstats == False`, it will be None.
|
||||
|
||||
"""
|
||||
|
||||
# Run e-step in parallel
|
||||
random_state = self.random_state_ if random_init else None
|
||||
|
||||
# TODO: make Parallel._effective_n_jobs public instead?
|
||||
n_jobs = effective_n_jobs(self.n_jobs)
|
||||
if parallel is None:
|
||||
parallel = Parallel(n_jobs=n_jobs, verbose=max(0,
|
||||
self.verbose - 1))
|
||||
results = parallel(
|
||||
delayed(_update_doc_distribution)(X[idx_slice, :],
|
||||
self.exp_dirichlet_component_,
|
||||
self.doc_topic_prior_,
|
||||
self.max_doc_update_iter,
|
||||
self.mean_change_tol, cal_sstats,
|
||||
random_state)
|
||||
for idx_slice in gen_even_slices(X.shape[0], n_jobs))
|
||||
|
||||
# merge result
|
||||
doc_topics, sstats_list = zip(*results)
|
||||
doc_topic_distr = np.vstack(doc_topics)
|
||||
|
||||
if cal_sstats:
|
||||
# This step finishes computing the sufficient statistics for the
|
||||
# M-step.
|
||||
suff_stats = np.zeros(self.components_.shape)
|
||||
for sstats in sstats_list:
|
||||
suff_stats += sstats
|
||||
suff_stats *= self.exp_dirichlet_component_
|
||||
else:
|
||||
suff_stats = None
|
||||
|
||||
return (doc_topic_distr, suff_stats)
|
||||
|
||||
def _em_step(self, X, total_samples, batch_update, parallel=None):
|
||||
"""EM update for 1 iteration.
|
||||
|
||||
update `_component` by batch VB or online VB.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
total_samples : integer
|
||||
Total number of documents. It is only used when
|
||||
batch_update is `False`.
|
||||
|
||||
batch_update : boolean
|
||||
Parameter that controls updating method.
|
||||
`True` for batch learning, `False` for online learning.
|
||||
|
||||
parallel : joblib.Parallel
|
||||
Pre-initialized instance of joblib.Parallel
|
||||
|
||||
Returns
|
||||
-------
|
||||
doc_topic_distr : array, shape=(n_samples, n_components)
|
||||
Unnormalized document topic distribution.
|
||||
"""
|
||||
|
||||
# E-step
|
||||
_, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
|
||||
parallel=parallel)
|
||||
|
||||
# M-step
|
||||
if batch_update:
|
||||
self.components_ = self.topic_word_prior_ + suff_stats
|
||||
else:
|
||||
# online update
|
||||
# In the literature, the weight is `rho`
|
||||
weight = np.power(self.learning_offset + self.n_batch_iter_,
|
||||
-self.learning_decay)
|
||||
doc_ratio = float(total_samples) / X.shape[0]
|
||||
self.components_ *= (1 - weight)
|
||||
self.components_ += (weight * (self.topic_word_prior_
|
||||
+ doc_ratio * suff_stats))
|
||||
|
||||
# update `component_` related variables
|
||||
self.exp_dirichlet_component_ = np.exp(
|
||||
_dirichlet_expectation_2d(self.components_))
|
||||
self.n_batch_iter_ += 1
|
||||
return
|
||||
|
||||
def _more_tags(self):
|
||||
return {'requires_positive_X': True}
|
||||
|
||||
def _check_non_neg_array(self, X, reset_n_features, whom):
|
||||
"""check X format
|
||||
|
||||
check X format and make sure no negative value in X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix
|
||||
|
||||
"""
|
||||
X = self._validate_data(X, reset=reset_n_features,
|
||||
accept_sparse='csr')
|
||||
check_non_negative(X, whom)
|
||||
return X
|
||||
|
||||
def partial_fit(self, X, y=None):
|
||||
"""Online VB with Mini-Batch update.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
"""
|
||||
self._check_params()
|
||||
first_time = not hasattr(self, 'components_')
|
||||
|
||||
# In theory reset should be equal to `first_time`, but there are tests
|
||||
# checking the input number of feature and they expect a specific
|
||||
# string, which is not the same one raised by check_n_features. So we
|
||||
# don't check n_features_in_ here for now (it's done with adhoc code in
|
||||
# the estimator anyway).
|
||||
# TODO: set reset=first_time when addressing reset in
|
||||
# predict/transform/etc.
|
||||
reset_n_features = True
|
||||
X = self._check_non_neg_array(X, reset_n_features,
|
||||
"LatentDirichletAllocation.partial_fit")
|
||||
n_samples, n_features = X.shape
|
||||
batch_size = self.batch_size
|
||||
|
||||
# initialize parameters or check
|
||||
if first_time:
|
||||
self._init_latent_vars(n_features)
|
||||
|
||||
if n_features != self.components_.shape[1]:
|
||||
raise ValueError(
|
||||
"The provided data has %d dimensions while "
|
||||
"the model was trained with feature size %d." %
|
||||
(n_features, self.components_.shape[1]))
|
||||
|
||||
n_jobs = effective_n_jobs(self.n_jobs)
|
||||
with Parallel(n_jobs=n_jobs,
|
||||
verbose=max(0, self.verbose - 1)) as parallel:
|
||||
for idx_slice in gen_batches(n_samples, batch_size):
|
||||
self._em_step(X[idx_slice, :],
|
||||
total_samples=self.total_samples,
|
||||
batch_update=False,
|
||||
parallel=parallel)
|
||||
|
||||
return self
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Learn model for the data X with variational Bayes method.
|
||||
|
||||
When `learning_method` is 'online', use mini-batch update.
|
||||
Otherwise, use batch update.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
"""
|
||||
self._check_params()
|
||||
X = self._check_non_neg_array(X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.fit")
|
||||
n_samples, n_features = X.shape
|
||||
max_iter = self.max_iter
|
||||
evaluate_every = self.evaluate_every
|
||||
learning_method = self.learning_method
|
||||
|
||||
batch_size = self.batch_size
|
||||
|
||||
# initialize parameters
|
||||
self._init_latent_vars(n_features)
|
||||
# change to perplexity later
|
||||
last_bound = None
|
||||
n_jobs = effective_n_jobs(self.n_jobs)
|
||||
with Parallel(n_jobs=n_jobs,
|
||||
verbose=max(0, self.verbose - 1)) as parallel:
|
||||
for i in range(max_iter):
|
||||
if learning_method == 'online':
|
||||
for idx_slice in gen_batches(n_samples, batch_size):
|
||||
self._em_step(X[idx_slice, :], total_samples=n_samples,
|
||||
batch_update=False, parallel=parallel)
|
||||
else:
|
||||
# batch update
|
||||
self._em_step(X, total_samples=n_samples,
|
||||
batch_update=True, parallel=parallel)
|
||||
|
||||
# check perplexity
|
||||
if evaluate_every > 0 and (i + 1) % evaluate_every == 0:
|
||||
doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
|
||||
random_init=False,
|
||||
parallel=parallel)
|
||||
bound = self._perplexity_precomp_distr(X, doc_topics_distr,
|
||||
sub_sampling=False)
|
||||
if self.verbose:
|
||||
print('iteration: %d of max_iter: %d, perplexity: %.4f'
|
||||
% (i + 1, max_iter, bound))
|
||||
|
||||
if last_bound and abs(last_bound - bound) < self.perp_tol:
|
||||
break
|
||||
last_bound = bound
|
||||
|
||||
elif self.verbose:
|
||||
print('iteration: %d of max_iter: %d' % (i + 1, max_iter))
|
||||
self.n_iter_ += 1
|
||||
|
||||
# calculate final perplexity value on train set
|
||||
doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
|
||||
random_init=False,
|
||||
parallel=parallel)
|
||||
self.bound_ = self._perplexity_precomp_distr(X, doc_topics_distr,
|
||||
sub_sampling=False)
|
||||
|
||||
return self
|
||||
|
||||
def _unnormalized_transform(self, X):
|
||||
"""Transform data X according to fitted model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
doc_topic_distr : shape=(n_samples, n_components)
|
||||
Document topic distribution for X.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
# make sure feature size is the same in fitted model and in X
|
||||
X = self._check_non_neg_array(
|
||||
X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.transform")
|
||||
n_samples, n_features = X.shape
|
||||
if n_features != self.components_.shape[1]:
|
||||
raise ValueError(
|
||||
"The provided data has %d dimensions while "
|
||||
"the model was trained with feature size %d." %
|
||||
(n_features, self.components_.shape[1]))
|
||||
|
||||
doc_topic_distr, _ = self._e_step(X, cal_sstats=False,
|
||||
random_init=False)
|
||||
|
||||
return doc_topic_distr
|
||||
|
||||
def transform(self, X):
|
||||
"""Transform data X according to the fitted model.
|
||||
|
||||
.. versionchanged:: 0.18
|
||||
*doc_topic_distr* is now normalized
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
doc_topic_distr : shape=(n_samples, n_components)
|
||||
Document topic distribution for X.
|
||||
"""
|
||||
doc_topic_distr = self._unnormalized_transform(X)
|
||||
doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]
|
||||
return doc_topic_distr
|
||||
|
||||
def _approx_bound(self, X, doc_topic_distr, sub_sampling):
|
||||
"""Estimate the variational bound.
|
||||
|
||||
Estimate the variational bound over "all documents" using only the
|
||||
documents passed in as X. Since log-likelihood of each word cannot
|
||||
be computed directly, we use this bound to estimate it.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
doc_topic_distr : array, shape=(n_samples, n_components)
|
||||
Document topic distribution. In the literature, this is called
|
||||
gamma.
|
||||
|
||||
sub_sampling : boolean, optional, (default=False)
|
||||
Compensate for subsampling of documents.
|
||||
It is used in calculate bound in online learning.
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
|
||||
"""
|
||||
|
||||
def _loglikelihood(prior, distr, dirichlet_distr, size):
|
||||
# calculate log-likelihood
|
||||
score = np.sum((prior - distr) * dirichlet_distr)
|
||||
score += np.sum(gammaln(distr) - gammaln(prior))
|
||||
score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1)))
|
||||
return score
|
||||
|
||||
is_sparse_x = sp.issparse(X)
|
||||
n_samples, n_components = doc_topic_distr.shape
|
||||
n_features = self.components_.shape[1]
|
||||
score = 0
|
||||
|
||||
dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr)
|
||||
dirichlet_component_ = _dirichlet_expectation_2d(self.components_)
|
||||
doc_topic_prior = self.doc_topic_prior_
|
||||
topic_word_prior = self.topic_word_prior_
|
||||
|
||||
if is_sparse_x:
|
||||
X_data = X.data
|
||||
X_indices = X.indices
|
||||
X_indptr = X.indptr
|
||||
|
||||
# E[log p(docs | theta, beta)]
|
||||
for idx_d in range(0, n_samples):
|
||||
if is_sparse_x:
|
||||
ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
else:
|
||||
ids = np.nonzero(X[idx_d, :])[0]
|
||||
cnts = X[idx_d, ids]
|
||||
temp = (dirichlet_doc_topic[idx_d, :, np.newaxis]
|
||||
+ dirichlet_component_[:, ids])
|
||||
norm_phi = logsumexp(temp, axis=0)
|
||||
score += np.dot(cnts, norm_phi)
|
||||
|
||||
# compute E[log p(theta | alpha) - log q(theta | gamma)]
|
||||
score += _loglikelihood(doc_topic_prior, doc_topic_distr,
|
||||
dirichlet_doc_topic, self.n_components)
|
||||
|
||||
# Compensate for the subsampling of the population of documents
|
||||
if sub_sampling:
|
||||
doc_ratio = float(self.total_samples) / n_samples
|
||||
score *= doc_ratio
|
||||
|
||||
# E[log p(beta | eta) - log q (beta | lambda)]
|
||||
score += _loglikelihood(topic_word_prior, self.components_,
|
||||
dirichlet_component_, n_features)
|
||||
|
||||
return score
|
||||
|
||||
def score(self, X, y=None):
|
||||
"""Calculate approximate log-likelihood as score.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
Use approximate bound as score.
|
||||
"""
|
||||
X = self._check_non_neg_array(X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.score")
|
||||
|
||||
doc_topic_distr = self._unnormalized_transform(X)
|
||||
score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)
|
||||
return score
|
||||
|
||||
def _perplexity_precomp_distr(self, X, doc_topic_distr=None,
|
||||
sub_sampling=False):
|
||||
"""Calculate approximate perplexity for data X with ability to accept
|
||||
precomputed doc_topic_distr
|
||||
|
||||
Perplexity is defined as exp(-1. * log-likelihood per word)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, [n_samples, n_features]
|
||||
Document word matrix.
|
||||
|
||||
doc_topic_distr : None or array, shape=(n_samples, n_components)
|
||||
Document topic distribution.
|
||||
If it is None, it will be generated by applying transform on X.
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
Perplexity score.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = self._check_non_neg_array(
|
||||
X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.perplexity")
|
||||
|
||||
if doc_topic_distr is None:
|
||||
doc_topic_distr = self._unnormalized_transform(X)
|
||||
else:
|
||||
n_samples, n_components = doc_topic_distr.shape
|
||||
if n_samples != X.shape[0]:
|
||||
raise ValueError("Number of samples in X and doc_topic_distr"
|
||||
" do not match.")
|
||||
|
||||
if n_components != self.n_components:
|
||||
raise ValueError("Number of topics does not match.")
|
||||
|
||||
current_samples = X.shape[0]
|
||||
bound = self._approx_bound(X, doc_topic_distr, sub_sampling)
|
||||
|
||||
if sub_sampling:
|
||||
word_cnt = X.sum() * (float(self.total_samples) / current_samples)
|
||||
else:
|
||||
word_cnt = X.sum()
|
||||
perword_bound = bound / word_cnt
|
||||
|
||||
return np.exp(-1.0 * perword_bound)
|
||||
|
||||
def perplexity(self, X, sub_sampling=False):
|
||||
"""Calculate approximate perplexity for data X.
|
||||
|
||||
Perplexity is defined as exp(-1. * log-likelihood per word)
|
||||
|
||||
.. versionchanged:: 0.19
|
||||
*doc_topic_distr* argument has been deprecated and is ignored
|
||||
because user no longer has access to unnormalized distribution
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, [n_samples, n_features]
|
||||
Document word matrix.
|
||||
|
||||
sub_sampling : bool
|
||||
Do sub-sampling or not.
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
Perplexity score.
|
||||
"""
|
||||
return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)
|
||||
Loading…
Add table
Add a link
Reference in a new issue