Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
53
venv/Lib/site-packages/sklearn/decomposition/__init__.py
Normal file
53
venv/Lib/site-packages/sklearn/decomposition/__init__.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
"""
|
||||
The :mod:`sklearn.decomposition` module includes matrix decomposition
|
||||
algorithms, including among others PCA, NMF or ICA. Most of the algorithms of
|
||||
this module can be regarded as dimensionality reduction techniques.
|
||||
"""
|
||||
|
||||
# TODO: remove me in 0.24 (as well as the noqa markers) and
|
||||
# import the dict_learning func directly from the ._dict_learning
|
||||
# module instead.
|
||||
# Pre-cache the import of the deprecated module so that import
|
||||
# sklearn.decomposition.dict_learning returns the function as in
|
||||
# 0.21, instead of the module.
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/15842
|
||||
import warnings
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", category=FutureWarning)
|
||||
from .dict_learning import dict_learning
|
||||
|
||||
|
||||
from ._nmf import NMF, non_negative_factorization # noqa
|
||||
from ._pca import PCA # noqa
|
||||
from ._incremental_pca import IncrementalPCA # noqa
|
||||
from ._kernel_pca import KernelPCA # noqa
|
||||
from ._sparse_pca import SparsePCA, MiniBatchSparsePCA # noqa
|
||||
from ._truncated_svd import TruncatedSVD # noqa
|
||||
from ._fastica import FastICA, fastica # noqa
|
||||
from ._dict_learning import (dict_learning_online,
|
||||
sparse_encode, DictionaryLearning,
|
||||
MiniBatchDictionaryLearning, SparseCoder) # noqa
|
||||
from ._factor_analysis import FactorAnalysis # noqa
|
||||
from ..utils.extmath import randomized_svd # noqa
|
||||
from ._lda import LatentDirichletAllocation # noqa
|
||||
|
||||
|
||||
__all__ = ['DictionaryLearning',
|
||||
'FastICA',
|
||||
'IncrementalPCA',
|
||||
'KernelPCA',
|
||||
'MiniBatchDictionaryLearning',
|
||||
'MiniBatchSparsePCA',
|
||||
'NMF',
|
||||
'PCA',
|
||||
'SparseCoder',
|
||||
'SparsePCA',
|
||||
'dict_learning',
|
||||
'dict_learning_online',
|
||||
'fastica',
|
||||
'non_negative_factorization',
|
||||
'randomized_svd',
|
||||
'sparse_encode',
|
||||
'FactorAnalysis',
|
||||
'TruncatedSVD',
|
||||
'LatentDirichletAllocation']
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
159
venv/Lib/site-packages/sklearn/decomposition/_base.py
Normal file
159
venv/Lib/site-packages/sklearn/decomposition/_base.py
Normal file
|
@ -0,0 +1,159 @@
|
|||
"""Principal Component Analysis Base Classes"""
|
||||
|
||||
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||||
# Olivier Grisel <olivier.grisel@ensta.org>
|
||||
# Mathieu Blondel <mathieu@mblondel.org>
|
||||
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
|
||||
# Kyle Kastner <kastnerkyle@gmail.com>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
from scipy import linalg
|
||||
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..utils import check_array
|
||||
from ..utils.validation import check_is_fitted
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
|
||||
class _BasePCA(TransformerMixin, BaseEstimator, metaclass=ABCMeta):
|
||||
"""Base class for PCA methods.
|
||||
|
||||
Warning: This class should not be used directly.
|
||||
Use derived classes instead.
|
||||
"""
|
||||
def get_covariance(self):
|
||||
"""Compute data covariance with the generative model.
|
||||
|
||||
``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
|
||||
where S**2 contains the explained variances, and sigma2 contains the
|
||||
noise variances.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cov : array, shape=(n_features, n_features)
|
||||
Estimated covariance of data.
|
||||
"""
|
||||
components_ = self.components_
|
||||
exp_var = self.explained_variance_
|
||||
if self.whiten:
|
||||
components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
|
||||
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.)
|
||||
cov = np.dot(components_.T * exp_var_diff, components_)
|
||||
cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace
|
||||
return cov
|
||||
|
||||
def get_precision(self):
|
||||
"""Compute data precision matrix with the generative model.
|
||||
|
||||
Equals the inverse of the covariance but computed with
|
||||
the matrix inversion lemma for efficiency.
|
||||
|
||||
Returns
|
||||
-------
|
||||
precision : array, shape=(n_features, n_features)
|
||||
Estimated precision of data.
|
||||
"""
|
||||
n_features = self.components_.shape[1]
|
||||
|
||||
# handle corner cases first
|
||||
if self.n_components_ == 0:
|
||||
return np.eye(n_features) / self.noise_variance_
|
||||
if self.n_components_ == n_features:
|
||||
return linalg.inv(self.get_covariance())
|
||||
|
||||
# Get precision using matrix inversion lemma
|
||||
components_ = self.components_
|
||||
exp_var = self.explained_variance_
|
||||
if self.whiten:
|
||||
components_ = components_ * np.sqrt(exp_var[:, np.newaxis])
|
||||
exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.)
|
||||
precision = np.dot(components_, components_.T) / self.noise_variance_
|
||||
precision.flat[::len(precision) + 1] += 1. / exp_var_diff
|
||||
precision = np.dot(components_.T,
|
||||
np.dot(linalg.inv(precision), components_))
|
||||
precision /= -(self.noise_variance_ ** 2)
|
||||
precision.flat[::len(precision) + 1] += 1. / self.noise_variance_
|
||||
return precision
|
||||
|
||||
@abstractmethod
|
||||
def fit(X, y=None):
|
||||
"""Placeholder for fit. Subclasses should implement this method!
|
||||
|
||||
Fit the model with X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the instance itself.
|
||||
"""
|
||||
|
||||
def transform(self, X):
|
||||
"""Apply dimensionality reduction to X.
|
||||
|
||||
X is projected on the first principal components previously extracted
|
||||
from a training set.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
New data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from sklearn.decomposition import IncrementalPCA
|
||||
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
||||
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
|
||||
>>> ipca.fit(X)
|
||||
IncrementalPCA(batch_size=3, n_components=2)
|
||||
>>> ipca.transform(X) # doctest: +SKIP
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X)
|
||||
if self.mean_ is not None:
|
||||
X = X - self.mean_
|
||||
X_transformed = np.dot(X, self.components_.T)
|
||||
if self.whiten:
|
||||
X_transformed /= np.sqrt(self.explained_variance_)
|
||||
return X_transformed
|
||||
|
||||
def inverse_transform(self, X):
|
||||
"""Transform data back to its original space.
|
||||
|
||||
In other words, return an input X_original whose transform would be X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_components)
|
||||
New data, where n_samples is the number of samples
|
||||
and n_components is the number of components.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_original array-like, shape (n_samples, n_features)
|
||||
|
||||
Notes
|
||||
-----
|
||||
If whitening is enabled, inverse_transform will compute the
|
||||
exact inverse operation, which includes reversing whitening.
|
||||
"""
|
||||
if self.whiten:
|
||||
return np.dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) *
|
||||
self.components_) + self.mean_
|
||||
else:
|
||||
return np.dot(X, self.components_) + self.mean_
|
Binary file not shown.
1508
venv/Lib/site-packages/sklearn/decomposition/_dict_learning.py
Normal file
1508
venv/Lib/site-packages/sklearn/decomposition/_dict_learning.py
Normal file
File diff suppressed because it is too large
Load diff
364
venv/Lib/site-packages/sklearn/decomposition/_factor_analysis.py
Normal file
364
venv/Lib/site-packages/sklearn/decomposition/_factor_analysis.py
Normal file
|
@ -0,0 +1,364 @@
|
|||
"""Factor Analysis.
|
||||
|
||||
A latent linear variable model.
|
||||
|
||||
FactorAnalysis is similar to probabilistic PCA implemented by PCA.score
|
||||
While PCA assumes Gaussian noise with the same variance for each
|
||||
feature, the FactorAnalysis model assumes different variances for
|
||||
each of them.
|
||||
|
||||
This implementation is based on David Barber's Book,
|
||||
Bayesian Reasoning and Machine Learning,
|
||||
http://www.cs.ucl.ac.uk/staff/d.barber/brml,
|
||||
Algorithm 21.1
|
||||
"""
|
||||
|
||||
# Author: Christian Osendorfer <osendorf@gmail.com>
|
||||
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||||
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
|
||||
|
||||
# License: BSD3
|
||||
|
||||
import warnings
|
||||
from math import sqrt, log
|
||||
import numpy as np
|
||||
from scipy import linalg
|
||||
|
||||
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..utils import check_array, check_random_state
|
||||
from ..utils.extmath import fast_logdet, randomized_svd, squared_norm
|
||||
from ..utils.validation import check_is_fitted, _deprecate_positional_args
|
||||
from ..exceptions import ConvergenceWarning
|
||||
|
||||
|
||||
class FactorAnalysis(TransformerMixin, BaseEstimator):
|
||||
"""Factor Analysis (FA)
|
||||
|
||||
A simple linear generative model with Gaussian latent variables.
|
||||
|
||||
The observations are assumed to be caused by a linear transformation of
|
||||
lower dimensional latent factors and added Gaussian noise.
|
||||
Without loss of generality the factors are distributed according to a
|
||||
Gaussian with zero mean and unit covariance. The noise is also zero mean
|
||||
and has an arbitrary diagonal covariance matrix.
|
||||
|
||||
If we would restrict the model further, by assuming that the Gaussian
|
||||
noise is even isotropic (all diagonal entries are the same) we would obtain
|
||||
:class:`PPCA`.
|
||||
|
||||
FactorAnalysis performs a maximum likelihood estimate of the so-called
|
||||
`loading` matrix, the transformation of the latent variables to the
|
||||
observed ones, using SVD based approach.
|
||||
|
||||
Read more in the :ref:`User Guide <FA>`.
|
||||
|
||||
.. versionadded:: 0.13
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int | None
|
||||
Dimensionality of latent space, the number of components
|
||||
of ``X`` that are obtained after ``transform``.
|
||||
If None, n_components is set to the number of features.
|
||||
|
||||
tol : float
|
||||
Stopping tolerance for log-likelihood increase.
|
||||
|
||||
copy : bool
|
||||
Whether to make a copy of X. If ``False``, the input X gets overwritten
|
||||
during fitting.
|
||||
|
||||
max_iter : int
|
||||
Maximum number of iterations.
|
||||
|
||||
noise_variance_init : None | array, shape=(n_features,)
|
||||
The initial guess of the noise variance for each feature.
|
||||
If None, it defaults to np.ones(n_features)
|
||||
|
||||
svd_method : {'lapack', 'randomized'}
|
||||
Which SVD method to use. If 'lapack' use standard SVD from
|
||||
scipy.linalg, if 'randomized' use fast ``randomized_svd`` function.
|
||||
Defaults to 'randomized'. For most applications 'randomized' will
|
||||
be sufficiently precise while providing significant speed gains.
|
||||
Accuracy can also be improved by setting higher values for
|
||||
`iterated_power`. If this is not sufficient, for maximum precision
|
||||
you should choose 'lapack'.
|
||||
|
||||
iterated_power : int, optional
|
||||
Number of iterations for the power method. 3 by default. Only used
|
||||
if ``svd_method`` equals 'randomized'
|
||||
|
||||
random_state : int, RandomState instance, default=0
|
||||
Only used when ``svd_method`` equals 'randomized'. Pass an int for
|
||||
reproducible results across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, [n_components, n_features]
|
||||
Components with maximum variance.
|
||||
|
||||
loglike_ : list, [n_iterations]
|
||||
The log likelihood at each iteration.
|
||||
|
||||
noise_variance_ : array, shape=(n_features,)
|
||||
The estimated noise variance for each feature.
|
||||
|
||||
n_iter_ : int
|
||||
Number of iterations run.
|
||||
|
||||
mean_ : array, shape (n_features,)
|
||||
Per-feature empirical mean, estimated from the training set.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.datasets import load_digits
|
||||
>>> from sklearn.decomposition import FactorAnalysis
|
||||
>>> X, _ = load_digits(return_X_y=True)
|
||||
>>> transformer = FactorAnalysis(n_components=7, random_state=0)
|
||||
>>> X_transformed = transformer.fit_transform(X)
|
||||
>>> X_transformed.shape
|
||||
(1797, 7)
|
||||
|
||||
References
|
||||
----------
|
||||
.. David Barber, Bayesian Reasoning and Machine Learning,
|
||||
Algorithm 21.1
|
||||
|
||||
.. Christopher M. Bishop: Pattern Recognition and Machine Learning,
|
||||
Chapter 12.2.4
|
||||
|
||||
See also
|
||||
--------
|
||||
PCA: Principal component analysis is also a latent linear variable model
|
||||
which however assumes equal noise variance for each feature.
|
||||
This extra assumption makes probabilistic PCA faster as it can be
|
||||
computed in closed form.
|
||||
FastICA: Independent component analysis, a latent variable model with
|
||||
non-Gaussian latent variables.
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=None, *, tol=1e-2, copy=True,
|
||||
max_iter=1000,
|
||||
noise_variance_init=None, svd_method='randomized',
|
||||
iterated_power=3, random_state=0):
|
||||
self.n_components = n_components
|
||||
self.copy = copy
|
||||
self.tol = tol
|
||||
self.max_iter = max_iter
|
||||
if svd_method not in ['lapack', 'randomized']:
|
||||
raise ValueError('SVD method %s is not supported. Please consider'
|
||||
' the documentation' % svd_method)
|
||||
self.svd_method = svd_method
|
||||
|
||||
self.noise_variance_init = noise_variance_init
|
||||
self.iterated_power = iterated_power
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the FactorAnalysis model to X using SVD based approach
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
"""
|
||||
X = self._validate_data(X, copy=self.copy, dtype=np.float64)
|
||||
|
||||
n_samples, n_features = X.shape
|
||||
n_components = self.n_components
|
||||
if n_components is None:
|
||||
n_components = n_features
|
||||
self.mean_ = np.mean(X, axis=0)
|
||||
X -= self.mean_
|
||||
|
||||
# some constant terms
|
||||
nsqrt = sqrt(n_samples)
|
||||
llconst = n_features * log(2. * np.pi) + n_components
|
||||
var = np.var(X, axis=0)
|
||||
|
||||
if self.noise_variance_init is None:
|
||||
psi = np.ones(n_features, dtype=X.dtype)
|
||||
else:
|
||||
if len(self.noise_variance_init) != n_features:
|
||||
raise ValueError("noise_variance_init dimension does not "
|
||||
"with number of features : %d != %d" %
|
||||
(len(self.noise_variance_init), n_features))
|
||||
psi = np.array(self.noise_variance_init)
|
||||
|
||||
loglike = []
|
||||
old_ll = -np.inf
|
||||
SMALL = 1e-12
|
||||
|
||||
# we'll modify svd outputs to return unexplained variance
|
||||
# to allow for unified computation of loglikelihood
|
||||
if self.svd_method == 'lapack':
|
||||
def my_svd(X):
|
||||
_, s, V = linalg.svd(X, full_matrices=False)
|
||||
return (s[:n_components], V[:n_components],
|
||||
squared_norm(s[n_components:]))
|
||||
elif self.svd_method == 'randomized':
|
||||
random_state = check_random_state(self.random_state)
|
||||
|
||||
def my_svd(X):
|
||||
_, s, V = randomized_svd(X, n_components,
|
||||
random_state=random_state,
|
||||
n_iter=self.iterated_power)
|
||||
return s, V, squared_norm(X) - squared_norm(s)
|
||||
else:
|
||||
raise ValueError('SVD method %s is not supported. Please consider'
|
||||
' the documentation' % self.svd_method)
|
||||
|
||||
for i in range(self.max_iter):
|
||||
# SMALL helps numerics
|
||||
sqrt_psi = np.sqrt(psi) + SMALL
|
||||
s, V, unexp_var = my_svd(X / (sqrt_psi * nsqrt))
|
||||
s **= 2
|
||||
# Use 'maximum' here to avoid sqrt problems.
|
||||
W = np.sqrt(np.maximum(s - 1., 0.))[:, np.newaxis] * V
|
||||
del V
|
||||
W *= sqrt_psi
|
||||
|
||||
# loglikelihood
|
||||
ll = llconst + np.sum(np.log(s))
|
||||
ll += unexp_var + np.sum(np.log(psi))
|
||||
ll *= -n_samples / 2.
|
||||
loglike.append(ll)
|
||||
if (ll - old_ll) < self.tol:
|
||||
break
|
||||
old_ll = ll
|
||||
|
||||
psi = np.maximum(var - np.sum(W ** 2, axis=0), SMALL)
|
||||
else:
|
||||
warnings.warn('FactorAnalysis did not converge.' +
|
||||
' You might want' +
|
||||
' to increase the number of iterations.',
|
||||
ConvergenceWarning)
|
||||
|
||||
self.components_ = W
|
||||
self.noise_variance_ = psi
|
||||
self.loglike_ = loglike
|
||||
self.n_iter_ = i + 1
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
"""Apply dimensionality reduction to X using the model.
|
||||
|
||||
Compute the expected mean of the latent variables.
|
||||
See Barber, 21.2.33 (or Bishop, 12.66).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
The latent variables of X.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X)
|
||||
Ih = np.eye(len(self.components_))
|
||||
|
||||
X_transformed = X - self.mean_
|
||||
|
||||
Wpsi = self.components_ / self.noise_variance_
|
||||
cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))
|
||||
tmp = np.dot(X_transformed, Wpsi.T)
|
||||
X_transformed = np.dot(tmp, cov_z)
|
||||
|
||||
return X_transformed
|
||||
|
||||
def get_covariance(self):
|
||||
"""Compute data covariance with the FactorAnalysis model.
|
||||
|
||||
``cov = components_.T * components_ + diag(noise_variance)``
|
||||
|
||||
Returns
|
||||
-------
|
||||
cov : array, shape (n_features, n_features)
|
||||
Estimated covariance of data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
cov = np.dot(self.components_.T, self.components_)
|
||||
cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace
|
||||
return cov
|
||||
|
||||
def get_precision(self):
|
||||
"""Compute data precision matrix with the FactorAnalysis model.
|
||||
|
||||
Returns
|
||||
-------
|
||||
precision : array, shape (n_features, n_features)
|
||||
Estimated precision of data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
n_features = self.components_.shape[1]
|
||||
|
||||
# handle corner cases first
|
||||
if self.n_components == 0:
|
||||
return np.diag(1. / self.noise_variance_)
|
||||
if self.n_components == n_features:
|
||||
return linalg.inv(self.get_covariance())
|
||||
|
||||
# Get precision using matrix inversion lemma
|
||||
components_ = self.components_
|
||||
precision = np.dot(components_ / self.noise_variance_, components_.T)
|
||||
precision.flat[::len(precision) + 1] += 1.
|
||||
precision = np.dot(components_.T,
|
||||
np.dot(linalg.inv(precision), components_))
|
||||
precision /= self.noise_variance_[:, np.newaxis]
|
||||
precision /= -self.noise_variance_[np.newaxis, :]
|
||||
precision.flat[::len(precision) + 1] += 1. / self.noise_variance_
|
||||
return precision
|
||||
|
||||
def score_samples(self, X):
|
||||
"""Compute the log-likelihood of each sample
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array, shape (n_samples, n_features)
|
||||
The data
|
||||
|
||||
Returns
|
||||
-------
|
||||
ll : array, shape (n_samples,)
|
||||
Log-likelihood of each sample under the current model
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
Xr = X - self.mean_
|
||||
precision = self.get_precision()
|
||||
n_features = X.shape[1]
|
||||
log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
|
||||
log_like -= .5 * (n_features * log(2. * np.pi)
|
||||
- fast_logdet(precision))
|
||||
return log_like
|
||||
|
||||
def score(self, X, y=None):
|
||||
"""Compute the average log-likelihood of the samples
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array, shape (n_samples, n_features)
|
||||
The data
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
ll : float
|
||||
Average log-likelihood of the samples under the current model
|
||||
"""
|
||||
return np.mean(self.score_samples(X))
|
626
venv/Lib/site-packages/sklearn/decomposition/_fastica.py
Normal file
626
venv/Lib/site-packages/sklearn/decomposition/_fastica.py
Normal file
|
@ -0,0 +1,626 @@
|
|||
"""
|
||||
Python implementation of the fast ICA algorithms.
|
||||
|
||||
Reference: Tables 8.3 and 8.4 page 196 in the book:
|
||||
Independent Component Analysis, by Hyvarinen et al.
|
||||
"""
|
||||
|
||||
# Authors: Pierre Lafaye de Micheaux, Stefan van der Walt, Gael Varoquaux,
|
||||
# Bertrand Thirion, Alexandre Gramfort, Denis A. Engemann
|
||||
# License: BSD 3 clause
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from scipy import linalg
|
||||
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..exceptions import ConvergenceWarning
|
||||
|
||||
from ..utils import check_array, as_float_array, check_random_state
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.validation import FLOAT_DTYPES
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
__all__ = ['fastica', 'FastICA']
|
||||
|
||||
|
||||
def _gs_decorrelation(w, W, j):
|
||||
"""
|
||||
Orthonormalize w wrt the first j rows of W
|
||||
|
||||
Parameters
|
||||
----------
|
||||
w : ndarray of shape(n)
|
||||
Array to be orthogonalized
|
||||
|
||||
W : ndarray of shape(p, n)
|
||||
Null space definition
|
||||
|
||||
j : int < p
|
||||
The no of (from the first) rows of Null space W wrt which w is
|
||||
orthogonalized.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Assumes that W is orthogonal
|
||||
w changed in place
|
||||
"""
|
||||
w -= np.dot(np.dot(w, W[:j].T), W[:j])
|
||||
return w
|
||||
|
||||
|
||||
def _sym_decorrelation(W):
|
||||
""" Symmetric decorrelation
|
||||
i.e. W <- (W * W.T) ^{-1/2} * W
|
||||
"""
|
||||
s, u = linalg.eigh(np.dot(W, W.T))
|
||||
# u (resp. s) contains the eigenvectors (resp. square roots of
|
||||
# the eigenvalues) of W * W.T
|
||||
return np.dot(np.dot(u * (1. / np.sqrt(s)), u.T), W)
|
||||
|
||||
|
||||
def _ica_def(X, tol, g, fun_args, max_iter, w_init):
|
||||
"""Deflationary FastICA using fun approx to neg-entropy function
|
||||
|
||||
Used internally by FastICA.
|
||||
"""
|
||||
|
||||
n_components = w_init.shape[0]
|
||||
W = np.zeros((n_components, n_components), dtype=X.dtype)
|
||||
n_iter = []
|
||||
|
||||
# j is the index of the extracted component
|
||||
for j in range(n_components):
|
||||
w = w_init[j, :].copy()
|
||||
w /= np.sqrt((w ** 2).sum())
|
||||
|
||||
for i in range(max_iter):
|
||||
gwtx, g_wtx = g(np.dot(w.T, X), fun_args)
|
||||
|
||||
w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w
|
||||
|
||||
_gs_decorrelation(w1, W, j)
|
||||
|
||||
w1 /= np.sqrt((w1 ** 2).sum())
|
||||
|
||||
lim = np.abs(np.abs((w1 * w).sum()) - 1)
|
||||
w = w1
|
||||
if lim < tol:
|
||||
break
|
||||
|
||||
n_iter.append(i + 1)
|
||||
W[j, :] = w
|
||||
|
||||
return W, max(n_iter)
|
||||
|
||||
|
||||
def _ica_par(X, tol, g, fun_args, max_iter, w_init):
|
||||
"""Parallel FastICA.
|
||||
|
||||
Used internally by FastICA --main loop
|
||||
|
||||
"""
|
||||
W = _sym_decorrelation(w_init)
|
||||
del w_init
|
||||
p_ = float(X.shape[1])
|
||||
for ii in range(max_iter):
|
||||
gwtx, g_wtx = g(np.dot(W, X), fun_args)
|
||||
W1 = _sym_decorrelation(np.dot(gwtx, X.T) / p_
|
||||
- g_wtx[:, np.newaxis] * W)
|
||||
del gwtx, g_wtx
|
||||
# builtin max, abs are faster than numpy counter parts.
|
||||
lim = max(abs(abs(np.diag(np.dot(W1, W.T))) - 1))
|
||||
W = W1
|
||||
if lim < tol:
|
||||
break
|
||||
else:
|
||||
warnings.warn('FastICA did not converge. Consider increasing '
|
||||
'tolerance or the maximum number of iterations.',
|
||||
ConvergenceWarning)
|
||||
|
||||
return W, ii + 1
|
||||
|
||||
|
||||
# Some standard non-linear functions.
|
||||
# XXX: these should be optimized, as they can be a bottleneck.
|
||||
def _logcosh(x, fun_args=None):
|
||||
alpha = fun_args.get('alpha', 1.0) # comment it out?
|
||||
|
||||
x *= alpha
|
||||
gx = np.tanh(x, x) # apply the tanh inplace
|
||||
g_x = np.empty(x.shape[0])
|
||||
# XXX compute in chunks to avoid extra allocation
|
||||
for i, gx_i in enumerate(gx): # please don't vectorize.
|
||||
g_x[i] = (alpha * (1 - gx_i ** 2)).mean()
|
||||
return gx, g_x
|
||||
|
||||
|
||||
def _exp(x, fun_args):
|
||||
exp = np.exp(-(x ** 2) / 2)
|
||||
gx = x * exp
|
||||
g_x = (1 - x ** 2) * exp
|
||||
return gx, g_x.mean(axis=-1)
|
||||
|
||||
|
||||
def _cube(x, fun_args):
|
||||
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def fastica(X, n_components=None, *, algorithm="parallel", whiten=True,
|
||||
fun="logcosh", fun_args=None, max_iter=200, tol=1e-04, w_init=None,
|
||||
random_state=None, return_X_mean=False, compute_sources=True,
|
||||
return_n_iter=False):
|
||||
"""Perform Fast Independent Component Analysis.
|
||||
|
||||
Read more in the :ref:`User Guide <ICA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training vector, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
|
||||
n_components : int, optional
|
||||
Number of components to extract. If None no dimension reduction
|
||||
is performed.
|
||||
|
||||
algorithm : {'parallel', 'deflation'}, optional
|
||||
Apply a parallel or deflational FASTICA algorithm.
|
||||
|
||||
whiten : boolean, optional
|
||||
If True perform an initial whitening of the data.
|
||||
If False, the data is assumed to have already been
|
||||
preprocessed: it should be centered, normed and white.
|
||||
Otherwise you will get incorrect results.
|
||||
In this case the parameter n_components will be ignored.
|
||||
|
||||
fun : string or function, optional. Default: 'logcosh'
|
||||
The functional form of the G function used in the
|
||||
approximation to neg-entropy. Could be either 'logcosh', 'exp',
|
||||
or 'cube'.
|
||||
You can also provide your own function. It should return a tuple
|
||||
containing the value of the function, and of its derivative, in the
|
||||
point. The derivative should be averaged along its last dimension.
|
||||
Example:
|
||||
|
||||
def my_g(x):
|
||||
return x ** 3, np.mean(3 * x ** 2, axis=-1)
|
||||
|
||||
fun_args : dictionary, optional
|
||||
Arguments to send to the functional form.
|
||||
If empty or None and if fun='logcosh', fun_args will take value
|
||||
{'alpha' : 1.0}
|
||||
|
||||
max_iter : int, optional
|
||||
Maximum number of iterations to perform.
|
||||
|
||||
tol : float, optional
|
||||
A positive scalar giving the tolerance at which the
|
||||
un-mixing matrix is considered to have converged.
|
||||
|
||||
w_init : (n_components, n_components) array, optional
|
||||
Initial un-mixing array of dimension (n.comp,n.comp).
|
||||
If None (default) then an array of normal r.v.'s is used.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used to initialize ``w_init`` when not specified, with a
|
||||
normal distribution. Pass an int, for reproducible results
|
||||
across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
return_X_mean : bool, optional
|
||||
If True, X_mean is returned too.
|
||||
|
||||
compute_sources : bool, optional
|
||||
If False, sources are not computed, but only the rotation matrix.
|
||||
This can save memory when working with big data. Defaults to True.
|
||||
|
||||
return_n_iter : bool, optional
|
||||
Whether or not to return the number of iterations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
K : array, shape (n_components, n_features) | None.
|
||||
If whiten is 'True', K is the pre-whitening matrix that projects data
|
||||
onto the first n_components principal components. If whiten is 'False',
|
||||
K is 'None'.
|
||||
|
||||
W : array, shape (n_components, n_components)
|
||||
The square matrix that unmixes the data after whitening.
|
||||
The mixing matrix is the pseudo-inverse of matrix ``W K``
|
||||
if K is not None, else it is the inverse of W.
|
||||
|
||||
S : array, shape (n_samples, n_components) | None
|
||||
Estimated source matrix
|
||||
|
||||
X_mean : array, shape (n_features, )
|
||||
The mean over features. Returned only if return_X_mean is True.
|
||||
|
||||
n_iter : int
|
||||
If the algorithm is "deflation", n_iter is the
|
||||
maximum number of iterations run across all components. Else
|
||||
they are just the number of iterations taken to converge. This is
|
||||
returned only when return_n_iter is set to `True`.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The data matrix X is considered to be a linear combination of
|
||||
non-Gaussian (independent) components i.e. X = AS where columns of S
|
||||
contain the independent components and A is a linear mixing
|
||||
matrix. In short ICA attempts to `un-mix' the data by estimating an
|
||||
un-mixing matrix W where ``S = W K X.``
|
||||
While FastICA was proposed to estimate as many sources
|
||||
as features, it is possible to estimate less by setting
|
||||
n_components < n_features. It this case K is not a square matrix
|
||||
and the estimated A is the pseudo-inverse of ``W K``.
|
||||
|
||||
This implementation was originally made for data of shape
|
||||
[n_features, n_samples]. Now the input is transposed
|
||||
before the algorithm is applied. This makes it slightly
|
||||
faster for Fortran-ordered input.
|
||||
|
||||
Implemented using FastICA:
|
||||
*A. Hyvarinen and E. Oja, Independent Component Analysis:
|
||||
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
|
||||
pp. 411-430*
|
||||
|
||||
"""
|
||||
|
||||
est = FastICA(n_components=n_components, algorithm=algorithm,
|
||||
whiten=whiten, fun=fun, fun_args=fun_args,
|
||||
max_iter=max_iter, tol=tol, w_init=w_init,
|
||||
random_state=random_state)
|
||||
sources = est._fit(X, compute_sources=compute_sources)
|
||||
|
||||
if whiten:
|
||||
if return_X_mean:
|
||||
if return_n_iter:
|
||||
return (est.whitening_, est._unmixing, sources, est.mean_,
|
||||
est.n_iter_)
|
||||
else:
|
||||
return est.whitening_, est._unmixing, sources, est.mean_
|
||||
else:
|
||||
if return_n_iter:
|
||||
return est.whitening_, est._unmixing, sources, est.n_iter_
|
||||
else:
|
||||
return est.whitening_, est._unmixing, sources
|
||||
|
||||
else:
|
||||
if return_X_mean:
|
||||
if return_n_iter:
|
||||
return None, est._unmixing, sources, None, est.n_iter_
|
||||
else:
|
||||
return None, est._unmixing, sources, None
|
||||
else:
|
||||
if return_n_iter:
|
||||
return None, est._unmixing, sources, est.n_iter_
|
||||
else:
|
||||
return None, est._unmixing, sources
|
||||
|
||||
|
||||
class FastICA(TransformerMixin, BaseEstimator):
|
||||
"""FastICA: a fast algorithm for Independent Component Analysis.
|
||||
|
||||
Read more in the :ref:`User Guide <ICA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, optional
|
||||
Number of components to use. If none is passed, all are used.
|
||||
|
||||
algorithm : {'parallel', 'deflation'}
|
||||
Apply parallel or deflational algorithm for FastICA.
|
||||
|
||||
whiten : boolean, optional
|
||||
If whiten is false, the data is already considered to be
|
||||
whitened, and no whitening is performed.
|
||||
|
||||
fun : string or function, optional. Default: 'logcosh'
|
||||
The functional form of the G function used in the
|
||||
approximation to neg-entropy. Could be either 'logcosh', 'exp',
|
||||
or 'cube'.
|
||||
You can also provide your own function. It should return a tuple
|
||||
containing the value of the function, and of its derivative, in the
|
||||
point. Example:
|
||||
|
||||
def my_g(x):
|
||||
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
||||
|
||||
fun_args : dictionary, optional
|
||||
Arguments to send to the functional form.
|
||||
If empty and if fun='logcosh', fun_args will take value
|
||||
{'alpha' : 1.0}.
|
||||
|
||||
max_iter : int, optional
|
||||
Maximum number of iterations during fit.
|
||||
|
||||
tol : float, optional
|
||||
Tolerance on update at each iteration.
|
||||
|
||||
w_init : None of an (n_components, n_components) ndarray
|
||||
The mixing matrix to be used to initialize the algorithm.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used to initialize ``w_init`` when not specified, with a
|
||||
normal distribution. Pass an int, for reproducible results
|
||||
across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : 2D array, shape (n_components, n_features)
|
||||
The linear operator to apply to the data to get the independent
|
||||
sources. This is equal to the unmixing matrix when ``whiten`` is
|
||||
False, and equal to ``np.dot(unmixing_matrix, self.whitening_)`` when
|
||||
``whiten`` is True.
|
||||
|
||||
mixing_ : array, shape (n_features, n_components)
|
||||
The pseudo-inverse of ``components_``. It is the linear operator
|
||||
that maps independent sources to the data.
|
||||
|
||||
mean_ : array, shape(n_features)
|
||||
The mean over features. Only set if `self.whiten` is True.
|
||||
|
||||
n_iter_ : int
|
||||
If the algorithm is "deflation", n_iter is the
|
||||
maximum number of iterations run across all components. Else
|
||||
they are just the number of iterations taken to converge.
|
||||
|
||||
whitening_ : array, shape (n_components, n_features)
|
||||
Only set if whiten is 'True'. This is the pre-whitening matrix
|
||||
that projects data onto the first `n_components` principal components.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.datasets import load_digits
|
||||
>>> from sklearn.decomposition import FastICA
|
||||
>>> X, _ = load_digits(return_X_y=True)
|
||||
>>> transformer = FastICA(n_components=7,
|
||||
... random_state=0)
|
||||
>>> X_transformed = transformer.fit_transform(X)
|
||||
>>> X_transformed.shape
|
||||
(1797, 7)
|
||||
|
||||
Notes
|
||||
-----
|
||||
Implementation based on
|
||||
*A. Hyvarinen and E. Oja, Independent Component Analysis:
|
||||
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
|
||||
pp. 411-430*
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=None, *, algorithm='parallel', whiten=True,
|
||||
fun='logcosh', fun_args=None, max_iter=200, tol=1e-4,
|
||||
w_init=None, random_state=None):
|
||||
super().__init__()
|
||||
if max_iter < 1:
|
||||
raise ValueError("max_iter should be greater than 1, got "
|
||||
"(max_iter={})".format(max_iter))
|
||||
self.n_components = n_components
|
||||
self.algorithm = algorithm
|
||||
self.whiten = whiten
|
||||
self.fun = fun
|
||||
self.fun_args = fun_args
|
||||
self.max_iter = max_iter
|
||||
self.tol = tol
|
||||
self.w_init = w_init
|
||||
self.random_state = random_state
|
||||
|
||||
def _fit(self, X, compute_sources=False):
|
||||
"""Fit the model
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
compute_sources : bool
|
||||
If False, sources are not computes but only the rotation matrix.
|
||||
This can save memory when working with big data. Defaults to False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
"""
|
||||
|
||||
X = self._validate_data(X, copy=self.whiten, dtype=FLOAT_DTYPES,
|
||||
ensure_min_samples=2).T
|
||||
fun_args = {} if self.fun_args is None else self.fun_args
|
||||
random_state = check_random_state(self.random_state)
|
||||
|
||||
alpha = fun_args.get('alpha', 1.0)
|
||||
if not 1 <= alpha <= 2:
|
||||
raise ValueError('alpha must be in [1,2]')
|
||||
|
||||
if self.fun == 'logcosh':
|
||||
g = _logcosh
|
||||
elif self.fun == 'exp':
|
||||
g = _exp
|
||||
elif self.fun == 'cube':
|
||||
g = _cube
|
||||
elif callable(self.fun):
|
||||
def g(x, fun_args):
|
||||
return self.fun(x, **fun_args)
|
||||
else:
|
||||
exc = ValueError if isinstance(self.fun, str) else TypeError
|
||||
raise exc(
|
||||
"Unknown function %r;"
|
||||
" should be one of 'logcosh', 'exp', 'cube' or callable"
|
||||
% self.fun
|
||||
)
|
||||
|
||||
n_samples, n_features = X.shape
|
||||
|
||||
n_components = self.n_components
|
||||
if not self.whiten and n_components is not None:
|
||||
n_components = None
|
||||
warnings.warn('Ignoring n_components with whiten=False.')
|
||||
|
||||
if n_components is None:
|
||||
n_components = min(n_samples, n_features)
|
||||
if (n_components > min(n_samples, n_features)):
|
||||
n_components = min(n_samples, n_features)
|
||||
warnings.warn(
|
||||
'n_components is too large: it will be set to %s'
|
||||
% n_components
|
||||
)
|
||||
|
||||
if self.whiten:
|
||||
# Centering the columns (ie the variables)
|
||||
X_mean = X.mean(axis=-1)
|
||||
X -= X_mean[:, np.newaxis]
|
||||
|
||||
# Whitening and preprocessing by PCA
|
||||
u, d, _ = linalg.svd(X, full_matrices=False)
|
||||
|
||||
del _
|
||||
K = (u / d).T[:n_components] # see (6.33) p.140
|
||||
del u, d
|
||||
X1 = np.dot(K, X)
|
||||
# see (13.6) p.267 Here X1 is white and data
|
||||
# in X has been projected onto a subspace by PCA
|
||||
X1 *= np.sqrt(n_features)
|
||||
else:
|
||||
# X must be casted to floats to avoid typing issues with numpy
|
||||
# 2.0 and the line below
|
||||
X1 = as_float_array(X, copy=False) # copy has been taken care of
|
||||
|
||||
w_init = self.w_init
|
||||
if w_init is None:
|
||||
w_init = np.asarray(random_state.normal(
|
||||
size=(n_components, n_components)), dtype=X1.dtype)
|
||||
|
||||
else:
|
||||
w_init = np.asarray(w_init)
|
||||
if w_init.shape != (n_components, n_components):
|
||||
raise ValueError(
|
||||
'w_init has invalid shape -- should be %(shape)s'
|
||||
% {'shape': (n_components, n_components)})
|
||||
|
||||
kwargs = {'tol': self.tol,
|
||||
'g': g,
|
||||
'fun_args': fun_args,
|
||||
'max_iter': self.max_iter,
|
||||
'w_init': w_init}
|
||||
|
||||
if self.algorithm == 'parallel':
|
||||
W, n_iter = _ica_par(X1, **kwargs)
|
||||
elif self.algorithm == 'deflation':
|
||||
W, n_iter = _ica_def(X1, **kwargs)
|
||||
else:
|
||||
raise ValueError('Invalid algorithm: must be either `parallel` or'
|
||||
' `deflation`.')
|
||||
del X1
|
||||
|
||||
if compute_sources:
|
||||
if self.whiten:
|
||||
S = np.dot(np.dot(W, K), X).T
|
||||
else:
|
||||
S = np.dot(W, X).T
|
||||
else:
|
||||
S = None
|
||||
|
||||
self.n_iter_ = n_iter
|
||||
|
||||
if self.whiten:
|
||||
self.components_ = np.dot(W, K)
|
||||
self.mean_ = X_mean
|
||||
self.whitening_ = K
|
||||
else:
|
||||
self.components_ = W
|
||||
|
||||
self.mixing_ = linalg.pinv(self.components_)
|
||||
self._unmixing = W
|
||||
|
||||
if compute_sources:
|
||||
self.__sources = S
|
||||
|
||||
return S
|
||||
|
||||
def fit_transform(self, X, y=None):
|
||||
"""Fit the model and recover the sources from X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
"""
|
||||
return self._fit(X, compute_sources=True)
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model to X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
"""
|
||||
self._fit(X, compute_sources=False)
|
||||
return self
|
||||
|
||||
def transform(self, X, copy=True):
|
||||
"""Recover the sources from X (apply the unmixing matrix).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Data to transform, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
copy : bool (optional)
|
||||
If False, data passed to fit are overwritten. Defaults to True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X, copy=copy, dtype=FLOAT_DTYPES)
|
||||
if self.whiten:
|
||||
X -= self.mean_
|
||||
|
||||
return np.dot(X, self.components_.T)
|
||||
|
||||
def inverse_transform(self, X, copy=True):
|
||||
"""Transform the sources back to the mixed data (apply mixing matrix).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_components)
|
||||
Sources, where n_samples is the number of samples
|
||||
and n_components is the number of components.
|
||||
copy : bool (optional)
|
||||
If False, data passed to fit are overwritten. Defaults to True.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_features)
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X, copy=(copy and self.whiten), dtype=FLOAT_DTYPES)
|
||||
X = np.dot(X, self.mixing_.T)
|
||||
if self.whiten:
|
||||
X += self.mean_
|
||||
|
||||
return X
|
355
venv/Lib/site-packages/sklearn/decomposition/_incremental_pca.py
Normal file
355
venv/Lib/site-packages/sklearn/decomposition/_incremental_pca.py
Normal file
|
@ -0,0 +1,355 @@
|
|||
"""Incremental Principal Components Analysis."""
|
||||
|
||||
# Author: Kyle Kastner <kastnerkyle@gmail.com>
|
||||
# Giorgio Patrini
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
from scipy import linalg, sparse
|
||||
|
||||
from ._base import _BasePCA
|
||||
from ..utils import check_array, gen_batches
|
||||
from ..utils.extmath import svd_flip, _incremental_mean_and_var
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
|
||||
class IncrementalPCA(_BasePCA):
|
||||
"""Incremental principal components analysis (IPCA).
|
||||
|
||||
Linear dimensionality reduction using Singular Value Decomposition of
|
||||
the data, keeping only the most significant singular vectors to
|
||||
project the data to a lower dimensional space. The input data is centered
|
||||
but not scaled for each feature before applying the SVD.
|
||||
|
||||
Depending on the size of the input data, this algorithm can be much more
|
||||
memory efficient than a PCA, and allows sparse input.
|
||||
|
||||
This algorithm has constant memory complexity, on the order
|
||||
of ``batch_size * n_features``, enabling use of np.memmap files without
|
||||
loading the entire file into memory. For sparse matrices, the input
|
||||
is converted to dense in batches (in order to be able to subtract the
|
||||
mean) which avoids storing the entire dense matrix at any one time.
|
||||
|
||||
The computational overhead of each SVD is
|
||||
``O(batch_size * n_features ** 2)``, but only 2 * batch_size samples
|
||||
remain in memory at a time. There will be ``n_samples / batch_size`` SVD
|
||||
computations to get the principal components, versus 1 large SVD of
|
||||
complexity ``O(n_samples * n_features ** 2)`` for PCA.
|
||||
|
||||
Read more in the :ref:`User Guide <IncrementalPCA>`.
|
||||
|
||||
.. versionadded:: 0.16
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int or None, (default=None)
|
||||
Number of components to keep. If ``n_components `` is ``None``,
|
||||
then ``n_components`` is set to ``min(n_samples, n_features)``.
|
||||
|
||||
whiten : bool, optional
|
||||
When True (False by default) the ``components_`` vectors are divided
|
||||
by ``n_samples`` times ``components_`` to ensure uncorrelated outputs
|
||||
with unit component-wise variances.
|
||||
|
||||
Whitening will remove some information from the transformed signal
|
||||
(the relative variance scales of the components) but can sometimes
|
||||
improve the predictive accuracy of the downstream estimators by
|
||||
making data respect some hard-wired assumptions.
|
||||
|
||||
copy : bool, (default=True)
|
||||
If False, X will be overwritten. ``copy=False`` can be used to
|
||||
save memory but is unsafe for general use.
|
||||
|
||||
batch_size : int or None, (default=None)
|
||||
The number of samples to use for each batch. Only used when calling
|
||||
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
|
||||
is inferred from the data and set to ``5 * n_features``, to provide a
|
||||
balance between approximation accuracy and memory consumption.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, shape (n_components, n_features)
|
||||
Components with maximum variance.
|
||||
|
||||
explained_variance_ : array, shape (n_components,)
|
||||
Variance explained by each of the selected components.
|
||||
|
||||
explained_variance_ratio_ : array, shape (n_components,)
|
||||
Percentage of variance explained by each of the selected components.
|
||||
If all components are stored, the sum of explained variances is equal
|
||||
to 1.0.
|
||||
|
||||
singular_values_ : array, shape (n_components,)
|
||||
The singular values corresponding to each of the selected components.
|
||||
The singular values are equal to the 2-norms of the ``n_components``
|
||||
variables in the lower-dimensional space.
|
||||
|
||||
mean_ : array, shape (n_features,)
|
||||
Per-feature empirical mean, aggregate over calls to ``partial_fit``.
|
||||
|
||||
var_ : array, shape (n_features,)
|
||||
Per-feature empirical variance, aggregate over calls to
|
||||
``partial_fit``.
|
||||
|
||||
noise_variance_ : float
|
||||
The estimated noise covariance following the Probabilistic PCA model
|
||||
from Tipping and Bishop 1999. See "Pattern Recognition and
|
||||
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
|
||||
http://www.miketipping.com/papers/met-mppca.pdf.
|
||||
|
||||
n_components_ : int
|
||||
The estimated number of components. Relevant when
|
||||
``n_components=None``.
|
||||
|
||||
n_samples_seen_ : int
|
||||
The number of samples processed by the estimator. Will be reset on
|
||||
new calls to fit, but increments across ``partial_fit`` calls.
|
||||
|
||||
batch_size_ : int
|
||||
Inferred batch size from ``batch_size``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.datasets import load_digits
|
||||
>>> from sklearn.decomposition import IncrementalPCA
|
||||
>>> from scipy import sparse
|
||||
>>> X, _ = load_digits(return_X_y=True)
|
||||
>>> transformer = IncrementalPCA(n_components=7, batch_size=200)
|
||||
>>> # either partially fit on smaller batches of data
|
||||
>>> transformer.partial_fit(X[:100, :])
|
||||
IncrementalPCA(batch_size=200, n_components=7)
|
||||
>>> # or let the fit function itself divide the data into batches
|
||||
>>> X_sparse = sparse.csr_matrix(X)
|
||||
>>> X_transformed = transformer.fit_transform(X_sparse)
|
||||
>>> X_transformed.shape
|
||||
(1797, 7)
|
||||
|
||||
Notes
|
||||
-----
|
||||
Implements the incremental PCA model from:
|
||||
*D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for Robust Visual
|
||||
Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3,
|
||||
pp. 125-141, May 2008.*
|
||||
See https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf
|
||||
|
||||
This model is an extension of the Sequential Karhunen-Loeve Transform from:
|
||||
*A. Levy and M. Lindenbaum, Sequential Karhunen-Loeve Basis Extraction and
|
||||
its Application to Images, IEEE Transactions on Image Processing, Volume 9,
|
||||
Number 8, pp. 1371-1374, August 2000.*
|
||||
See https://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf
|
||||
|
||||
We have specifically abstained from an optimization used by authors of both
|
||||
papers, a QR decomposition used in specific situations to reduce the
|
||||
algorithmic complexity of the SVD. The source for this technique is
|
||||
*Matrix Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5,
|
||||
section 5.4.4, pp 252-253.*. This technique has been omitted because it is
|
||||
advantageous only when decomposing a matrix with ``n_samples`` (rows)
|
||||
>= 5/3 * ``n_features`` (columns), and hurts the readability of the
|
||||
implemented algorithm. This would be a good opportunity for future
|
||||
optimization, if it is deemed necessary.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual
|
||||
Tracking, International Journal of Computer Vision, Volume 77,
|
||||
Issue 1-3, pp. 125-141, May 2008.
|
||||
|
||||
G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5,
|
||||
Section 5.4.4, pp. 252-253.
|
||||
|
||||
See also
|
||||
--------
|
||||
PCA
|
||||
KernelPCA
|
||||
SparsePCA
|
||||
TruncatedSVD
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=None, *, whiten=False, copy=True,
|
||||
batch_size=None):
|
||||
self.n_components = n_components
|
||||
self.whiten = whiten
|
||||
self.copy = copy
|
||||
self.batch_size = batch_size
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model with X, using minibatches of size batch_size.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the instance itself.
|
||||
"""
|
||||
self.components_ = None
|
||||
self.n_samples_seen_ = 0
|
||||
self.mean_ = .0
|
||||
self.var_ = .0
|
||||
self.singular_values_ = None
|
||||
self.explained_variance_ = None
|
||||
self.explained_variance_ratio_ = None
|
||||
self.singular_values_ = None
|
||||
self.noise_variance_ = None
|
||||
|
||||
X = self._validate_data(X, accept_sparse=['csr', 'csc', 'lil'],
|
||||
copy=self.copy, dtype=[np.float64, np.float32])
|
||||
n_samples, n_features = X.shape
|
||||
|
||||
if self.batch_size is None:
|
||||
self.batch_size_ = 5 * n_features
|
||||
else:
|
||||
self.batch_size_ = self.batch_size
|
||||
|
||||
for batch in gen_batches(n_samples, self.batch_size_,
|
||||
min_batch_size=self.n_components or 0):
|
||||
X_batch = X[batch]
|
||||
if sparse.issparse(X_batch):
|
||||
X_batch = X_batch.toarray()
|
||||
self.partial_fit(X_batch, check_input=False)
|
||||
|
||||
return self
|
||||
|
||||
def partial_fit(self, X, y=None, check_input=True):
|
||||
"""Incremental fit with X. All of X is processed as a single batch.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
check_input : bool
|
||||
Run check_array on X.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the instance itself.
|
||||
"""
|
||||
if check_input:
|
||||
if sparse.issparse(X):
|
||||
raise TypeError(
|
||||
"IncrementalPCA.partial_fit does not support "
|
||||
"sparse input. Either convert data to dense "
|
||||
"or use IncrementalPCA.fit to do so in batches.")
|
||||
X = check_array(X, copy=self.copy, dtype=[np.float64, np.float32])
|
||||
n_samples, n_features = X.shape
|
||||
if not hasattr(self, 'components_'):
|
||||
self.components_ = None
|
||||
|
||||
if self.n_components is None:
|
||||
if self.components_ is None:
|
||||
self.n_components_ = min(n_samples, n_features)
|
||||
else:
|
||||
self.n_components_ = self.components_.shape[0]
|
||||
elif not 1 <= self.n_components <= n_features:
|
||||
raise ValueError("n_components=%r invalid for n_features=%d, need "
|
||||
"more rows than columns for IncrementalPCA "
|
||||
"processing" % (self.n_components, n_features))
|
||||
elif not self.n_components <= n_samples:
|
||||
raise ValueError("n_components=%r must be less or equal to "
|
||||
"the batch number of samples "
|
||||
"%d." % (self.n_components, n_samples))
|
||||
else:
|
||||
self.n_components_ = self.n_components
|
||||
|
||||
if (self.components_ is not None) and (self.components_.shape[0] !=
|
||||
self.n_components_):
|
||||
raise ValueError("Number of input features has changed from %i "
|
||||
"to %i between calls to partial_fit! Try "
|
||||
"setting n_components to a fixed value." %
|
||||
(self.components_.shape[0], self.n_components_))
|
||||
|
||||
# This is the first partial_fit
|
||||
if not hasattr(self, 'n_samples_seen_'):
|
||||
self.n_samples_seen_ = 0
|
||||
self.mean_ = .0
|
||||
self.var_ = .0
|
||||
|
||||
# Update stats - they are 0 if this is the first step
|
||||
col_mean, col_var, n_total_samples = \
|
||||
_incremental_mean_and_var(
|
||||
X, last_mean=self.mean_, last_variance=self.var_,
|
||||
last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]))
|
||||
n_total_samples = n_total_samples[0]
|
||||
|
||||
# Whitening
|
||||
if self.n_samples_seen_ == 0:
|
||||
# If it is the first step, simply whiten X
|
||||
X -= col_mean
|
||||
else:
|
||||
col_batch_mean = np.mean(X, axis=0)
|
||||
X -= col_batch_mean
|
||||
# Build matrix of combined previous basis and new data
|
||||
mean_correction = \
|
||||
np.sqrt((self.n_samples_seen_ / n_total_samples) *
|
||||
n_samples) * (self.mean_ - col_batch_mean)
|
||||
X = np.vstack((self.singular_values_.reshape((-1, 1)) *
|
||||
self.components_, X, mean_correction))
|
||||
|
||||
U, S, V = linalg.svd(X, full_matrices=False)
|
||||
U, V = svd_flip(U, V, u_based_decision=False)
|
||||
explained_variance = S ** 2 / (n_total_samples - 1)
|
||||
explained_variance_ratio = S ** 2 / np.sum(col_var * n_total_samples)
|
||||
|
||||
self.n_samples_seen_ = n_total_samples
|
||||
self.components_ = V[:self.n_components_]
|
||||
self.singular_values_ = S[:self.n_components_]
|
||||
self.mean_ = col_mean
|
||||
self.var_ = col_var
|
||||
self.explained_variance_ = explained_variance[:self.n_components_]
|
||||
self.explained_variance_ratio_ = \
|
||||
explained_variance_ratio[:self.n_components_]
|
||||
if self.n_components_ < n_features:
|
||||
self.noise_variance_ = \
|
||||
explained_variance[self.n_components_:].mean()
|
||||
else:
|
||||
self.noise_variance_ = 0.
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
"""Apply dimensionality reduction to X.
|
||||
|
||||
X is projected on the first principal components previously extracted
|
||||
from a training set, using minibatches of size batch_size if X is
|
||||
sparse.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
New data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from sklearn.decomposition import IncrementalPCA
|
||||
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
|
||||
... [1, 1], [2, 1], [3, 2]])
|
||||
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
|
||||
>>> ipca.fit(X)
|
||||
IncrementalPCA(batch_size=3, n_components=2)
|
||||
>>> ipca.transform(X) # doctest: +SKIP
|
||||
"""
|
||||
if sparse.issparse(X):
|
||||
n_samples = X.shape[0]
|
||||
output = []
|
||||
for batch in gen_batches(n_samples, self.batch_size_,
|
||||
min_batch_size=self.n_components or 0):
|
||||
output.append(super().transform(X[batch].toarray()))
|
||||
return np.vstack(output)
|
||||
else:
|
||||
return super().transform(X)
|
363
venv/Lib/site-packages/sklearn/decomposition/_kernel_pca.py
Normal file
363
venv/Lib/site-packages/sklearn/decomposition/_kernel_pca.py
Normal file
|
@ -0,0 +1,363 @@
|
|||
"""Kernel Principal Components Analysis"""
|
||||
|
||||
# Author: Mathieu Blondel <mathieu@mblondel.org>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
from scipy import linalg
|
||||
from scipy.sparse.linalg import eigsh
|
||||
|
||||
from ..utils import check_random_state
|
||||
from ..utils.extmath import svd_flip
|
||||
from ..utils.validation import check_is_fitted, _check_psd_eigenvalues
|
||||
from ..exceptions import NotFittedError
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..preprocessing import KernelCenterer
|
||||
from ..metrics.pairwise import pairwise_kernels
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
|
||||
class KernelPCA(TransformerMixin, BaseEstimator):
|
||||
"""Kernel Principal component analysis (KPCA)
|
||||
|
||||
Non-linear dimensionality reduction through the use of kernels (see
|
||||
:ref:`metrics`).
|
||||
|
||||
Read more in the :ref:`User Guide <kernel_PCA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, default=None
|
||||
Number of components. If None, all non-zero components are kept.
|
||||
|
||||
kernel : "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed"
|
||||
Kernel. Default="linear".
|
||||
|
||||
gamma : float, default=1/n_features
|
||||
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
|
||||
kernels.
|
||||
|
||||
degree : int, default=3
|
||||
Degree for poly kernels. Ignored by other kernels.
|
||||
|
||||
coef0 : float, default=1
|
||||
Independent term in poly and sigmoid kernels.
|
||||
Ignored by other kernels.
|
||||
|
||||
kernel_params : mapping of string to any, default=None
|
||||
Parameters (keyword arguments) and values for kernel passed as
|
||||
callable object. Ignored by other kernels.
|
||||
|
||||
alpha : int, default=1.0
|
||||
Hyperparameter of the ridge regression that learns the
|
||||
inverse transform (when fit_inverse_transform=True).
|
||||
|
||||
fit_inverse_transform : bool, default=False
|
||||
Learn the inverse transform for non-precomputed kernels.
|
||||
(i.e. learn to find the pre-image of a point)
|
||||
|
||||
eigen_solver : string ['auto'|'dense'|'arpack'], default='auto'
|
||||
Select eigensolver to use. If n_components is much less than
|
||||
the number of training samples, arpack may be more efficient
|
||||
than the dense eigensolver.
|
||||
|
||||
tol : float, default=0
|
||||
Convergence tolerance for arpack.
|
||||
If 0, optimal value will be chosen by arpack.
|
||||
|
||||
max_iter : int, default=None
|
||||
Maximum number of iterations for arpack.
|
||||
If None, optimal value will be chosen by arpack.
|
||||
|
||||
remove_zero_eig : boolean, default=False
|
||||
If True, then all components with zero eigenvalues are removed, so
|
||||
that the number of components in the output may be < n_components
|
||||
(and sometimes even zero due to numerical instability).
|
||||
When n_components is None, this parameter is ignored and components
|
||||
with zero eigenvalues are removed regardless.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used when ``eigen_solver`` == 'arpack'. Pass an int for reproducible
|
||||
results across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
.. versionadded:: 0.18
|
||||
|
||||
copy_X : boolean, default=True
|
||||
If True, input X is copied and stored by the model in the `X_fit_`
|
||||
attribute. If no further changes will be done to X, setting
|
||||
`copy_X=False` saves memory by storing a reference.
|
||||
|
||||
.. versionadded:: 0.18
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
The number of parallel jobs to run.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
.. versionadded:: 0.18
|
||||
|
||||
Attributes
|
||||
----------
|
||||
lambdas_ : array, (n_components,)
|
||||
Eigenvalues of the centered kernel matrix in decreasing order.
|
||||
If `n_components` and `remove_zero_eig` are not set,
|
||||
then all values are stored.
|
||||
|
||||
alphas_ : array, (n_samples, n_components)
|
||||
Eigenvectors of the centered kernel matrix. If `n_components` and
|
||||
`remove_zero_eig` are not set, then all components are stored.
|
||||
|
||||
dual_coef_ : array, (n_samples, n_features)
|
||||
Inverse transform matrix. Only available when
|
||||
``fit_inverse_transform`` is True.
|
||||
|
||||
X_transformed_fit_ : array, (n_samples, n_components)
|
||||
Projection of the fitted data on the kernel principal components.
|
||||
Only available when ``fit_inverse_transform`` is True.
|
||||
|
||||
X_fit_ : (n_samples, n_features)
|
||||
The data used to fit the model. If `copy_X=False`, then `X_fit_` is
|
||||
a reference. This attribute is used for the calls to transform.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.datasets import load_digits
|
||||
>>> from sklearn.decomposition import KernelPCA
|
||||
>>> X, _ = load_digits(return_X_y=True)
|
||||
>>> transformer = KernelPCA(n_components=7, kernel='linear')
|
||||
>>> X_transformed = transformer.fit_transform(X)
|
||||
>>> X_transformed.shape
|
||||
(1797, 7)
|
||||
|
||||
References
|
||||
----------
|
||||
Kernel PCA was introduced in:
|
||||
Bernhard Schoelkopf, Alexander J. Smola,
|
||||
and Klaus-Robert Mueller. 1999. Kernel principal
|
||||
component analysis. In Advances in kernel methods,
|
||||
MIT Press, Cambridge, MA, USA 327-352.
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=None, *, kernel="linear",
|
||||
gamma=None, degree=3, coef0=1, kernel_params=None,
|
||||
alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
|
||||
tol=0, max_iter=None, remove_zero_eig=False,
|
||||
random_state=None, copy_X=True, n_jobs=None):
|
||||
if fit_inverse_transform and kernel == 'precomputed':
|
||||
raise ValueError(
|
||||
"Cannot fit_inverse_transform with a precomputed kernel.")
|
||||
self.n_components = n_components
|
||||
self.kernel = kernel
|
||||
self.kernel_params = kernel_params
|
||||
self.gamma = gamma
|
||||
self.degree = degree
|
||||
self.coef0 = coef0
|
||||
self.alpha = alpha
|
||||
self.fit_inverse_transform = fit_inverse_transform
|
||||
self.eigen_solver = eigen_solver
|
||||
self.remove_zero_eig = remove_zero_eig
|
||||
self.tol = tol
|
||||
self.max_iter = max_iter
|
||||
self.random_state = random_state
|
||||
self.n_jobs = n_jobs
|
||||
self.copy_X = copy_X
|
||||
|
||||
@property
|
||||
def _pairwise(self):
|
||||
return self.kernel == "precomputed"
|
||||
|
||||
def _get_kernel(self, X, Y=None):
|
||||
if callable(self.kernel):
|
||||
params = self.kernel_params or {}
|
||||
else:
|
||||
params = {"gamma": self.gamma,
|
||||
"degree": self.degree,
|
||||
"coef0": self.coef0}
|
||||
return pairwise_kernels(X, Y, metric=self.kernel,
|
||||
filter_params=True, n_jobs=self.n_jobs,
|
||||
**params)
|
||||
|
||||
def _fit_transform(self, K):
|
||||
""" Fit's using kernel K"""
|
||||
# center kernel
|
||||
K = self._centerer.fit_transform(K)
|
||||
|
||||
if self.n_components is None:
|
||||
n_components = K.shape[0]
|
||||
else:
|
||||
n_components = min(K.shape[0], self.n_components)
|
||||
|
||||
# compute eigenvectors
|
||||
if self.eigen_solver == 'auto':
|
||||
if K.shape[0] > 200 and n_components < 10:
|
||||
eigen_solver = 'arpack'
|
||||
else:
|
||||
eigen_solver = 'dense'
|
||||
else:
|
||||
eigen_solver = self.eigen_solver
|
||||
|
||||
if eigen_solver == 'dense':
|
||||
self.lambdas_, self.alphas_ = linalg.eigh(
|
||||
K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
|
||||
elif eigen_solver == 'arpack':
|
||||
random_state = check_random_state(self.random_state)
|
||||
# initialize with [-1,1] as in ARPACK
|
||||
v0 = random_state.uniform(-1, 1, K.shape[0])
|
||||
self.lambdas_, self.alphas_ = eigsh(K, n_components,
|
||||
which="LA",
|
||||
tol=self.tol,
|
||||
maxiter=self.max_iter,
|
||||
v0=v0)
|
||||
|
||||
# make sure that the eigenvalues are ok and fix numerical issues
|
||||
self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
|
||||
enable_warnings=False)
|
||||
|
||||
# flip eigenvectors' sign to enforce deterministic output
|
||||
self.alphas_, _ = svd_flip(self.alphas_,
|
||||
np.zeros_like(self.alphas_).T)
|
||||
|
||||
# sort eigenvectors in descending order
|
||||
indices = self.lambdas_.argsort()[::-1]
|
||||
self.lambdas_ = self.lambdas_[indices]
|
||||
self.alphas_ = self.alphas_[:, indices]
|
||||
|
||||
# remove eigenvectors with a zero eigenvalue (null space) if required
|
||||
if self.remove_zero_eig or self.n_components is None:
|
||||
self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
|
||||
self.lambdas_ = self.lambdas_[self.lambdas_ > 0]
|
||||
|
||||
# Maintenance note on Eigenvectors normalization
|
||||
# ----------------------------------------------
|
||||
# there is a link between
|
||||
# the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
|
||||
# if v is an eigenvector of K
|
||||
# then Phi(X)v is an eigenvector of Phi(X)Phi(X)'
|
||||
# if u is an eigenvector of Phi(X)Phi(X)'
|
||||
# then Phi(X)'u is an eigenvector of Phi(X)'Phi(X)
|
||||
#
|
||||
# At this stage our self.alphas_ (the v) have norm 1, we need to scale
|
||||
# them so that eigenvectors in kernel feature space (the u) have norm=1
|
||||
# instead
|
||||
#
|
||||
# We COULD scale them here:
|
||||
# self.alphas_ = self.alphas_ / np.sqrt(self.lambdas_)
|
||||
#
|
||||
# But choose to perform that LATER when needed, in `fit()` and in
|
||||
# `transform()`.
|
||||
|
||||
return K
|
||||
|
||||
def _fit_inverse_transform(self, X_transformed, X):
|
||||
if hasattr(X, "tocsr"):
|
||||
raise NotImplementedError("Inverse transform not implemented for "
|
||||
"sparse matrices!")
|
||||
|
||||
n_samples = X_transformed.shape[0]
|
||||
K = self._get_kernel(X_transformed)
|
||||
K.flat[::n_samples + 1] += self.alpha
|
||||
self.dual_coef_ = linalg.solve(K, X, sym_pos=True, overwrite_a=True)
|
||||
self.X_transformed_fit_ = X_transformed
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model from data in X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training vector, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the instance itself.
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse='csr', copy=self.copy_X)
|
||||
self._centerer = KernelCenterer()
|
||||
K = self._get_kernel(X)
|
||||
self._fit_transform(K)
|
||||
|
||||
if self.fit_inverse_transform:
|
||||
# no need to use the kernel to transform X, use shortcut expression
|
||||
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
|
||||
|
||||
self._fit_inverse_transform(X_transformed, X)
|
||||
|
||||
self.X_fit_ = X
|
||||
return self
|
||||
|
||||
def fit_transform(self, X, y=None, **params):
|
||||
"""Fit the model from data in X and transform X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training vector, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
"""
|
||||
self.fit(X, **params)
|
||||
|
||||
# no need to use the kernel to transform X, use shortcut expression
|
||||
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
|
||||
|
||||
if self.fit_inverse_transform:
|
||||
self._fit_inverse_transform(X_transformed, X)
|
||||
|
||||
return X_transformed
|
||||
|
||||
def transform(self, X):
|
||||
"""Transform X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
# Compute centered gram matrix between X and training data X_fit_
|
||||
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
|
||||
|
||||
# scale eigenvectors (properly account for null-space for dot product)
|
||||
non_zeros = np.flatnonzero(self.lambdas_)
|
||||
scaled_alphas = np.zeros_like(self.alphas_)
|
||||
scaled_alphas[:, non_zeros] = (self.alphas_[:, non_zeros]
|
||||
/ np.sqrt(self.lambdas_[non_zeros]))
|
||||
|
||||
# Project with a scalar product between K and the scaled eigenvectors
|
||||
return np.dot(K, scaled_alphas)
|
||||
|
||||
def inverse_transform(self, X):
|
||||
"""Transform X back to original space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_components)
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_features)
|
||||
|
||||
References
|
||||
----------
|
||||
"Learning to Find Pre-Images", G BakIr et al, 2004.
|
||||
"""
|
||||
if not self.fit_inverse_transform:
|
||||
raise NotFittedError("The fit_inverse_transform parameter was not"
|
||||
" set to True when instantiating and hence "
|
||||
"the inverse transform is not available.")
|
||||
|
||||
K = self._get_kernel(X, self.X_transformed_fit_)
|
||||
n_samples = self.X_transformed_fit_.shape[0]
|
||||
K.flat[::n_samples + 1] += self.alpha
|
||||
return np.dot(K, self.dual_coef_)
|
830
venv/Lib/site-packages/sklearn/decomposition/_lda.py
Normal file
830
venv/Lib/site-packages/sklearn/decomposition/_lda.py
Normal file
|
@ -0,0 +1,830 @@
|
|||
"""
|
||||
|
||||
=============================================================
|
||||
Online Latent Dirichlet Allocation with variational inference
|
||||
=============================================================
|
||||
|
||||
This implementation is modified from Matthew D. Hoffman's onlineldavb code
|
||||
Link: https://github.com/blei-lab/onlineldavb
|
||||
"""
|
||||
|
||||
# Author: Chyi-Kwei Yau
|
||||
# Author: Matthew D. Hoffman (original onlineldavb implementation)
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from scipy.special import gammaln, logsumexp
|
||||
from joblib import Parallel, delayed, effective_n_jobs
|
||||
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..utils import check_random_state, gen_batches, gen_even_slices
|
||||
from ..utils.validation import check_non_negative
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
from ._online_lda_fast import (mean_change, _dirichlet_expectation_1d,
|
||||
_dirichlet_expectation_2d)
|
||||
|
||||
EPS = np.finfo(np.float).eps
|
||||
|
||||
|
||||
def _update_doc_distribution(X, exp_topic_word_distr, doc_topic_prior,
|
||||
max_iters,
|
||||
mean_change_tol, cal_sstats, random_state):
|
||||
"""E-step: update document-topic distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
exp_topic_word_distr : dense matrix, shape=(n_topics, n_features)
|
||||
Exponential value of expectation of log topic word distribution.
|
||||
In the literature, this is `exp(E[log(beta)])`.
|
||||
|
||||
doc_topic_prior : float
|
||||
Prior of document topic distribution `theta`.
|
||||
|
||||
max_iters : int
|
||||
Max number of iterations for updating document topic distribution in
|
||||
the E-step.
|
||||
|
||||
mean_change_tol : float
|
||||
Stopping tolerance for updating document topic distribution in E-setp.
|
||||
|
||||
cal_sstats : boolean
|
||||
Parameter that indicate to calculate sufficient statistics or not.
|
||||
Set `cal_sstats` to `True` when we need to run M-step.
|
||||
|
||||
random_state : RandomState instance or None
|
||||
Parameter that indicate how to initialize document topic distribution.
|
||||
Set `random_state` to None will initialize document topic distribution
|
||||
to a constant number.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(doc_topic_distr, suff_stats) :
|
||||
`doc_topic_distr` is unnormalized topic distribution for each document.
|
||||
In the literature, this is `gamma`. we can calculate `E[log(theta)]`
|
||||
from it.
|
||||
`suff_stats` is expected sufficient statistics for the M-step.
|
||||
When `cal_sstats == False`, this will be None.
|
||||
|
||||
"""
|
||||
is_sparse_x = sp.issparse(X)
|
||||
n_samples, n_features = X.shape
|
||||
n_topics = exp_topic_word_distr.shape[0]
|
||||
|
||||
if random_state:
|
||||
doc_topic_distr = random_state.gamma(100., 0.01, (n_samples, n_topics))
|
||||
else:
|
||||
doc_topic_distr = np.ones((n_samples, n_topics))
|
||||
|
||||
# In the literature, this is `exp(E[log(theta)])`
|
||||
exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr))
|
||||
|
||||
# diff on `component_` (only calculate it when `cal_diff` is True)
|
||||
suff_stats = np.zeros(exp_topic_word_distr.shape) if cal_sstats else None
|
||||
|
||||
if is_sparse_x:
|
||||
X_data = X.data
|
||||
X_indices = X.indices
|
||||
X_indptr = X.indptr
|
||||
|
||||
for idx_d in range(n_samples):
|
||||
if is_sparse_x:
|
||||
ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
else:
|
||||
ids = np.nonzero(X[idx_d, :])[0]
|
||||
cnts = X[idx_d, ids]
|
||||
|
||||
doc_topic_d = doc_topic_distr[idx_d, :]
|
||||
# The next one is a copy, since the inner loop overwrites it.
|
||||
exp_doc_topic_d = exp_doc_topic[idx_d, :].copy()
|
||||
exp_topic_word_d = exp_topic_word_distr[:, ids]
|
||||
|
||||
# Iterate between `doc_topic_d` and `norm_phi` until convergence
|
||||
for _ in range(0, max_iters):
|
||||
last_d = doc_topic_d
|
||||
|
||||
# The optimal phi_{dwk} is proportional to
|
||||
# exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]).
|
||||
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS
|
||||
|
||||
doc_topic_d = (exp_doc_topic_d *
|
||||
np.dot(cnts / norm_phi, exp_topic_word_d.T))
|
||||
# Note: adds doc_topic_prior to doc_topic_d, in-place.
|
||||
_dirichlet_expectation_1d(doc_topic_d, doc_topic_prior,
|
||||
exp_doc_topic_d)
|
||||
|
||||
if mean_change(last_d, doc_topic_d) < mean_change_tol:
|
||||
break
|
||||
doc_topic_distr[idx_d, :] = doc_topic_d
|
||||
|
||||
# Contribution of document d to the expected sufficient
|
||||
# statistics for the M step.
|
||||
if cal_sstats:
|
||||
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS
|
||||
suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi)
|
||||
|
||||
return (doc_topic_distr, suff_stats)
|
||||
|
||||
|
||||
class LatentDirichletAllocation(TransformerMixin, BaseEstimator):
|
||||
"""Latent Dirichlet Allocation with online variational Bayes algorithm
|
||||
|
||||
.. versionadded:: 0.17
|
||||
|
||||
Read more in the :ref:`User Guide <LatentDirichletAllocation>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, optional (default=10)
|
||||
Number of topics.
|
||||
|
||||
.. versionchanged:: 0.19
|
||||
``n_topics `` was renamed to ``n_components``
|
||||
|
||||
doc_topic_prior : float, optional (default=None)
|
||||
Prior of document topic distribution `theta`. If the value is None,
|
||||
defaults to `1 / n_components`.
|
||||
In [1]_, this is called `alpha`.
|
||||
|
||||
topic_word_prior : float, optional (default=None)
|
||||
Prior of topic word distribution `beta`. If the value is None, defaults
|
||||
to `1 / n_components`.
|
||||
In [1]_, this is called `eta`.
|
||||
|
||||
learning_method : 'batch' | 'online', default='batch'
|
||||
Method used to update `_component`. Only used in :meth:`fit` method.
|
||||
In general, if the data size is large, the online update will be much
|
||||
faster than the batch update.
|
||||
|
||||
Valid options::
|
||||
|
||||
'batch': Batch variational Bayes method. Use all training data in
|
||||
each EM update.
|
||||
Old `components_` will be overwritten in each iteration.
|
||||
'online': Online variational Bayes method. In each EM update, use
|
||||
mini-batch of training data to update the ``components_``
|
||||
variable incrementally. The learning rate is controlled by the
|
||||
``learning_decay`` and the ``learning_offset`` parameters.
|
||||
|
||||
.. versionchanged:: 0.20
|
||||
The default learning method is now ``"batch"``.
|
||||
|
||||
learning_decay : float, optional (default=0.7)
|
||||
It is a parameter that control learning rate in the online learning
|
||||
method. The value should be set between (0.5, 1.0] to guarantee
|
||||
asymptotic convergence. When the value is 0.0 and batch_size is
|
||||
``n_samples``, the update method is same as batch learning. In the
|
||||
literature, this is called kappa.
|
||||
|
||||
learning_offset : float, optional (default=10.)
|
||||
A (positive) parameter that downweights early iterations in online
|
||||
learning. It should be greater than 1.0. In the literature, this is
|
||||
called tau_0.
|
||||
|
||||
max_iter : integer, optional (default=10)
|
||||
The maximum number of iterations.
|
||||
|
||||
batch_size : int, optional (default=128)
|
||||
Number of documents to use in each EM iteration. Only used in online
|
||||
learning.
|
||||
|
||||
evaluate_every : int, optional (default=0)
|
||||
How often to evaluate perplexity. Only used in `fit` method.
|
||||
set it to 0 or negative number to not evaluate perplexity in
|
||||
training at all. Evaluating perplexity can help you check convergence
|
||||
in training process, but it will also increase total training time.
|
||||
Evaluating perplexity in every iteration might increase training time
|
||||
up to two-fold.
|
||||
|
||||
total_samples : int, optional (default=1e6)
|
||||
Total number of documents. Only used in the :meth:`partial_fit` method.
|
||||
|
||||
perp_tol : float, optional (default=1e-1)
|
||||
Perplexity tolerance in batch learning. Only used when
|
||||
``evaluate_every`` is greater than 0.
|
||||
|
||||
mean_change_tol : float, optional (default=1e-3)
|
||||
Stopping tolerance for updating document topic distribution in E-step.
|
||||
|
||||
max_doc_update_iter : int (default=100)
|
||||
Max number of iterations for updating document topic distribution in
|
||||
the E-step.
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
The number of jobs to use in the E-step.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
verbose : int, optional (default=0)
|
||||
Verbosity level.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Pass an int for reproducible results across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, [n_components, n_features]
|
||||
Variational parameters for topic word distribution. Since the complete
|
||||
conditional for topic word distribution is a Dirichlet,
|
||||
``components_[i, j]`` can be viewed as pseudocount that represents the
|
||||
number of times word `j` was assigned to topic `i`.
|
||||
It can also be viewed as distribution over the words for each topic
|
||||
after normalization:
|
||||
``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``.
|
||||
|
||||
n_batch_iter_ : int
|
||||
Number of iterations of the EM step.
|
||||
|
||||
n_iter_ : int
|
||||
Number of passes over the dataset.
|
||||
|
||||
bound_ : float
|
||||
Final perplexity score on training set.
|
||||
|
||||
doc_topic_prior_ : float
|
||||
Prior of document topic distribution `theta`. If the value is None,
|
||||
it is `1 / n_components`.
|
||||
|
||||
topic_word_prior_ : float
|
||||
Prior of topic word distribution `beta`. If the value is None, it is
|
||||
`1 / n_components`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.decomposition import LatentDirichletAllocation
|
||||
>>> from sklearn.datasets import make_multilabel_classification
|
||||
>>> # This produces a feature matrix of token counts, similar to what
|
||||
>>> # CountVectorizer would produce on text.
|
||||
>>> X, _ = make_multilabel_classification(random_state=0)
|
||||
>>> lda = LatentDirichletAllocation(n_components=5,
|
||||
... random_state=0)
|
||||
>>> lda.fit(X)
|
||||
LatentDirichletAllocation(...)
|
||||
>>> # get topics for some given samples:
|
||||
>>> lda.transform(X[-2:])
|
||||
array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],
|
||||
[0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586 ]])
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] "Online Learning for Latent Dirichlet Allocation", Matthew D.
|
||||
Hoffman, David M. Blei, Francis Bach, 2010
|
||||
|
||||
[2] "Stochastic Variational Inference", Matthew D. Hoffman, David M. Blei,
|
||||
Chong Wang, John Paisley, 2013
|
||||
|
||||
[3] Matthew D. Hoffman's onlineldavb code. Link:
|
||||
https://github.com/blei-lab/onlineldavb
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=10, *, doc_topic_prior=None,
|
||||
topic_word_prior=None, learning_method='batch',
|
||||
learning_decay=.7, learning_offset=10., max_iter=10,
|
||||
batch_size=128, evaluate_every=-1, total_samples=1e6,
|
||||
perp_tol=1e-1, mean_change_tol=1e-3, max_doc_update_iter=100,
|
||||
n_jobs=None, verbose=0, random_state=None):
|
||||
self.n_components = n_components
|
||||
self.doc_topic_prior = doc_topic_prior
|
||||
self.topic_word_prior = topic_word_prior
|
||||
self.learning_method = learning_method
|
||||
self.learning_decay = learning_decay
|
||||
self.learning_offset = learning_offset
|
||||
self.max_iter = max_iter
|
||||
self.batch_size = batch_size
|
||||
self.evaluate_every = evaluate_every
|
||||
self.total_samples = total_samples
|
||||
self.perp_tol = perp_tol
|
||||
self.mean_change_tol = mean_change_tol
|
||||
self.max_doc_update_iter = max_doc_update_iter
|
||||
self.n_jobs = n_jobs
|
||||
self.verbose = verbose
|
||||
self.random_state = random_state
|
||||
|
||||
def _check_params(self):
|
||||
"""Check model parameters."""
|
||||
if self.n_components <= 0:
|
||||
raise ValueError("Invalid 'n_components' parameter: %r"
|
||||
% self.n_components)
|
||||
|
||||
if self.total_samples <= 0:
|
||||
raise ValueError("Invalid 'total_samples' parameter: %r"
|
||||
% self.total_samples)
|
||||
|
||||
if self.learning_offset < 0:
|
||||
raise ValueError("Invalid 'learning_offset' parameter: %r"
|
||||
% self.learning_offset)
|
||||
|
||||
if self.learning_method not in ("batch", "online"):
|
||||
raise ValueError("Invalid 'learning_method' parameter: %r"
|
||||
% self.learning_method)
|
||||
|
||||
def _init_latent_vars(self, n_features):
|
||||
"""Initialize latent variables."""
|
||||
|
||||
self.random_state_ = check_random_state(self.random_state)
|
||||
self.n_batch_iter_ = 1
|
||||
self.n_iter_ = 0
|
||||
|
||||
if self.doc_topic_prior is None:
|
||||
self.doc_topic_prior_ = 1. / self.n_components
|
||||
else:
|
||||
self.doc_topic_prior_ = self.doc_topic_prior
|
||||
|
||||
if self.topic_word_prior is None:
|
||||
self.topic_word_prior_ = 1. / self.n_components
|
||||
else:
|
||||
self.topic_word_prior_ = self.topic_word_prior
|
||||
|
||||
init_gamma = 100.
|
||||
init_var = 1. / init_gamma
|
||||
# In the literature, this is called `lambda`
|
||||
self.components_ = self.random_state_.gamma(
|
||||
init_gamma, init_var, (self.n_components, n_features))
|
||||
|
||||
# In the literature, this is `exp(E[log(beta)])`
|
||||
self.exp_dirichlet_component_ = np.exp(
|
||||
_dirichlet_expectation_2d(self.components_))
|
||||
|
||||
def _e_step(self, X, cal_sstats, random_init, parallel=None):
|
||||
"""E-step in EM update.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
cal_sstats : boolean
|
||||
Parameter that indicate whether to calculate sufficient statistics
|
||||
or not. Set ``cal_sstats`` to True when we need to run M-step.
|
||||
|
||||
random_init : boolean
|
||||
Parameter that indicate whether to initialize document topic
|
||||
distribution randomly in the E-step. Set it to True in training
|
||||
steps.
|
||||
|
||||
parallel : joblib.Parallel (optional)
|
||||
Pre-initialized instance of joblib.Parallel.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(doc_topic_distr, suff_stats) :
|
||||
`doc_topic_distr` is unnormalized topic distribution for each
|
||||
document. In the literature, this is called `gamma`.
|
||||
`suff_stats` is expected sufficient statistics for the M-step.
|
||||
When `cal_sstats == False`, it will be None.
|
||||
|
||||
"""
|
||||
|
||||
# Run e-step in parallel
|
||||
random_state = self.random_state_ if random_init else None
|
||||
|
||||
# TODO: make Parallel._effective_n_jobs public instead?
|
||||
n_jobs = effective_n_jobs(self.n_jobs)
|
||||
if parallel is None:
|
||||
parallel = Parallel(n_jobs=n_jobs, verbose=max(0,
|
||||
self.verbose - 1))
|
||||
results = parallel(
|
||||
delayed(_update_doc_distribution)(X[idx_slice, :],
|
||||
self.exp_dirichlet_component_,
|
||||
self.doc_topic_prior_,
|
||||
self.max_doc_update_iter,
|
||||
self.mean_change_tol, cal_sstats,
|
||||
random_state)
|
||||
for idx_slice in gen_even_slices(X.shape[0], n_jobs))
|
||||
|
||||
# merge result
|
||||
doc_topics, sstats_list = zip(*results)
|
||||
doc_topic_distr = np.vstack(doc_topics)
|
||||
|
||||
if cal_sstats:
|
||||
# This step finishes computing the sufficient statistics for the
|
||||
# M-step.
|
||||
suff_stats = np.zeros(self.components_.shape)
|
||||
for sstats in sstats_list:
|
||||
suff_stats += sstats
|
||||
suff_stats *= self.exp_dirichlet_component_
|
||||
else:
|
||||
suff_stats = None
|
||||
|
||||
return (doc_topic_distr, suff_stats)
|
||||
|
||||
def _em_step(self, X, total_samples, batch_update, parallel=None):
|
||||
"""EM update for 1 iteration.
|
||||
|
||||
update `_component` by batch VB or online VB.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
total_samples : integer
|
||||
Total number of documents. It is only used when
|
||||
batch_update is `False`.
|
||||
|
||||
batch_update : boolean
|
||||
Parameter that controls updating method.
|
||||
`True` for batch learning, `False` for online learning.
|
||||
|
||||
parallel : joblib.Parallel
|
||||
Pre-initialized instance of joblib.Parallel
|
||||
|
||||
Returns
|
||||
-------
|
||||
doc_topic_distr : array, shape=(n_samples, n_components)
|
||||
Unnormalized document topic distribution.
|
||||
"""
|
||||
|
||||
# E-step
|
||||
_, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
|
||||
parallel=parallel)
|
||||
|
||||
# M-step
|
||||
if batch_update:
|
||||
self.components_ = self.topic_word_prior_ + suff_stats
|
||||
else:
|
||||
# online update
|
||||
# In the literature, the weight is `rho`
|
||||
weight = np.power(self.learning_offset + self.n_batch_iter_,
|
||||
-self.learning_decay)
|
||||
doc_ratio = float(total_samples) / X.shape[0]
|
||||
self.components_ *= (1 - weight)
|
||||
self.components_ += (weight * (self.topic_word_prior_
|
||||
+ doc_ratio * suff_stats))
|
||||
|
||||
# update `component_` related variables
|
||||
self.exp_dirichlet_component_ = np.exp(
|
||||
_dirichlet_expectation_2d(self.components_))
|
||||
self.n_batch_iter_ += 1
|
||||
return
|
||||
|
||||
def _more_tags(self):
|
||||
return {'requires_positive_X': True}
|
||||
|
||||
def _check_non_neg_array(self, X, reset_n_features, whom):
|
||||
"""check X format
|
||||
|
||||
check X format and make sure no negative value in X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix
|
||||
|
||||
"""
|
||||
X = self._validate_data(X, reset=reset_n_features,
|
||||
accept_sparse='csr')
|
||||
check_non_negative(X, whom)
|
||||
return X
|
||||
|
||||
def partial_fit(self, X, y=None):
|
||||
"""Online VB with Mini-Batch update.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
"""
|
||||
self._check_params()
|
||||
first_time = not hasattr(self, 'components_')
|
||||
|
||||
# In theory reset should be equal to `first_time`, but there are tests
|
||||
# checking the input number of feature and they expect a specific
|
||||
# string, which is not the same one raised by check_n_features. So we
|
||||
# don't check n_features_in_ here for now (it's done with adhoc code in
|
||||
# the estimator anyway).
|
||||
# TODO: set reset=first_time when addressing reset in
|
||||
# predict/transform/etc.
|
||||
reset_n_features = True
|
||||
X = self._check_non_neg_array(X, reset_n_features,
|
||||
"LatentDirichletAllocation.partial_fit")
|
||||
n_samples, n_features = X.shape
|
||||
batch_size = self.batch_size
|
||||
|
||||
# initialize parameters or check
|
||||
if first_time:
|
||||
self._init_latent_vars(n_features)
|
||||
|
||||
if n_features != self.components_.shape[1]:
|
||||
raise ValueError(
|
||||
"The provided data has %d dimensions while "
|
||||
"the model was trained with feature size %d." %
|
||||
(n_features, self.components_.shape[1]))
|
||||
|
||||
n_jobs = effective_n_jobs(self.n_jobs)
|
||||
with Parallel(n_jobs=n_jobs,
|
||||
verbose=max(0, self.verbose - 1)) as parallel:
|
||||
for idx_slice in gen_batches(n_samples, batch_size):
|
||||
self._em_step(X[idx_slice, :],
|
||||
total_samples=self.total_samples,
|
||||
batch_update=False,
|
||||
parallel=parallel)
|
||||
|
||||
return self
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Learn model for the data X with variational Bayes method.
|
||||
|
||||
When `learning_method` is 'online', use mini-batch update.
|
||||
Otherwise, use batch update.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
"""
|
||||
self._check_params()
|
||||
X = self._check_non_neg_array(X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.fit")
|
||||
n_samples, n_features = X.shape
|
||||
max_iter = self.max_iter
|
||||
evaluate_every = self.evaluate_every
|
||||
learning_method = self.learning_method
|
||||
|
||||
batch_size = self.batch_size
|
||||
|
||||
# initialize parameters
|
||||
self._init_latent_vars(n_features)
|
||||
# change to perplexity later
|
||||
last_bound = None
|
||||
n_jobs = effective_n_jobs(self.n_jobs)
|
||||
with Parallel(n_jobs=n_jobs,
|
||||
verbose=max(0, self.verbose - 1)) as parallel:
|
||||
for i in range(max_iter):
|
||||
if learning_method == 'online':
|
||||
for idx_slice in gen_batches(n_samples, batch_size):
|
||||
self._em_step(X[idx_slice, :], total_samples=n_samples,
|
||||
batch_update=False, parallel=parallel)
|
||||
else:
|
||||
# batch update
|
||||
self._em_step(X, total_samples=n_samples,
|
||||
batch_update=True, parallel=parallel)
|
||||
|
||||
# check perplexity
|
||||
if evaluate_every > 0 and (i + 1) % evaluate_every == 0:
|
||||
doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
|
||||
random_init=False,
|
||||
parallel=parallel)
|
||||
bound = self._perplexity_precomp_distr(X, doc_topics_distr,
|
||||
sub_sampling=False)
|
||||
if self.verbose:
|
||||
print('iteration: %d of max_iter: %d, perplexity: %.4f'
|
||||
% (i + 1, max_iter, bound))
|
||||
|
||||
if last_bound and abs(last_bound - bound) < self.perp_tol:
|
||||
break
|
||||
last_bound = bound
|
||||
|
||||
elif self.verbose:
|
||||
print('iteration: %d of max_iter: %d' % (i + 1, max_iter))
|
||||
self.n_iter_ += 1
|
||||
|
||||
# calculate final perplexity value on train set
|
||||
doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
|
||||
random_init=False,
|
||||
parallel=parallel)
|
||||
self.bound_ = self._perplexity_precomp_distr(X, doc_topics_distr,
|
||||
sub_sampling=False)
|
||||
|
||||
return self
|
||||
|
||||
def _unnormalized_transform(self, X):
|
||||
"""Transform data X according to fitted model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
doc_topic_distr : shape=(n_samples, n_components)
|
||||
Document topic distribution for X.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
# make sure feature size is the same in fitted model and in X
|
||||
X = self._check_non_neg_array(
|
||||
X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.transform")
|
||||
n_samples, n_features = X.shape
|
||||
if n_features != self.components_.shape[1]:
|
||||
raise ValueError(
|
||||
"The provided data has %d dimensions while "
|
||||
"the model was trained with feature size %d." %
|
||||
(n_features, self.components_.shape[1]))
|
||||
|
||||
doc_topic_distr, _ = self._e_step(X, cal_sstats=False,
|
||||
random_init=False)
|
||||
|
||||
return doc_topic_distr
|
||||
|
||||
def transform(self, X):
|
||||
"""Transform data X according to the fitted model.
|
||||
|
||||
.. versionchanged:: 0.18
|
||||
*doc_topic_distr* is now normalized
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
doc_topic_distr : shape=(n_samples, n_components)
|
||||
Document topic distribution for X.
|
||||
"""
|
||||
doc_topic_distr = self._unnormalized_transform(X)
|
||||
doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]
|
||||
return doc_topic_distr
|
||||
|
||||
def _approx_bound(self, X, doc_topic_distr, sub_sampling):
|
||||
"""Estimate the variational bound.
|
||||
|
||||
Estimate the variational bound over "all documents" using only the
|
||||
documents passed in as X. Since log-likelihood of each word cannot
|
||||
be computed directly, we use this bound to estimate it.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
doc_topic_distr : array, shape=(n_samples, n_components)
|
||||
Document topic distribution. In the literature, this is called
|
||||
gamma.
|
||||
|
||||
sub_sampling : boolean, optional, (default=False)
|
||||
Compensate for subsampling of documents.
|
||||
It is used in calculate bound in online learning.
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
|
||||
"""
|
||||
|
||||
def _loglikelihood(prior, distr, dirichlet_distr, size):
|
||||
# calculate log-likelihood
|
||||
score = np.sum((prior - distr) * dirichlet_distr)
|
||||
score += np.sum(gammaln(distr) - gammaln(prior))
|
||||
score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1)))
|
||||
return score
|
||||
|
||||
is_sparse_x = sp.issparse(X)
|
||||
n_samples, n_components = doc_topic_distr.shape
|
||||
n_features = self.components_.shape[1]
|
||||
score = 0
|
||||
|
||||
dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr)
|
||||
dirichlet_component_ = _dirichlet_expectation_2d(self.components_)
|
||||
doc_topic_prior = self.doc_topic_prior_
|
||||
topic_word_prior = self.topic_word_prior_
|
||||
|
||||
if is_sparse_x:
|
||||
X_data = X.data
|
||||
X_indices = X.indices
|
||||
X_indptr = X.indptr
|
||||
|
||||
# E[log p(docs | theta, beta)]
|
||||
for idx_d in range(0, n_samples):
|
||||
if is_sparse_x:
|
||||
ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
|
||||
else:
|
||||
ids = np.nonzero(X[idx_d, :])[0]
|
||||
cnts = X[idx_d, ids]
|
||||
temp = (dirichlet_doc_topic[idx_d, :, np.newaxis]
|
||||
+ dirichlet_component_[:, ids])
|
||||
norm_phi = logsumexp(temp, axis=0)
|
||||
score += np.dot(cnts, norm_phi)
|
||||
|
||||
# compute E[log p(theta | alpha) - log q(theta | gamma)]
|
||||
score += _loglikelihood(doc_topic_prior, doc_topic_distr,
|
||||
dirichlet_doc_topic, self.n_components)
|
||||
|
||||
# Compensate for the subsampling of the population of documents
|
||||
if sub_sampling:
|
||||
doc_ratio = float(self.total_samples) / n_samples
|
||||
score *= doc_ratio
|
||||
|
||||
# E[log p(beta | eta) - log q (beta | lambda)]
|
||||
score += _loglikelihood(topic_word_prior, self.components_,
|
||||
dirichlet_component_, n_features)
|
||||
|
||||
return score
|
||||
|
||||
def score(self, X, y=None):
|
||||
"""Calculate approximate log-likelihood as score.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape=(n_samples, n_features)
|
||||
Document word matrix.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
Use approximate bound as score.
|
||||
"""
|
||||
X = self._check_non_neg_array(X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.score")
|
||||
|
||||
doc_topic_distr = self._unnormalized_transform(X)
|
||||
score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)
|
||||
return score
|
||||
|
||||
def _perplexity_precomp_distr(self, X, doc_topic_distr=None,
|
||||
sub_sampling=False):
|
||||
"""Calculate approximate perplexity for data X with ability to accept
|
||||
precomputed doc_topic_distr
|
||||
|
||||
Perplexity is defined as exp(-1. * log-likelihood per word)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, [n_samples, n_features]
|
||||
Document word matrix.
|
||||
|
||||
doc_topic_distr : None or array, shape=(n_samples, n_components)
|
||||
Document topic distribution.
|
||||
If it is None, it will be generated by applying transform on X.
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
Perplexity score.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = self._check_non_neg_array(
|
||||
X, reset_n_features=True,
|
||||
whom="LatentDirichletAllocation.perplexity")
|
||||
|
||||
if doc_topic_distr is None:
|
||||
doc_topic_distr = self._unnormalized_transform(X)
|
||||
else:
|
||||
n_samples, n_components = doc_topic_distr.shape
|
||||
if n_samples != X.shape[0]:
|
||||
raise ValueError("Number of samples in X and doc_topic_distr"
|
||||
" do not match.")
|
||||
|
||||
if n_components != self.n_components:
|
||||
raise ValueError("Number of topics does not match.")
|
||||
|
||||
current_samples = X.shape[0]
|
||||
bound = self._approx_bound(X, doc_topic_distr, sub_sampling)
|
||||
|
||||
if sub_sampling:
|
||||
word_cnt = X.sum() * (float(self.total_samples) / current_samples)
|
||||
else:
|
||||
word_cnt = X.sum()
|
||||
perword_bound = bound / word_cnt
|
||||
|
||||
return np.exp(-1.0 * perword_bound)
|
||||
|
||||
def perplexity(self, X, sub_sampling=False):
|
||||
"""Calculate approximate perplexity for data X.
|
||||
|
||||
Perplexity is defined as exp(-1. * log-likelihood per word)
|
||||
|
||||
.. versionchanged:: 0.19
|
||||
*doc_topic_distr* argument has been deprecated and is ignored
|
||||
because user no longer has access to unnormalized distribution
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, [n_samples, n_features]
|
||||
Document word matrix.
|
||||
|
||||
sub_sampling : bool
|
||||
Do sub-sampling or not.
|
||||
|
||||
Returns
|
||||
-------
|
||||
score : float
|
||||
Perplexity score.
|
||||
"""
|
||||
return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)
|
1358
venv/Lib/site-packages/sklearn/decomposition/_nmf.py
Normal file
1358
venv/Lib/site-packages/sklearn/decomposition/_nmf.py
Normal file
File diff suppressed because it is too large
Load diff
Binary file not shown.
615
venv/Lib/site-packages/sklearn/decomposition/_pca.py
Normal file
615
venv/Lib/site-packages/sklearn/decomposition/_pca.py
Normal file
|
@ -0,0 +1,615 @@
|
|||
""" Principal Component Analysis
|
||||
"""
|
||||
|
||||
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||||
# Olivier Grisel <olivier.grisel@ensta.org>
|
||||
# Mathieu Blondel <mathieu@mblondel.org>
|
||||
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
|
||||
# Michael Eickenberg <michael.eickenberg@inria.fr>
|
||||
# Giorgio Patrini <giorgio.patrini@anu.edu.au>
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
from math import log, sqrt
|
||||
import numbers
|
||||
|
||||
import numpy as np
|
||||
from scipy import linalg
|
||||
from scipy.special import gammaln
|
||||
from scipy.sparse import issparse
|
||||
from scipy.sparse.linalg import svds
|
||||
|
||||
from ._base import _BasePCA
|
||||
from ..utils import check_random_state
|
||||
from ..utils import check_array
|
||||
from ..utils.extmath import fast_logdet, randomized_svd, svd_flip
|
||||
from ..utils.extmath import stable_cumsum
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
|
||||
|
||||
def _assess_dimension(spectrum, rank, n_samples):
|
||||
"""Compute the log-likelihood of a rank ``rank`` dataset.
|
||||
|
||||
The dataset is assumed to be embedded in gaussian noise of shape(n,
|
||||
dimf) having spectrum ``spectrum``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
spectrum : array of shape (n_features)
|
||||
Data spectrum.
|
||||
rank : int
|
||||
Tested rank value. It should be strictly lower than n_features,
|
||||
otherwise the method isn't specified (division by zero in equation
|
||||
(31) from the paper).
|
||||
n_samples : int
|
||||
Number of samples.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ll : float,
|
||||
The log-likelihood
|
||||
|
||||
Notes
|
||||
-----
|
||||
This implements the method of `Thomas P. Minka:
|
||||
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
|
||||
"""
|
||||
|
||||
n_features = spectrum.shape[0]
|
||||
if not 1 <= rank < n_features:
|
||||
raise ValueError("the tested rank should be in [1, n_features - 1]")
|
||||
|
||||
eps = 1e-15
|
||||
|
||||
if spectrum[rank - 1] < eps:
|
||||
# When the tested rank is associated with a small eigenvalue, there's
|
||||
# no point in computing the log-likelihood: it's going to be very
|
||||
# small and won't be the max anyway. Also, it can lead to numerical
|
||||
# issues below when computing pa, in particular in log((spectrum[i] -
|
||||
# spectrum[j]) because this will take the log of something very small.
|
||||
return -np.inf
|
||||
|
||||
pu = -rank * log(2.)
|
||||
for i in range(1, rank + 1):
|
||||
pu += (gammaln((n_features - i + 1) / 2.) -
|
||||
log(np.pi) * (n_features - i + 1) / 2.)
|
||||
|
||||
pl = np.sum(np.log(spectrum[:rank]))
|
||||
pl = -pl * n_samples / 2.
|
||||
|
||||
v = max(eps, np.sum(spectrum[rank:]) / (n_features - rank))
|
||||
pv = -np.log(v) * n_samples * (n_features - rank) / 2.
|
||||
|
||||
m = n_features * rank - rank * (rank + 1.) / 2.
|
||||
pp = log(2. * np.pi) * (m + rank) / 2.
|
||||
|
||||
pa = 0.
|
||||
spectrum_ = spectrum.copy()
|
||||
spectrum_[rank:n_features] = v
|
||||
for i in range(rank):
|
||||
for j in range(i + 1, len(spectrum)):
|
||||
pa += log((spectrum[i] - spectrum[j]) *
|
||||
(1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples)
|
||||
|
||||
ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2.
|
||||
|
||||
return ll
|
||||
|
||||
|
||||
def _infer_dimension(spectrum, n_samples):
|
||||
"""Infers the dimension of a dataset with a given spectrum.
|
||||
|
||||
The returned value will be in [1, n_features - 1].
|
||||
"""
|
||||
ll = np.empty_like(spectrum)
|
||||
ll[0] = -np.inf # we don't want to return n_components = 0
|
||||
for rank in range(1, spectrum.shape[0]):
|
||||
ll[rank] = _assess_dimension(spectrum, rank, n_samples)
|
||||
return ll.argmax()
|
||||
|
||||
|
||||
class PCA(_BasePCA):
|
||||
"""Principal component analysis (PCA).
|
||||
|
||||
Linear dimensionality reduction using Singular Value Decomposition of the
|
||||
data to project it to a lower dimensional space. The input data is centered
|
||||
but not scaled for each feature before applying the SVD.
|
||||
|
||||
It uses the LAPACK implementation of the full SVD or a randomized truncated
|
||||
SVD by the method of Halko et al. 2009, depending on the shape of the input
|
||||
data and the number of components to extract.
|
||||
|
||||
It can also use the scipy.sparse.linalg ARPACK implementation of the
|
||||
truncated SVD.
|
||||
|
||||
Notice that this class does not support sparse input. See
|
||||
:class:`TruncatedSVD` for an alternative with sparse data.
|
||||
|
||||
Read more in the :ref:`User Guide <PCA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, float, None or str
|
||||
Number of components to keep.
|
||||
if n_components is not set all components are kept::
|
||||
|
||||
n_components == min(n_samples, n_features)
|
||||
|
||||
If ``n_components == 'mle'`` and ``svd_solver == 'full'``, Minka's
|
||||
MLE is used to guess the dimension. Use of ``n_components == 'mle'``
|
||||
will interpret ``svd_solver == 'auto'`` as ``svd_solver == 'full'``.
|
||||
|
||||
If ``0 < n_components < 1`` and ``svd_solver == 'full'``, select the
|
||||
number of components such that the amount of variance that needs to be
|
||||
explained is greater than the percentage specified by n_components.
|
||||
|
||||
If ``svd_solver == 'arpack'``, the number of components must be
|
||||
strictly less than the minimum of n_features and n_samples.
|
||||
|
||||
Hence, the None case results in::
|
||||
|
||||
n_components == min(n_samples, n_features) - 1
|
||||
|
||||
copy : bool, default=True
|
||||
If False, data passed to fit are overwritten and running
|
||||
fit(X).transform(X) will not yield the expected results,
|
||||
use fit_transform(X) instead.
|
||||
|
||||
whiten : bool, optional (default False)
|
||||
When True (False by default) the `components_` vectors are multiplied
|
||||
by the square root of n_samples and then divided by the singular values
|
||||
to ensure uncorrelated outputs with unit component-wise variances.
|
||||
|
||||
Whitening will remove some information from the transformed signal
|
||||
(the relative variance scales of the components) but can sometime
|
||||
improve the predictive accuracy of the downstream estimators by
|
||||
making their data respect some hard-wired assumptions.
|
||||
|
||||
svd_solver : str {'auto', 'full', 'arpack', 'randomized'}
|
||||
If auto :
|
||||
The solver is selected by a default policy based on `X.shape` and
|
||||
`n_components`: if the input data is larger than 500x500 and the
|
||||
number of components to extract is lower than 80% of the smallest
|
||||
dimension of the data, then the more efficient 'randomized'
|
||||
method is enabled. Otherwise the exact full SVD is computed and
|
||||
optionally truncated afterwards.
|
||||
If full :
|
||||
run exact full SVD calling the standard LAPACK solver via
|
||||
`scipy.linalg.svd` and select the components by postprocessing
|
||||
If arpack :
|
||||
run SVD truncated to n_components calling ARPACK solver via
|
||||
`scipy.sparse.linalg.svds`. It requires strictly
|
||||
0 < n_components < min(X.shape)
|
||||
If randomized :
|
||||
run randomized SVD by the method of Halko et al.
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
tol : float >= 0, optional (default .0)
|
||||
Tolerance for singular values computed by svd_solver == 'arpack'.
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
iterated_power : int >= 0, or 'auto', (default 'auto')
|
||||
Number of iterations for the power method computed by
|
||||
svd_solver == 'randomized'.
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used when ``svd_solver`` == 'arpack' or 'randomized'. Pass an int
|
||||
for reproducible results across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
.. versionadded:: 0.18.0
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, shape (n_components, n_features)
|
||||
Principal axes in feature space, representing the directions of
|
||||
maximum variance in the data. The components are sorted by
|
||||
``explained_variance_``.
|
||||
|
||||
explained_variance_ : array, shape (n_components,)
|
||||
The amount of variance explained by each of the selected components.
|
||||
|
||||
Equal to n_components largest eigenvalues
|
||||
of the covariance matrix of X.
|
||||
|
||||
.. versionadded:: 0.18
|
||||
|
||||
explained_variance_ratio_ : array, shape (n_components,)
|
||||
Percentage of variance explained by each of the selected components.
|
||||
|
||||
If ``n_components`` is not set then all components are stored and the
|
||||
sum of the ratios is equal to 1.0.
|
||||
|
||||
singular_values_ : array, shape (n_components,)
|
||||
The singular values corresponding to each of the selected components.
|
||||
The singular values are equal to the 2-norms of the ``n_components``
|
||||
variables in the lower-dimensional space.
|
||||
|
||||
.. versionadded:: 0.19
|
||||
|
||||
mean_ : array, shape (n_features,)
|
||||
Per-feature empirical mean, estimated from the training set.
|
||||
|
||||
Equal to `X.mean(axis=0)`.
|
||||
|
||||
n_components_ : int
|
||||
The estimated number of components. When n_components is set
|
||||
to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this
|
||||
number is estimated from input data. Otherwise it equals the parameter
|
||||
n_components, or the lesser value of n_features and n_samples
|
||||
if n_components is None.
|
||||
|
||||
n_features_ : int
|
||||
Number of features in the training data.
|
||||
|
||||
n_samples_ : int
|
||||
Number of samples in the training data.
|
||||
|
||||
noise_variance_ : float
|
||||
The estimated noise covariance following the Probabilistic PCA model
|
||||
from Tipping and Bishop 1999. See "Pattern Recognition and
|
||||
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
|
||||
http://www.miketipping.com/papers/met-mppca.pdf. It is required to
|
||||
compute the estimated data covariance and score samples.
|
||||
|
||||
Equal to the average of (min(n_features, n_samples) - n_components)
|
||||
smallest eigenvalues of the covariance matrix of X.
|
||||
|
||||
See Also
|
||||
--------
|
||||
KernelPCA : Kernel Principal Component Analysis.
|
||||
SparsePCA : Sparse Principal Component Analysis.
|
||||
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
||||
IncrementalPCA : Incremental Principal Component Analysis.
|
||||
|
||||
References
|
||||
----------
|
||||
For n_components == 'mle', this class uses the method of *Minka, T. P.
|
||||
"Automatic choice of dimensionality for PCA". In NIPS, pp. 598-604*
|
||||
|
||||
Implements the probabilistic PCA model from:
|
||||
Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
|
||||
component analysis". Journal of the Royal Statistical Society:
|
||||
Series B (Statistical Methodology), 61(3), 611-622.
|
||||
via the score and score_samples methods.
|
||||
See http://www.miketipping.com/papers/met-mppca.pdf
|
||||
|
||||
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
|
||||
|
||||
For svd_solver == 'randomized', see:
|
||||
*Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
|
||||
"Finding structure with randomness: Probabilistic algorithms for
|
||||
constructing approximate matrix decompositions".
|
||||
SIAM review, 53(2), 217-288.* and also
|
||||
*Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
|
||||
"A randomized algorithm for the decomposition of matrices".
|
||||
Applied and Computational Harmonic Analysis, 30(1), 47-68.*
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from sklearn.decomposition import PCA
|
||||
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
||||
>>> pca = PCA(n_components=2)
|
||||
>>> pca.fit(X)
|
||||
PCA(n_components=2)
|
||||
>>> print(pca.explained_variance_ratio_)
|
||||
[0.9924... 0.0075...]
|
||||
>>> print(pca.singular_values_)
|
||||
[6.30061... 0.54980...]
|
||||
|
||||
>>> pca = PCA(n_components=2, svd_solver='full')
|
||||
>>> pca.fit(X)
|
||||
PCA(n_components=2, svd_solver='full')
|
||||
>>> print(pca.explained_variance_ratio_)
|
||||
[0.9924... 0.00755...]
|
||||
>>> print(pca.singular_values_)
|
||||
[6.30061... 0.54980...]
|
||||
|
||||
>>> pca = PCA(n_components=1, svd_solver='arpack')
|
||||
>>> pca.fit(X)
|
||||
PCA(n_components=1, svd_solver='arpack')
|
||||
>>> print(pca.explained_variance_ratio_)
|
||||
[0.99244...]
|
||||
>>> print(pca.singular_values_)
|
||||
[6.30061...]
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=None, *, copy=True, whiten=False,
|
||||
svd_solver='auto', tol=0.0, iterated_power='auto',
|
||||
random_state=None):
|
||||
self.n_components = n_components
|
||||
self.copy = copy
|
||||
self.whiten = whiten
|
||||
self.svd_solver = svd_solver
|
||||
self.tol = tol
|
||||
self.iterated_power = iterated_power
|
||||
self.random_state = random_state
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model with X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
y : None
|
||||
Ignored variable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the instance itself.
|
||||
"""
|
||||
self._fit(X)
|
||||
return self
|
||||
|
||||
def fit_transform(self, X, y=None):
|
||||
"""Fit the model with X and apply the dimensionality reduction on X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training data, where n_samples is the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
y : None
|
||||
Ignored variable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array-like, shape (n_samples, n_components)
|
||||
Transformed values.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This method returns a Fortran-ordered array. To convert it to a
|
||||
C-ordered array, use 'np.ascontiguousarray'.
|
||||
"""
|
||||
U, S, V = self._fit(X)
|
||||
U = U[:, :self.n_components_]
|
||||
|
||||
if self.whiten:
|
||||
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
|
||||
U *= sqrt(X.shape[0] - 1)
|
||||
else:
|
||||
# X_new = X * V = U * S * V^T * V = U * S
|
||||
U *= S[:self.n_components_]
|
||||
|
||||
return U
|
||||
|
||||
def _fit(self, X):
|
||||
"""Dispatch to the right submethod depending on the chosen solver."""
|
||||
|
||||
# Raise an error for sparse input.
|
||||
# This is more informative than the generic one raised by check_array.
|
||||
if issparse(X):
|
||||
raise TypeError('PCA does not support sparse input. See '
|
||||
'TruncatedSVD for a possible alternative.')
|
||||
|
||||
X = self._validate_data(X, dtype=[np.float64, np.float32],
|
||||
ensure_2d=True, copy=self.copy)
|
||||
|
||||
# Handle n_components==None
|
||||
if self.n_components is None:
|
||||
if self.svd_solver != 'arpack':
|
||||
n_components = min(X.shape)
|
||||
else:
|
||||
n_components = min(X.shape) - 1
|
||||
else:
|
||||
n_components = self.n_components
|
||||
|
||||
# Handle svd_solver
|
||||
self._fit_svd_solver = self.svd_solver
|
||||
if self._fit_svd_solver == 'auto':
|
||||
# Small problem or n_components == 'mle', just call full PCA
|
||||
if max(X.shape) <= 500 or n_components == 'mle':
|
||||
self._fit_svd_solver = 'full'
|
||||
elif n_components >= 1 and n_components < .8 * min(X.shape):
|
||||
self._fit_svd_solver = 'randomized'
|
||||
# This is also the case of n_components in (0,1)
|
||||
else:
|
||||
self._fit_svd_solver = 'full'
|
||||
|
||||
# Call different fits for either full or truncated SVD
|
||||
if self._fit_svd_solver == 'full':
|
||||
return self._fit_full(X, n_components)
|
||||
elif self._fit_svd_solver in ['arpack', 'randomized']:
|
||||
return self._fit_truncated(X, n_components, self._fit_svd_solver)
|
||||
else:
|
||||
raise ValueError("Unrecognized svd_solver='{0}'"
|
||||
"".format(self._fit_svd_solver))
|
||||
|
||||
def _fit_full(self, X, n_components):
|
||||
"""Fit the model by computing full SVD on X"""
|
||||
n_samples, n_features = X.shape
|
||||
|
||||
if n_components == 'mle':
|
||||
if n_samples < n_features:
|
||||
raise ValueError("n_components='mle' is only supported "
|
||||
"if n_samples >= n_features")
|
||||
elif not 0 <= n_components <= min(n_samples, n_features):
|
||||
raise ValueError("n_components=%r must be between 0 and "
|
||||
"min(n_samples, n_features)=%r with "
|
||||
"svd_solver='full'"
|
||||
% (n_components, min(n_samples, n_features)))
|
||||
elif n_components >= 1:
|
||||
if not isinstance(n_components, numbers.Integral):
|
||||
raise ValueError("n_components=%r must be of type int "
|
||||
"when greater than or equal to 1, "
|
||||
"was of type=%r"
|
||||
% (n_components, type(n_components)))
|
||||
|
||||
# Center data
|
||||
self.mean_ = np.mean(X, axis=0)
|
||||
X -= self.mean_
|
||||
|
||||
U, S, V = linalg.svd(X, full_matrices=False)
|
||||
# flip eigenvectors' sign to enforce deterministic output
|
||||
U, V = svd_flip(U, V)
|
||||
|
||||
components_ = V
|
||||
|
||||
# Get variance explained by singular values
|
||||
explained_variance_ = (S ** 2) / (n_samples - 1)
|
||||
total_var = explained_variance_.sum()
|
||||
explained_variance_ratio_ = explained_variance_ / total_var
|
||||
singular_values_ = S.copy() # Store the singular values.
|
||||
|
||||
# Postprocess the number of components required
|
||||
if n_components == 'mle':
|
||||
n_components = \
|
||||
_infer_dimension(explained_variance_, n_samples)
|
||||
elif 0 < n_components < 1.0:
|
||||
# number of components for which the cumulated explained
|
||||
# variance percentage is superior to the desired threshold
|
||||
# side='right' ensures that number of features selected
|
||||
# their variance is always greater than n_components float
|
||||
# passed. More discussion in issue: #15669
|
||||
ratio_cumsum = stable_cumsum(explained_variance_ratio_)
|
||||
n_components = np.searchsorted(ratio_cumsum, n_components,
|
||||
side='right') + 1
|
||||
# Compute noise covariance using Probabilistic PCA model
|
||||
# The sigma2 maximum likelihood (cf. eq. 12.46)
|
||||
if n_components < min(n_features, n_samples):
|
||||
self.noise_variance_ = explained_variance_[n_components:].mean()
|
||||
else:
|
||||
self.noise_variance_ = 0.
|
||||
|
||||
self.n_samples_, self.n_features_ = n_samples, n_features
|
||||
self.components_ = components_[:n_components]
|
||||
self.n_components_ = n_components
|
||||
self.explained_variance_ = explained_variance_[:n_components]
|
||||
self.explained_variance_ratio_ = \
|
||||
explained_variance_ratio_[:n_components]
|
||||
self.singular_values_ = singular_values_[:n_components]
|
||||
|
||||
return U, S, V
|
||||
|
||||
def _fit_truncated(self, X, n_components, svd_solver):
|
||||
"""Fit the model by computing truncated SVD (by ARPACK or randomized)
|
||||
on X
|
||||
"""
|
||||
n_samples, n_features = X.shape
|
||||
|
||||
if isinstance(n_components, str):
|
||||
raise ValueError("n_components=%r cannot be a string "
|
||||
"with svd_solver='%s'"
|
||||
% (n_components, svd_solver))
|
||||
elif not 1 <= n_components <= min(n_samples, n_features):
|
||||
raise ValueError("n_components=%r must be between 1 and "
|
||||
"min(n_samples, n_features)=%r with "
|
||||
"svd_solver='%s'"
|
||||
% (n_components, min(n_samples, n_features),
|
||||
svd_solver))
|
||||
elif not isinstance(n_components, numbers.Integral):
|
||||
raise ValueError("n_components=%r must be of type int "
|
||||
"when greater than or equal to 1, was of type=%r"
|
||||
% (n_components, type(n_components)))
|
||||
elif svd_solver == 'arpack' and n_components == min(n_samples,
|
||||
n_features):
|
||||
raise ValueError("n_components=%r must be strictly less than "
|
||||
"min(n_samples, n_features)=%r with "
|
||||
"svd_solver='%s'"
|
||||
% (n_components, min(n_samples, n_features),
|
||||
svd_solver))
|
||||
|
||||
random_state = check_random_state(self.random_state)
|
||||
|
||||
# Center data
|
||||
self.mean_ = np.mean(X, axis=0)
|
||||
X -= self.mean_
|
||||
|
||||
if svd_solver == 'arpack':
|
||||
# random init solution, as ARPACK does it internally
|
||||
v0 = random_state.uniform(-1, 1, size=min(X.shape))
|
||||
U, S, V = svds(X, k=n_components, tol=self.tol, v0=v0)
|
||||
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
||||
# conventions, so reverse its outputs.
|
||||
S = S[::-1]
|
||||
# flip eigenvectors' sign to enforce deterministic output
|
||||
U, V = svd_flip(U[:, ::-1], V[::-1])
|
||||
|
||||
elif svd_solver == 'randomized':
|
||||
# sign flipping is done inside
|
||||
U, S, V = randomized_svd(X, n_components=n_components,
|
||||
n_iter=self.iterated_power,
|
||||
flip_sign=True,
|
||||
random_state=random_state)
|
||||
|
||||
self.n_samples_, self.n_features_ = n_samples, n_features
|
||||
self.components_ = V
|
||||
self.n_components_ = n_components
|
||||
|
||||
# Get variance explained by singular values
|
||||
self.explained_variance_ = (S ** 2) / (n_samples - 1)
|
||||
total_var = np.var(X, ddof=1, axis=0)
|
||||
self.explained_variance_ratio_ = \
|
||||
self.explained_variance_ / total_var.sum()
|
||||
self.singular_values_ = S.copy() # Store the singular values.
|
||||
|
||||
if self.n_components_ < min(n_features, n_samples):
|
||||
self.noise_variance_ = (total_var.sum() -
|
||||
self.explained_variance_.sum())
|
||||
self.noise_variance_ /= min(n_features, n_samples) - n_components
|
||||
else:
|
||||
self.noise_variance_ = 0.
|
||||
|
||||
return U, S, V
|
||||
|
||||
def score_samples(self, X):
|
||||
"""Return the log-likelihood of each sample.
|
||||
|
||||
See. "Pattern Recognition and Machine Learning"
|
||||
by C. Bishop, 12.2.1 p. 574
|
||||
or http://www.miketipping.com/papers/met-mppca.pdf
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array, shape(n_samples, n_features)
|
||||
The data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ll : array, shape (n_samples,)
|
||||
Log-likelihood of each sample under the current model.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X)
|
||||
Xr = X - self.mean_
|
||||
n_features = X.shape[1]
|
||||
precision = self.get_precision()
|
||||
log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
|
||||
log_like -= .5 * (n_features * log(2. * np.pi) -
|
||||
fast_logdet(precision))
|
||||
return log_like
|
||||
|
||||
def score(self, X, y=None):
|
||||
"""Return the average log-likelihood of all samples.
|
||||
|
||||
See. "Pattern Recognition and Machine Learning"
|
||||
by C. Bishop, 12.2.1 p. 574
|
||||
or http://www.miketipping.com/papers/met-mppca.pdf
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array, shape(n_samples, n_features)
|
||||
The data.
|
||||
|
||||
y : None
|
||||
Ignored variable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ll : float
|
||||
Average log-likelihood of the samples under the current model.
|
||||
"""
|
||||
return np.mean(self.score_samples(X))
|
420
venv/Lib/site-packages/sklearn/decomposition/_sparse_pca.py
Normal file
420
venv/Lib/site-packages/sklearn/decomposition/_sparse_pca.py
Normal file
|
@ -0,0 +1,420 @@
|
|||
"""Matrix factorization with Sparse PCA"""
|
||||
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
|
||||
# License: BSD 3 clause
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..utils import check_random_state, check_array
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
from ..linear_model import ridge_regression
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ._dict_learning import dict_learning, dict_learning_online
|
||||
|
||||
|
||||
# FIXME: remove in 0.24
|
||||
def _check_normalize_components(normalize_components, estimator_name):
|
||||
if normalize_components != 'deprecated':
|
||||
if normalize_components:
|
||||
warnings.warn(
|
||||
"'normalize_components' has been deprecated in 0.22 and "
|
||||
"will be removed in 0.24. Remove the parameter from the "
|
||||
" constructor.", FutureWarning
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"normalize_components=False is not supported starting from "
|
||||
"0.22. Remove this parameter from the constructor."
|
||||
)
|
||||
|
||||
|
||||
class SparsePCA(TransformerMixin, BaseEstimator):
|
||||
"""Sparse Principal Components Analysis (SparsePCA)
|
||||
|
||||
Finds the set of sparse components that can optimally reconstruct
|
||||
the data. The amount of sparseness is controllable by the coefficient
|
||||
of the L1 penalty, given by the parameter alpha.
|
||||
|
||||
Read more in the :ref:`User Guide <SparsePCA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int,
|
||||
Number of sparse atoms to extract.
|
||||
|
||||
alpha : float,
|
||||
Sparsity controlling parameter. Higher values lead to sparser
|
||||
components.
|
||||
|
||||
ridge_alpha : float,
|
||||
Amount of ridge shrinkage to apply in order to improve
|
||||
conditioning when calling the transform method.
|
||||
|
||||
max_iter : int,
|
||||
Maximum number of iterations to perform.
|
||||
|
||||
tol : float,
|
||||
Tolerance for the stopping condition.
|
||||
|
||||
method : {'lars', 'cd'}
|
||||
lars: uses the least angle regression method to solve the lasso problem
|
||||
(linear_model.lars_path)
|
||||
cd: uses the coordinate descent method to compute the
|
||||
Lasso solution (linear_model.Lasso). Lars will be faster if
|
||||
the estimated components are sparse.
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
Number of parallel jobs to run.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
U_init : array of shape (n_samples, n_components),
|
||||
Initial values for the loadings for warm restart scenarios.
|
||||
|
||||
V_init : array of shape (n_components, n_features),
|
||||
Initial values for the components for warm restart scenarios.
|
||||
|
||||
verbose : int
|
||||
Controls the verbosity; the higher, the more messages. Defaults to 0.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used during dictionary learning. Pass an int for reproducible results
|
||||
across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
normalize_components : 'deprecated'
|
||||
This parameter does not have any effect. The components are always
|
||||
normalized.
|
||||
|
||||
.. versionadded:: 0.20
|
||||
|
||||
.. deprecated:: 0.22
|
||||
``normalize_components`` is deprecated in 0.22 and will be removed
|
||||
in 0.24.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, [n_components, n_features]
|
||||
Sparse components extracted from the data.
|
||||
|
||||
error_ : array
|
||||
Vector of errors at each iteration.
|
||||
|
||||
n_components_ : int
|
||||
Estimated number of components.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
|
||||
n_iter_ : int
|
||||
Number of iterations run.
|
||||
|
||||
mean_ : array, shape (n_features,)
|
||||
Per-feature empirical mean, estimated from the training set.
|
||||
Equal to ``X.mean(axis=0)``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from sklearn.datasets import make_friedman1
|
||||
>>> from sklearn.decomposition import SparsePCA
|
||||
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
|
||||
>>> transformer = SparsePCA(n_components=5, random_state=0)
|
||||
>>> transformer.fit(X)
|
||||
SparsePCA(...)
|
||||
>>> X_transformed = transformer.transform(X)
|
||||
>>> X_transformed.shape
|
||||
(200, 5)
|
||||
>>> # most values in the components_ are zero (sparsity)
|
||||
>>> np.mean(transformer.components_ == 0)
|
||||
0.9666...
|
||||
|
||||
See also
|
||||
--------
|
||||
PCA
|
||||
MiniBatchSparsePCA
|
||||
DictionaryLearning
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=None, *, alpha=1, ridge_alpha=0.01,
|
||||
max_iter=1000, tol=1e-8, method='lars', n_jobs=None,
|
||||
U_init=None, V_init=None, verbose=False, random_state=None,
|
||||
normalize_components='deprecated'):
|
||||
self.n_components = n_components
|
||||
self.alpha = alpha
|
||||
self.ridge_alpha = ridge_alpha
|
||||
self.max_iter = max_iter
|
||||
self.tol = tol
|
||||
self.method = method
|
||||
self.n_jobs = n_jobs
|
||||
self.U_init = U_init
|
||||
self.V_init = V_init
|
||||
self.verbose = verbose
|
||||
self.random_state = random_state
|
||||
self.normalize_components = normalize_components
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model from data in X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training vector, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the instance itself.
|
||||
"""
|
||||
random_state = check_random_state(self.random_state)
|
||||
X = self._validate_data(X)
|
||||
|
||||
_check_normalize_components(
|
||||
self.normalize_components, self.__class__.__name__
|
||||
)
|
||||
|
||||
self.mean_ = X.mean(axis=0)
|
||||
X = X - self.mean_
|
||||
|
||||
if self.n_components is None:
|
||||
n_components = X.shape[1]
|
||||
else:
|
||||
n_components = self.n_components
|
||||
code_init = self.V_init.T if self.V_init is not None else None
|
||||
dict_init = self.U_init.T if self.U_init is not None else None
|
||||
Vt, _, E, self.n_iter_ = dict_learning(X.T, n_components,
|
||||
alpha=self.alpha,
|
||||
tol=self.tol,
|
||||
max_iter=self.max_iter,
|
||||
method=self.method,
|
||||
n_jobs=self.n_jobs,
|
||||
verbose=self.verbose,
|
||||
random_state=random_state,
|
||||
code_init=code_init,
|
||||
dict_init=dict_init,
|
||||
return_n_iter=True)
|
||||
self.components_ = Vt.T
|
||||
components_norm = np.linalg.norm(
|
||||
self.components_, axis=1)[:, np.newaxis]
|
||||
components_norm[components_norm == 0] = 1
|
||||
self.components_ /= components_norm
|
||||
self.n_components_ = len(self.components_)
|
||||
|
||||
self.error_ = E
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
"""Least Squares projection of the data onto the sparse components.
|
||||
|
||||
To avoid instability issues in case the system is under-determined,
|
||||
regularization can be applied (Ridge regression) via the
|
||||
`ridge_alpha` parameter.
|
||||
|
||||
Note that Sparse PCA components orthogonality is not enforced as in PCA
|
||||
hence one cannot use a simple linear projection.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array of shape (n_samples, n_features)
|
||||
Test data to be transformed, must have the same number of
|
||||
features as the data used to train the model.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new array, shape (n_samples, n_components)
|
||||
Transformed data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X)
|
||||
X = X - self.mean_
|
||||
|
||||
U = ridge_regression(self.components_.T, X.T, self.ridge_alpha,
|
||||
solver='cholesky')
|
||||
|
||||
return U
|
||||
|
||||
def _more_tags(self):
|
||||
return {
|
||||
'_xfail_checks': {
|
||||
"check_methods_subset_invariance":
|
||||
"fails for the transform method"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class MiniBatchSparsePCA(SparsePCA):
|
||||
"""Mini-batch Sparse Principal Components Analysis
|
||||
|
||||
Finds the set of sparse components that can optimally reconstruct
|
||||
the data. The amount of sparseness is controllable by the coefficient
|
||||
of the L1 penalty, given by the parameter alpha.
|
||||
|
||||
Read more in the :ref:`User Guide <SparsePCA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int,
|
||||
number of sparse atoms to extract
|
||||
|
||||
alpha : int,
|
||||
Sparsity controlling parameter. Higher values lead to sparser
|
||||
components.
|
||||
|
||||
ridge_alpha : float,
|
||||
Amount of ridge shrinkage to apply in order to improve
|
||||
conditioning when calling the transform method.
|
||||
|
||||
n_iter : int,
|
||||
number of iterations to perform for each mini batch
|
||||
|
||||
callback : callable or None, optional (default: None)
|
||||
callable that gets invoked every five iterations
|
||||
|
||||
batch_size : int,
|
||||
the number of features to take in each mini batch
|
||||
|
||||
verbose : int
|
||||
Controls the verbosity; the higher, the more messages. Defaults to 0.
|
||||
|
||||
shuffle : boolean,
|
||||
whether to shuffle the data before splitting it in batches
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
Number of parallel jobs to run.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
method : {'lars', 'cd'}
|
||||
lars: uses the least angle regression method to solve the lasso problem
|
||||
(linear_model.lars_path)
|
||||
cd: uses the coordinate descent method to compute the
|
||||
Lasso solution (linear_model.Lasso). Lars will be faster if
|
||||
the estimated components are sparse.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used for random shuffling when ``shuffle`` is set to ``True``,
|
||||
during online dictionary learning. Pass an int for reproducible results
|
||||
across multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
normalize_components : 'deprecated'
|
||||
This parameter does not have any effect. The components are always
|
||||
normalized.
|
||||
|
||||
.. versionadded:: 0.20
|
||||
|
||||
.. deprecated:: 0.22
|
||||
``normalize_components`` is deprecated in 0.22 and will be removed
|
||||
in 0.24.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, [n_components, n_features]
|
||||
Sparse components extracted from the data.
|
||||
|
||||
n_components_ : int
|
||||
Estimated number of components.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
|
||||
n_iter_ : int
|
||||
Number of iterations run.
|
||||
|
||||
mean_ : array, shape (n_features,)
|
||||
Per-feature empirical mean, estimated from the training set.
|
||||
Equal to ``X.mean(axis=0)``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> from sklearn.datasets import make_friedman1
|
||||
>>> from sklearn.decomposition import MiniBatchSparsePCA
|
||||
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
|
||||
>>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50,
|
||||
... random_state=0)
|
||||
>>> transformer.fit(X)
|
||||
MiniBatchSparsePCA(...)
|
||||
>>> X_transformed = transformer.transform(X)
|
||||
>>> X_transformed.shape
|
||||
(200, 5)
|
||||
>>> # most values in the components_ are zero (sparsity)
|
||||
>>> np.mean(transformer.components_ == 0)
|
||||
0.94
|
||||
|
||||
See also
|
||||
--------
|
||||
PCA
|
||||
SparsePCA
|
||||
DictionaryLearning
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=None, *, alpha=1, ridge_alpha=0.01,
|
||||
n_iter=100, callback=None, batch_size=3, verbose=False,
|
||||
shuffle=True, n_jobs=None, method='lars', random_state=None,
|
||||
normalize_components='deprecated'):
|
||||
super().__init__(
|
||||
n_components=n_components, alpha=alpha, verbose=verbose,
|
||||
ridge_alpha=ridge_alpha, n_jobs=n_jobs, method=method,
|
||||
random_state=random_state,
|
||||
normalize_components=normalize_components)
|
||||
self.n_iter = n_iter
|
||||
self.callback = callback
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the model from data in X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training vector, where n_samples in the number of samples
|
||||
and n_features is the number of features.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the instance itself.
|
||||
"""
|
||||
random_state = check_random_state(self.random_state)
|
||||
X = self._validate_data(X)
|
||||
|
||||
_check_normalize_components(
|
||||
self.normalize_components, self.__class__.__name__
|
||||
)
|
||||
|
||||
self.mean_ = X.mean(axis=0)
|
||||
X = X - self.mean_
|
||||
|
||||
if self.n_components is None:
|
||||
n_components = X.shape[1]
|
||||
else:
|
||||
n_components = self.n_components
|
||||
Vt, _, self.n_iter_ = dict_learning_online(
|
||||
X.T, n_components, alpha=self.alpha,
|
||||
n_iter=self.n_iter, return_code=True,
|
||||
dict_init=None, verbose=self.verbose,
|
||||
callback=self.callback,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=self.shuffle,
|
||||
n_jobs=self.n_jobs, method=self.method,
|
||||
random_state=random_state,
|
||||
return_n_iter=True)
|
||||
self.components_ = Vt.T
|
||||
|
||||
components_norm = np.linalg.norm(
|
||||
self.components_, axis=1)[:, np.newaxis]
|
||||
components_norm[components_norm == 0] = 1
|
||||
self.components_ /= components_norm
|
||||
self.n_components_ = len(self.components_)
|
||||
|
||||
return self
|
235
venv/Lib/site-packages/sklearn/decomposition/_truncated_svd.py
Normal file
235
venv/Lib/site-packages/sklearn/decomposition/_truncated_svd.py
Normal file
|
@ -0,0 +1,235 @@
|
|||
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA).
|
||||
"""
|
||||
|
||||
# Author: Lars Buitinck
|
||||
# Olivier Grisel <olivier.grisel@ensta.org>
|
||||
# Michael Becker <mike@beckerfuffle.com>
|
||||
# License: 3-clause BSD.
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
from scipy.sparse.linalg import svds
|
||||
|
||||
from ..base import BaseEstimator, TransformerMixin
|
||||
from ..utils import check_array, check_random_state
|
||||
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip
|
||||
from ..utils.sparsefuncs import mean_variance_axis
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
from ..utils.validation import check_is_fitted
|
||||
|
||||
|
||||
__all__ = ["TruncatedSVD"]
|
||||
|
||||
|
||||
class TruncatedSVD(TransformerMixin, BaseEstimator):
|
||||
"""Dimensionality reduction using truncated SVD (aka LSA).
|
||||
|
||||
This transformer performs linear dimensionality reduction by means of
|
||||
truncated singular value decomposition (SVD). Contrary to PCA, this
|
||||
estimator does not center the data before computing the singular value
|
||||
decomposition. This means it can work with sparse matrices
|
||||
efficiently.
|
||||
|
||||
In particular, truncated SVD works on term count/tf-idf matrices as
|
||||
returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In
|
||||
that context, it is known as latent semantic analysis (LSA).
|
||||
|
||||
This estimator supports two algorithms: a fast randomized SVD solver, and
|
||||
a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or
|
||||
`X.T * X`, whichever is more efficient.
|
||||
|
||||
Read more in the :ref:`User Guide <LSA>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_components : int, default = 2
|
||||
Desired dimensionality of output data.
|
||||
Must be strictly less than the number of features.
|
||||
The default value is useful for visualisation. For LSA, a value of
|
||||
100 is recommended.
|
||||
|
||||
algorithm : string, default = "randomized"
|
||||
SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy
|
||||
(scipy.sparse.linalg.svds), or "randomized" for the randomized
|
||||
algorithm due to Halko (2009).
|
||||
|
||||
n_iter : int, optional (default 5)
|
||||
Number of iterations for randomized SVD solver. Not used by ARPACK. The
|
||||
default is larger than the default in
|
||||
:func:`~sklearn.utils.extmath.randomized_svd` to handle sparse
|
||||
matrices that may have large slowly decaying spectrum.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used during randomized svd. Pass an int for reproducible results across
|
||||
multiple function calls.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
tol : float, optional
|
||||
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized
|
||||
SVD solver.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
components_ : array, shape (n_components, n_features)
|
||||
|
||||
explained_variance_ : array, shape (n_components,)
|
||||
The variance of the training samples transformed by a projection to
|
||||
each component.
|
||||
|
||||
explained_variance_ratio_ : array, shape (n_components,)
|
||||
Percentage of variance explained by each of the selected components.
|
||||
|
||||
singular_values_ : array, shape (n_components,)
|
||||
The singular values corresponding to each of the selected components.
|
||||
The singular values are equal to the 2-norms of the ``n_components``
|
||||
variables in the lower-dimensional space.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.decomposition import TruncatedSVD
|
||||
>>> from scipy.sparse import random as sparse_random
|
||||
>>> from sklearn.random_projection import sparse_random_matrix
|
||||
>>> X = sparse_random(100, 100, density=0.01, format='csr',
|
||||
... random_state=42)
|
||||
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
||||
>>> svd.fit(X)
|
||||
TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
||||
>>> print(svd.explained_variance_ratio_)
|
||||
[0.0646... 0.0633... 0.0639... 0.0535... 0.0406...]
|
||||
>>> print(svd.explained_variance_ratio_.sum())
|
||||
0.286...
|
||||
>>> print(svd.singular_values_)
|
||||
[1.553... 1.512... 1.510... 1.370... 1.199...]
|
||||
|
||||
See also
|
||||
--------
|
||||
PCA
|
||||
|
||||
References
|
||||
----------
|
||||
Finding structure with randomness: Stochastic algorithms for constructing
|
||||
approximate matrix decompositions
|
||||
Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf
|
||||
|
||||
Notes
|
||||
-----
|
||||
SVD suffers from a problem called "sign indeterminacy", which means the
|
||||
sign of the ``components_`` and the output from transform depend on the
|
||||
algorithm and random state. To work around this, fit instances of this
|
||||
class to data once, then keep the instance around to do transformations.
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_components=2, *, algorithm="randomized", n_iter=5,
|
||||
random_state=None, tol=0.):
|
||||
self.algorithm = algorithm
|
||||
self.n_components = n_components
|
||||
self.n_iter = n_iter
|
||||
self.random_state = random_state
|
||||
self.tol = tol
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit LSI model on training data X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns the transformer object.
|
||||
"""
|
||||
self.fit_transform(X)
|
||||
return self
|
||||
|
||||
def fit_transform(self, X, y=None):
|
||||
"""Fit LSI model to X and perform dimensionality reduction on X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
Training data.
|
||||
|
||||
y : Ignored
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array, shape (n_samples, n_components)
|
||||
Reduced version of X. This will always be a dense array.
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse=['csr', 'csc'],
|
||||
ensure_min_features=2)
|
||||
random_state = check_random_state(self.random_state)
|
||||
|
||||
if self.algorithm == "arpack":
|
||||
U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol)
|
||||
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
||||
# conventions, so reverse its outputs.
|
||||
Sigma = Sigma[::-1]
|
||||
U, VT = svd_flip(U[:, ::-1], VT[::-1])
|
||||
|
||||
elif self.algorithm == "randomized":
|
||||
k = self.n_components
|
||||
n_features = X.shape[1]
|
||||
if k >= n_features:
|
||||
raise ValueError("n_components must be < n_features;"
|
||||
" got %d >= %d" % (k, n_features))
|
||||
U, Sigma, VT = randomized_svd(X, self.n_components,
|
||||
n_iter=self.n_iter,
|
||||
random_state=random_state)
|
||||
else:
|
||||
raise ValueError("unknown algorithm %r" % self.algorithm)
|
||||
|
||||
self.components_ = VT
|
||||
|
||||
# Calculate explained variance & explained variance ratio
|
||||
X_transformed = U * Sigma
|
||||
self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)
|
||||
if sp.issparse(X):
|
||||
_, full_var = mean_variance_axis(X, axis=0)
|
||||
full_var = full_var.sum()
|
||||
else:
|
||||
full_var = np.var(X, axis=0).sum()
|
||||
self.explained_variance_ratio_ = exp_var / full_var
|
||||
self.singular_values_ = Sigma # Store the singular values.
|
||||
|
||||
return X_transformed
|
||||
|
||||
def transform(self, X):
|
||||
"""Perform dimensionality reduction on X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
New data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_new : array, shape (n_samples, n_components)
|
||||
Reduced version of X. This will always be a dense array.
|
||||
"""
|
||||
X = check_array(X, accept_sparse=['csr', 'csc'])
|
||||
check_is_fitted(self)
|
||||
return safe_sparse_dot(X, self.components_.T)
|
||||
|
||||
def inverse_transform(self, X):
|
||||
"""Transform X back to its original space.
|
||||
|
||||
Returns an array X_original whose transform would be X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_components)
|
||||
New data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_original : array, shape (n_samples, n_features)
|
||||
Note that this is always a dense array.
|
||||
"""
|
||||
X = check_array(X)
|
||||
return np.dot(X, self.components_)
|
18
venv/Lib/site-packages/sklearn/decomposition/base.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/base.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _base # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.base'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_base, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/decomposition/cdnmf_fast.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/cdnmf_fast.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _cdnmf_fast # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.cdnmf_fast'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_cdnmf_fast, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _dict_learning # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.dict_learning'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_dict_learning, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _factor_analysis # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.factor_analysis'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_factor_analysis, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/decomposition/fastica_.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/fastica_.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _fastica # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.fastica_'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_fastica, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _incremental_pca # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.incremental_pca'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_incremental_pca, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/decomposition/kernel_pca.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/kernel_pca.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _kernel_pca # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.kernel_pca'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_kernel_pca, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/decomposition/nmf.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/nmf.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _nmf # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.nmf'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_nmf, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/decomposition/online_lda.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/online_lda.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _lda # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.online_lda'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_lda, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _online_lda_fast # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.online_lda_fast'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_online_lda_fast, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/decomposition/pca.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/pca.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _pca # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.pca'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_pca, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
29
venv/Lib/site-packages/sklearn/decomposition/setup.py
Normal file
29
venv/Lib/site-packages/sklearn/decomposition/setup.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
import os
|
||||
import numpy
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
|
||||
|
||||
def configuration(parent_package="", top_path=None):
|
||||
config = Configuration("decomposition", parent_package, top_path)
|
||||
|
||||
libraries = []
|
||||
if os.name == 'posix':
|
||||
libraries.append('m')
|
||||
|
||||
config.add_extension("_online_lda_fast",
|
||||
sources=["_online_lda_fast.pyx"],
|
||||
include_dirs=[numpy.get_include()],
|
||||
libraries=libraries)
|
||||
|
||||
config.add_extension('_cdnmf_fast',
|
||||
sources=['_cdnmf_fast.pyx'],
|
||||
include_dirs=[numpy.get_include()],
|
||||
libraries=libraries)
|
||||
|
||||
config.add_subpackage("tests")
|
||||
|
||||
return config
|
||||
|
||||
if __name__ == "__main__":
|
||||
from numpy.distutils.core import setup
|
||||
setup(**configuration().todict())
|
18
venv/Lib/site-packages/sklearn/decomposition/sparse_pca.py
Normal file
18
venv/Lib/site-packages/sklearn/decomposition/sparse_pca.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _sparse_pca # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.sparse_pca'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_sparse_pca, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,523 @@
|
|||
import pytest
|
||||
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
|
||||
from sklearn.utils import check_array
|
||||
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import ignore_warnings
|
||||
from sklearn.utils._testing import TempMemmap
|
||||
|
||||
from sklearn.decomposition import DictionaryLearning
|
||||
from sklearn.decomposition import MiniBatchDictionaryLearning
|
||||
from sklearn.decomposition import SparseCoder
|
||||
from sklearn.decomposition import dict_learning
|
||||
from sklearn.decomposition import dict_learning_online
|
||||
from sklearn.decomposition import sparse_encode
|
||||
|
||||
|
||||
rng_global = np.random.RandomState(0)
|
||||
n_samples, n_features = 10, 8
|
||||
X = rng_global.randn(n_samples, n_features)
|
||||
|
||||
|
||||
def test_sparse_encode_shapes_omp():
|
||||
rng = np.random.RandomState(0)
|
||||
algorithms = ['omp', 'lasso_lars', 'lasso_cd', 'lars', 'threshold']
|
||||
for n_components, n_samples in itertools.product([1, 5], [1, 9]):
|
||||
X_ = rng.randn(n_samples, n_features)
|
||||
dictionary = rng.randn(n_components, n_features)
|
||||
for algorithm, n_jobs in itertools.product(algorithms, [1, 3]):
|
||||
code = sparse_encode(X_, dictionary, algorithm=algorithm,
|
||||
n_jobs=n_jobs)
|
||||
assert code.shape == (n_samples, n_components)
|
||||
|
||||
|
||||
def test_dict_learning_shapes():
|
||||
n_components = 5
|
||||
dico = DictionaryLearning(n_components, random_state=0).fit(X)
|
||||
assert dico.components_.shape == (n_components, n_features)
|
||||
|
||||
n_components = 1
|
||||
dico = DictionaryLearning(n_components, random_state=0).fit(X)
|
||||
assert dico.components_.shape == (n_components, n_features)
|
||||
assert dico.transform(X).shape == (X.shape[0], n_components)
|
||||
|
||||
|
||||
def test_dict_learning_overcomplete():
|
||||
n_components = 12
|
||||
dico = DictionaryLearning(n_components, random_state=0).fit(X)
|
||||
assert dico.components_.shape == (n_components, n_features)
|
||||
|
||||
|
||||
def test_max_iter():
|
||||
def ricker_function(resolution, center, width):
|
||||
"""Discrete sub-sampled Ricker (Mexican hat) wavelet"""
|
||||
x = np.linspace(0, resolution - 1, resolution)
|
||||
x = ((2 / (np.sqrt(3 * width) * np.pi ** .25))
|
||||
* (1 - (x - center) ** 2 / width ** 2)
|
||||
* np.exp(-(x - center) ** 2 / (2 * width ** 2)))
|
||||
return x
|
||||
|
||||
def ricker_matrix(width, resolution, n_components):
|
||||
"""Dictionary of Ricker (Mexican hat) wavelets"""
|
||||
centers = np.linspace(0, resolution - 1, n_components)
|
||||
D = np.empty((n_components, resolution))
|
||||
for i, center in enumerate(centers):
|
||||
D[i] = ricker_function(resolution, center, width)
|
||||
D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis]
|
||||
return D
|
||||
|
||||
transform_algorithm = 'lasso_cd'
|
||||
resolution = 1024
|
||||
subsampling = 3 # subsampling factor
|
||||
n_components = resolution // subsampling
|
||||
|
||||
# Compute a wavelet dictionary
|
||||
D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution,
|
||||
n_components=n_components // 5)
|
||||
for w in (10, 50, 100, 500, 1000))]
|
||||
|
||||
X = np.linspace(0, resolution - 1, resolution)
|
||||
first_quarter = X < resolution / 4
|
||||
X[first_quarter] = 3.
|
||||
X[np.logical_not(first_quarter)] = -1.
|
||||
X = X.reshape(1, -1)
|
||||
|
||||
# check that the underlying model fails to converge
|
||||
with pytest.warns(ConvergenceWarning):
|
||||
model = SparseCoder(D_multi, transform_algorithm=transform_algorithm,
|
||||
transform_max_iter=1)
|
||||
model.fit_transform(X)
|
||||
|
||||
# check that the underlying model converges w/o warnings
|
||||
with pytest.warns(None) as record:
|
||||
model = SparseCoder(D_multi, transform_algorithm=transform_algorithm,
|
||||
transform_max_iter=2000)
|
||||
model.fit_transform(X)
|
||||
assert not record.list
|
||||
|
||||
|
||||
def test_dict_learning_lars_positive_parameter():
|
||||
n_components = 5
|
||||
alpha = 1
|
||||
err_msg = "Positive constraint not supported for 'lars' coding method."
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
dict_learning(X, n_components, alpha=alpha, positive_code=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("transform_algorithm", [
|
||||
"lasso_lars",
|
||||
"lasso_cd",
|
||||
"threshold",
|
||||
])
|
||||
@pytest.mark.parametrize("positive_code", [False, True])
|
||||
@pytest.mark.parametrize("positive_dict", [False, True])
|
||||
def test_dict_learning_positivity(transform_algorithm,
|
||||
positive_code,
|
||||
positive_dict):
|
||||
n_components = 5
|
||||
dico = DictionaryLearning(
|
||||
n_components, transform_algorithm=transform_algorithm, random_state=0,
|
||||
positive_code=positive_code, positive_dict=positive_dict,
|
||||
fit_algorithm="cd").fit(X)
|
||||
|
||||
code = dico.transform(X)
|
||||
if positive_dict:
|
||||
assert (dico.components_ >= 0).all()
|
||||
else:
|
||||
assert (dico.components_ < 0).any()
|
||||
if positive_code:
|
||||
assert (code >= 0).all()
|
||||
else:
|
||||
assert (code < 0).any()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("positive_dict", [False, True])
|
||||
def test_dict_learning_lars_dict_positivity(positive_dict):
|
||||
n_components = 5
|
||||
dico = DictionaryLearning(
|
||||
n_components, transform_algorithm="lars", random_state=0,
|
||||
positive_dict=positive_dict, fit_algorithm="cd").fit(X)
|
||||
|
||||
if positive_dict:
|
||||
assert (dico.components_ >= 0).all()
|
||||
else:
|
||||
assert (dico.components_ < 0).any()
|
||||
|
||||
|
||||
def test_dict_learning_lars_code_positivity():
|
||||
n_components = 5
|
||||
dico = DictionaryLearning(
|
||||
n_components, transform_algorithm="lars", random_state=0,
|
||||
positive_code=True, fit_algorithm="cd").fit(X)
|
||||
|
||||
err_msg = "Positive constraint not supported for '{}' coding method."
|
||||
err_msg = err_msg.format("lars")
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
dico.transform(X)
|
||||
|
||||
|
||||
def test_dict_learning_reconstruction():
|
||||
n_components = 12
|
||||
dico = DictionaryLearning(n_components, transform_algorithm='omp',
|
||||
transform_alpha=0.001, random_state=0)
|
||||
code = dico.fit(X).transform(X)
|
||||
assert_array_almost_equal(np.dot(code, dico.components_), X)
|
||||
|
||||
dico.set_params(transform_algorithm='lasso_lars')
|
||||
code = dico.transform(X)
|
||||
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
|
||||
|
||||
# used to test lars here too, but there's no guarantee the number of
|
||||
# nonzero atoms is right.
|
||||
|
||||
|
||||
def test_dict_learning_reconstruction_parallel():
|
||||
# regression test that parallel reconstruction works with n_jobs>1
|
||||
n_components = 12
|
||||
dico = DictionaryLearning(n_components, transform_algorithm='omp',
|
||||
transform_alpha=0.001, random_state=0, n_jobs=4)
|
||||
code = dico.fit(X).transform(X)
|
||||
assert_array_almost_equal(np.dot(code, dico.components_), X)
|
||||
|
||||
dico.set_params(transform_algorithm='lasso_lars')
|
||||
code = dico.transform(X)
|
||||
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
|
||||
|
||||
|
||||
def test_dict_learning_lassocd_readonly_data():
|
||||
n_components = 12
|
||||
with TempMemmap(X) as X_read_only:
|
||||
dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd',
|
||||
transform_alpha=0.001, random_state=0,
|
||||
n_jobs=4)
|
||||
with ignore_warnings(category=ConvergenceWarning):
|
||||
code = dico.fit(X_read_only).transform(X_read_only)
|
||||
assert_array_almost_equal(np.dot(code, dico.components_), X_read_only,
|
||||
decimal=2)
|
||||
|
||||
|
||||
def test_dict_learning_nonzero_coefs():
|
||||
n_components = 4
|
||||
dico = DictionaryLearning(n_components, transform_algorithm='lars',
|
||||
transform_n_nonzero_coefs=3, random_state=0)
|
||||
code = dico.fit(X).transform(X[np.newaxis, 1])
|
||||
assert len(np.flatnonzero(code)) == 3
|
||||
|
||||
dico.set_params(transform_algorithm='omp')
|
||||
code = dico.transform(X[np.newaxis, 1])
|
||||
assert len(np.flatnonzero(code)) == 3
|
||||
|
||||
|
||||
def test_dict_learning_unknown_fit_algorithm():
|
||||
n_components = 5
|
||||
dico = DictionaryLearning(n_components, fit_algorithm='<unknown>')
|
||||
with pytest.raises(ValueError):
|
||||
dico.fit(X)
|
||||
|
||||
|
||||
def test_dict_learning_split():
|
||||
n_components = 5
|
||||
dico = DictionaryLearning(n_components, transform_algorithm='threshold',
|
||||
random_state=0)
|
||||
code = dico.fit(X).transform(X)
|
||||
dico.split_sign = True
|
||||
split_code = dico.transform(X)
|
||||
|
||||
assert_array_almost_equal(split_code[:, :n_components] -
|
||||
split_code[:, n_components:], code)
|
||||
|
||||
|
||||
def test_dict_learning_online_shapes():
|
||||
rng = np.random.RandomState(0)
|
||||
n_components = 8
|
||||
code, dictionary = dict_learning_online(X, n_components=n_components,
|
||||
alpha=1, random_state=rng)
|
||||
assert code.shape == (n_samples, n_components)
|
||||
assert dictionary.shape == (n_components, n_features)
|
||||
assert np.dot(code, dictionary).shape == X.shape
|
||||
|
||||
|
||||
def test_dict_learning_online_lars_positive_parameter():
|
||||
alpha = 1
|
||||
err_msg = "Positive constraint not supported for 'lars' coding method."
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
dict_learning_online(X, alpha=alpha, positive_code=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("transform_algorithm", [
|
||||
"lasso_lars",
|
||||
"lasso_cd",
|
||||
"threshold",
|
||||
])
|
||||
@pytest.mark.parametrize("positive_code", [False, True])
|
||||
@pytest.mark.parametrize("positive_dict", [False, True])
|
||||
def test_minibatch_dictionary_learning_positivity(transform_algorithm,
|
||||
positive_code,
|
||||
positive_dict):
|
||||
n_components = 8
|
||||
dico = MiniBatchDictionaryLearning(
|
||||
n_components, transform_algorithm=transform_algorithm, random_state=0,
|
||||
positive_code=positive_code, positive_dict=positive_dict,
|
||||
fit_algorithm='cd').fit(X)
|
||||
|
||||
code = dico.transform(X)
|
||||
if positive_dict:
|
||||
assert (dico.components_ >= 0).all()
|
||||
else:
|
||||
assert (dico.components_ < 0).any()
|
||||
if positive_code:
|
||||
assert (code >= 0).all()
|
||||
else:
|
||||
assert (code < 0).any()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("positive_dict", [False, True])
|
||||
def test_minibatch_dictionary_learning_lars(positive_dict):
|
||||
n_components = 8
|
||||
|
||||
dico = MiniBatchDictionaryLearning(
|
||||
n_components, transform_algorithm="lars", random_state=0,
|
||||
positive_dict=positive_dict, fit_algorithm='cd').fit(X)
|
||||
|
||||
if positive_dict:
|
||||
assert (dico.components_ >= 0).all()
|
||||
else:
|
||||
assert (dico.components_ < 0).any()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("positive_code", [False, True])
|
||||
@pytest.mark.parametrize("positive_dict", [False, True])
|
||||
def test_dict_learning_online_positivity(positive_code,
|
||||
positive_dict):
|
||||
rng = np.random.RandomState(0)
|
||||
n_components = 8
|
||||
|
||||
code, dictionary = dict_learning_online(X, n_components=n_components,
|
||||
method="cd",
|
||||
alpha=1, random_state=rng,
|
||||
positive_dict=positive_dict,
|
||||
positive_code=positive_code)
|
||||
if positive_dict:
|
||||
assert (dictionary >= 0).all()
|
||||
else:
|
||||
assert (dictionary < 0).any()
|
||||
if positive_code:
|
||||
assert (code >= 0).all()
|
||||
else:
|
||||
assert (code < 0).any()
|
||||
|
||||
|
||||
def test_dict_learning_online_verbosity():
|
||||
n_components = 5
|
||||
# test verbosity
|
||||
from io import StringIO
|
||||
import sys
|
||||
|
||||
old_stdout = sys.stdout
|
||||
try:
|
||||
sys.stdout = StringIO()
|
||||
dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1,
|
||||
random_state=0)
|
||||
dico.fit(X)
|
||||
dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2,
|
||||
random_state=0)
|
||||
dico.fit(X)
|
||||
dict_learning_online(X, n_components=n_components, alpha=1, verbose=1,
|
||||
random_state=0)
|
||||
dict_learning_online(X, n_components=n_components, alpha=1, verbose=2,
|
||||
random_state=0)
|
||||
finally:
|
||||
sys.stdout = old_stdout
|
||||
|
||||
assert dico.components_.shape == (n_components, n_features)
|
||||
|
||||
|
||||
def test_dict_learning_online_estimator_shapes():
|
||||
n_components = 5
|
||||
dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0)
|
||||
dico.fit(X)
|
||||
assert dico.components_.shape == (n_components, n_features)
|
||||
|
||||
|
||||
def test_dict_learning_online_overcomplete():
|
||||
n_components = 12
|
||||
dico = MiniBatchDictionaryLearning(n_components, n_iter=20,
|
||||
random_state=0).fit(X)
|
||||
assert dico.components_.shape == (n_components, n_features)
|
||||
|
||||
|
||||
def test_dict_learning_online_initialization():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features)
|
||||
dico = MiniBatchDictionaryLearning(n_components, n_iter=0,
|
||||
dict_init=V, random_state=0).fit(X)
|
||||
assert_array_equal(dico.components_, V)
|
||||
|
||||
|
||||
def test_dict_learning_online_readonly_initialization():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features)
|
||||
V.setflags(write=False)
|
||||
MiniBatchDictionaryLearning(n_components, n_iter=1, dict_init=V,
|
||||
random_state=0, shuffle=False).fit(X)
|
||||
|
||||
|
||||
def test_dict_learning_online_partial_fit():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
|
||||
dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X),
|
||||
batch_size=1,
|
||||
alpha=1, shuffle=False, dict_init=V,
|
||||
random_state=0).fit(X)
|
||||
dict2 = MiniBatchDictionaryLearning(n_components, alpha=1,
|
||||
n_iter=1, dict_init=V,
|
||||
random_state=0)
|
||||
for i in range(10):
|
||||
for sample in X:
|
||||
dict2.partial_fit(sample[np.newaxis, :])
|
||||
|
||||
assert not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)
|
||||
assert_array_almost_equal(dict1.components_, dict2.components_,
|
||||
decimal=2)
|
||||
|
||||
|
||||
def test_dict_learning_iter_offset():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features)
|
||||
dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10,
|
||||
dict_init=V, random_state=0,
|
||||
shuffle=False)
|
||||
dict2 = MiniBatchDictionaryLearning(n_components, n_iter=10,
|
||||
dict_init=V, random_state=0,
|
||||
shuffle=False)
|
||||
dict1.fit(X)
|
||||
for sample in X:
|
||||
dict2.partial_fit(sample[np.newaxis, :])
|
||||
|
||||
assert dict1.iter_offset_ == dict2.iter_offset_
|
||||
|
||||
|
||||
def test_sparse_encode_shapes():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
|
||||
for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'):
|
||||
code = sparse_encode(X, V, algorithm=algo)
|
||||
assert code.shape == (n_samples, n_components)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("algo", [
|
||||
'lasso_lars',
|
||||
'lasso_cd',
|
||||
'threshold'
|
||||
])
|
||||
@pytest.mark.parametrize("positive", [False, True])
|
||||
def test_sparse_encode_positivity(algo, positive):
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
|
||||
code = sparse_encode(X, V, algorithm=algo, positive=positive)
|
||||
if positive:
|
||||
assert (code >= 0).all()
|
||||
else:
|
||||
assert (code < 0).any()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("algo", ['lars', 'omp'])
|
||||
def test_sparse_encode_unavailable_positivity(algo):
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
|
||||
err_msg = "Positive constraint not supported for '{}' coding method."
|
||||
err_msg = err_msg.format(algo)
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
sparse_encode(X, V, algorithm=algo, positive=True)
|
||||
|
||||
|
||||
def test_sparse_encode_input():
|
||||
n_components = 100
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
|
||||
Xf = check_array(X, order='F')
|
||||
for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'):
|
||||
a = sparse_encode(X, V, algorithm=algo)
|
||||
b = sparse_encode(Xf, V, algorithm=algo)
|
||||
assert_array_almost_equal(a, b)
|
||||
|
||||
|
||||
def test_sparse_encode_error():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
|
||||
code = sparse_encode(X, V, alpha=0.001)
|
||||
assert not np.all(code == 0)
|
||||
assert np.sqrt(np.sum((np.dot(code, V) - X) ** 2)) < 0.1
|
||||
|
||||
|
||||
def test_sparse_encode_error_default_sparsity():
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(100, 64)
|
||||
D = rng.randn(2, 64)
|
||||
code = ignore_warnings(sparse_encode)(X, D, algorithm='omp',
|
||||
n_nonzero_coefs=None)
|
||||
assert code.shape == (100, 2)
|
||||
|
||||
|
||||
def test_unknown_method():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
with pytest.raises(ValueError):
|
||||
sparse_encode(X, V, algorithm="<unknown>")
|
||||
|
||||
|
||||
def test_sparse_coder_estimator():
|
||||
n_components = 12
|
||||
rng = np.random.RandomState(0)
|
||||
V = rng.randn(n_components, n_features) # random init
|
||||
V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
|
||||
code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars',
|
||||
transform_alpha=0.001).transform(X)
|
||||
assert not np.all(code == 0)
|
||||
assert np.sqrt(np.sum((np.dot(code, V) - X) ** 2)) < 0.1
|
||||
|
||||
|
||||
def test_sparse_coder_parallel_mmap():
|
||||
# Non-regression test for:
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/5956
|
||||
# Test that SparseCoder does not error by passing reading only
|
||||
# arrays to child processes
|
||||
|
||||
rng = np.random.RandomState(777)
|
||||
n_components, n_features = 40, 64
|
||||
init_dict = rng.rand(n_components, n_features)
|
||||
# Ensure that `data` is >2M. Joblib memory maps arrays
|
||||
# if they are larger than 1MB. The 4 accounts for float32
|
||||
# data type
|
||||
n_samples = int(2e6) // (4 * n_features)
|
||||
data = np.random.rand(n_samples, n_features).astype(np.float32)
|
||||
|
||||
sc = SparseCoder(init_dict, transform_algorithm='omp', n_jobs=2)
|
||||
sc.fit_transform(data)
|
||||
|
||||
|
||||
def test_sparse_coder_n_features_in():
|
||||
d = np.array([[1, 2, 3], [1, 2, 3]])
|
||||
sc = SparseCoder(d)
|
||||
assert sc.n_features_in_ == d.shape[1]
|
|
@ -0,0 +1,85 @@
|
|||
# Author: Christian Osendorfer <osendorf@gmail.com>
|
||||
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||||
# License: BSD3
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from sklearn.utils._testing import assert_warns
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
from sklearn.decomposition import FactorAnalysis
|
||||
from sklearn.utils._testing import ignore_warnings
|
||||
|
||||
|
||||
# Ignore warnings from switching to more power iterations in randomized_svd
|
||||
@ignore_warnings
|
||||
def test_factor_analysis():
|
||||
# Test FactorAnalysis ability to recover the data covariance structure
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features, n_components = 20, 5, 3
|
||||
|
||||
# Some random settings for the generative model
|
||||
W = rng.randn(n_components, n_features)
|
||||
# latent variable of dim 3, 20 of it
|
||||
h = rng.randn(n_samples, n_components)
|
||||
# using gamma to model different noise variance
|
||||
# per component
|
||||
noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features)
|
||||
|
||||
# generate observations
|
||||
# wlog, mean is 0
|
||||
X = np.dot(h, W) + noise
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
FactorAnalysis(svd_method='foo')
|
||||
fa_fail = FactorAnalysis()
|
||||
fa_fail.svd_method = 'foo'
|
||||
with pytest.raises(ValueError):
|
||||
fa_fail.fit(X)
|
||||
fas = []
|
||||
for method in ['randomized', 'lapack']:
|
||||
fa = FactorAnalysis(n_components=n_components, svd_method=method)
|
||||
fa.fit(X)
|
||||
fas.append(fa)
|
||||
|
||||
X_t = fa.transform(X)
|
||||
assert X_t.shape == (n_samples, n_components)
|
||||
|
||||
assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum())
|
||||
assert_almost_equal(fa.score_samples(X).mean(), fa.score(X))
|
||||
|
||||
diff = np.all(np.diff(fa.loglike_))
|
||||
assert diff > 0., 'Log likelihood dif not increase'
|
||||
|
||||
# Sample Covariance
|
||||
scov = np.cov(X, rowvar=0., bias=1.)
|
||||
|
||||
# Model Covariance
|
||||
mcov = fa.get_covariance()
|
||||
diff = np.sum(np.abs(scov - mcov)) / W.size
|
||||
assert diff < 0.1, "Mean absolute difference is %f" % diff
|
||||
fa = FactorAnalysis(n_components=n_components,
|
||||
noise_variance_init=np.ones(n_features))
|
||||
with pytest.raises(ValueError):
|
||||
fa.fit(X[:, :2])
|
||||
|
||||
f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal
|
||||
fa1, fa2 = fas
|
||||
for attr in ['loglike_', 'components_', 'noise_variance_']:
|
||||
assert_almost_equal(f(fa1, attr), f(fa2, attr))
|
||||
|
||||
fa1.max_iter = 1
|
||||
fa1.verbose = True
|
||||
assert_warns(ConvergenceWarning, fa1.fit, X)
|
||||
|
||||
# Test get_covariance and get_precision with n_components == n_features
|
||||
# with n_components < n_features and with n_components == 0
|
||||
for n_components in [0, 2, X.shape[1]]:
|
||||
fa.n_components = n_components
|
||||
fa.fit(X)
|
||||
cov = fa.get_covariance()
|
||||
precision = fa.get_precision()
|
||||
assert_array_almost_equal(np.dot(cov, precision),
|
||||
np.eye(X.shape[1]), 12)
|
|
@ -0,0 +1,301 @@
|
|||
"""
|
||||
Test the fastica algorithm.
|
||||
"""
|
||||
import itertools
|
||||
import warnings
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_warns
|
||||
|
||||
from sklearn.decomposition import FastICA, fastica, PCA
|
||||
from sklearn.decomposition._fastica import _gs_decorrelation
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
|
||||
|
||||
def center_and_norm(x, axis=-1):
|
||||
""" Centers and norms x **in place**
|
||||
|
||||
Parameters
|
||||
-----------
|
||||
x: ndarray
|
||||
Array with an axis of observations (statistical units) measured on
|
||||
random variables.
|
||||
axis: int, optional
|
||||
Axis along which the mean and variance are calculated.
|
||||
"""
|
||||
x = np.rollaxis(x, axis)
|
||||
x -= x.mean(axis=0)
|
||||
x /= x.std(axis=0)
|
||||
|
||||
|
||||
def test_gs():
|
||||
# Test gram schmidt orthonormalization
|
||||
# generate a random orthogonal matrix
|
||||
rng = np.random.RandomState(0)
|
||||
W, _, _ = np.linalg.svd(rng.randn(10, 10))
|
||||
w = rng.randn(10)
|
||||
_gs_decorrelation(w, W, 10)
|
||||
assert (w ** 2).sum() < 1.e-10
|
||||
w = rng.randn(10)
|
||||
u = _gs_decorrelation(w, W, 5)
|
||||
tmp = np.dot(u, W.T)
|
||||
assert (tmp[:5] ** 2).sum() < 1.e-10
|
||||
|
||||
|
||||
@pytest.mark.parametrize("add_noise", [True, False])
|
||||
@pytest.mark.parametrize("seed", range(1))
|
||||
def test_fastica_simple(add_noise, seed):
|
||||
# Test the FastICA algorithm on very simple data.
|
||||
rng = np.random.RandomState(seed)
|
||||
# scipy.stats uses the global RNG:
|
||||
n_samples = 1000
|
||||
# Generate two sources:
|
||||
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1
|
||||
s2 = stats.t.rvs(1, size=n_samples)
|
||||
s = np.c_[s1, s2].T
|
||||
center_and_norm(s)
|
||||
s1, s2 = s
|
||||
|
||||
# Mixing angle
|
||||
phi = 0.6
|
||||
mixing = np.array([[np.cos(phi), np.sin(phi)],
|
||||
[np.sin(phi), -np.cos(phi)]])
|
||||
m = np.dot(mixing, s)
|
||||
|
||||
if add_noise:
|
||||
m += 0.1 * rng.randn(2, 1000)
|
||||
|
||||
center_and_norm(m)
|
||||
|
||||
# function as fun arg
|
||||
def g_test(x):
|
||||
return x ** 3, (3 * x ** 2).mean(axis=-1)
|
||||
|
||||
algos = ['parallel', 'deflation']
|
||||
nls = ['logcosh', 'exp', 'cube', g_test]
|
||||
whitening = [True, False]
|
||||
for algo, nl, whiten in itertools.product(algos, nls, whitening):
|
||||
if whiten:
|
||||
k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo,
|
||||
random_state=rng)
|
||||
with pytest.raises(ValueError):
|
||||
fastica(m.T, fun=np.tanh, algorithm=algo)
|
||||
else:
|
||||
pca = PCA(n_components=2, whiten=True, random_state=rng)
|
||||
X = pca.fit_transform(m.T)
|
||||
k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False,
|
||||
random_state=rng)
|
||||
with pytest.raises(ValueError):
|
||||
fastica(X, fun=np.tanh, algorithm=algo)
|
||||
s_ = s_.T
|
||||
# Check that the mixing model described in the docstring holds:
|
||||
if whiten:
|
||||
assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m))
|
||||
|
||||
center_and_norm(s_)
|
||||
s1_, s2_ = s_
|
||||
# Check to see if the sources have been estimated
|
||||
# in the wrong order
|
||||
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
||||
s2_, s1_ = s_
|
||||
s1_ *= np.sign(np.dot(s1_, s1))
|
||||
s2_ *= np.sign(np.dot(s2_, s2))
|
||||
|
||||
# Check that we have estimated the original sources
|
||||
if not add_noise:
|
||||
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2)
|
||||
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2)
|
||||
else:
|
||||
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1)
|
||||
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1)
|
||||
|
||||
# Test FastICA class
|
||||
_, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo,
|
||||
random_state=seed)
|
||||
ica = FastICA(fun=nl, algorithm=algo, random_state=seed)
|
||||
sources = ica.fit_transform(m.T)
|
||||
assert ica.components_.shape == (2, 2)
|
||||
assert sources.shape == (1000, 2)
|
||||
|
||||
assert_array_almost_equal(sources_fun, sources)
|
||||
assert_array_almost_equal(sources, ica.transform(m.T))
|
||||
|
||||
assert ica.mixing_.shape == (2, 2)
|
||||
|
||||
for fn in [np.tanh, "exp(-.5(x^2))"]:
|
||||
ica = FastICA(fun=fn, algorithm=algo)
|
||||
with pytest.raises(ValueError):
|
||||
ica.fit(m.T)
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
FastICA(fun=range(10)).fit(m.T)
|
||||
|
||||
|
||||
def test_fastica_nowhiten():
|
||||
m = [[0, 1], [1, 0]]
|
||||
|
||||
# test for issue #697
|
||||
ica = FastICA(n_components=1, whiten=False, random_state=0)
|
||||
assert_warns(UserWarning, ica.fit, m)
|
||||
assert hasattr(ica, 'mixing_')
|
||||
|
||||
|
||||
def test_fastica_convergence_fail():
|
||||
# Test the FastICA algorithm on very simple data
|
||||
# (see test_non_square_fastica).
|
||||
# Ensure a ConvergenceWarning raised if the tolerance is sufficiently low.
|
||||
rng = np.random.RandomState(0)
|
||||
|
||||
n_samples = 1000
|
||||
# Generate two sources:
|
||||
t = np.linspace(0, 100, n_samples)
|
||||
s1 = np.sin(t)
|
||||
s2 = np.ceil(np.sin(np.pi * t))
|
||||
s = np.c_[s1, s2].T
|
||||
center_and_norm(s)
|
||||
|
||||
# Mixing matrix
|
||||
mixing = rng.randn(6, 2)
|
||||
m = np.dot(mixing, s)
|
||||
|
||||
# Do fastICA with tolerance 0. to ensure failing convergence
|
||||
ica = FastICA(algorithm="parallel", n_components=2, random_state=rng,
|
||||
max_iter=2, tol=0.)
|
||||
assert_warns(ConvergenceWarning, ica.fit, m.T)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('add_noise', [True, False])
|
||||
def test_non_square_fastica(add_noise):
|
||||
# Test the FastICA algorithm on very simple data.
|
||||
rng = np.random.RandomState(0)
|
||||
|
||||
n_samples = 1000
|
||||
# Generate two sources:
|
||||
t = np.linspace(0, 100, n_samples)
|
||||
s1 = np.sin(t)
|
||||
s2 = np.ceil(np.sin(np.pi * t))
|
||||
s = np.c_[s1, s2].T
|
||||
center_and_norm(s)
|
||||
s1, s2 = s
|
||||
|
||||
# Mixing matrix
|
||||
mixing = rng.randn(6, 2)
|
||||
m = np.dot(mixing, s)
|
||||
|
||||
if add_noise:
|
||||
m += 0.1 * rng.randn(6, n_samples)
|
||||
|
||||
center_and_norm(m)
|
||||
|
||||
k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng)
|
||||
s_ = s_.T
|
||||
|
||||
# Check that the mixing model described in the docstring holds:
|
||||
assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m))
|
||||
|
||||
center_and_norm(s_)
|
||||
s1_, s2_ = s_
|
||||
# Check to see if the sources have been estimated
|
||||
# in the wrong order
|
||||
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)):
|
||||
s2_, s1_ = s_
|
||||
s1_ *= np.sign(np.dot(s1_, s1))
|
||||
s2_ *= np.sign(np.dot(s2_, s2))
|
||||
|
||||
# Check that we have estimated the original sources
|
||||
if not add_noise:
|
||||
assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3)
|
||||
assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3)
|
||||
|
||||
|
||||
def test_fit_transform():
|
||||
# Test FastICA.fit_transform
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.random_sample((100, 10))
|
||||
for whiten, n_components in [[True, 5], [False, None]]:
|
||||
n_components_ = (n_components if n_components is not None else
|
||||
X.shape[1])
|
||||
|
||||
ica = FastICA(n_components=n_components, whiten=whiten, random_state=0)
|
||||
Xt = ica.fit_transform(X)
|
||||
assert ica.components_.shape == (n_components_, 10)
|
||||
assert Xt.shape == (100, n_components_)
|
||||
|
||||
ica = FastICA(n_components=n_components, whiten=whiten, random_state=0)
|
||||
ica.fit(X)
|
||||
assert ica.components_.shape == (n_components_, 10)
|
||||
Xt2 = ica.transform(X)
|
||||
|
||||
assert_array_almost_equal(Xt, Xt2)
|
||||
|
||||
|
||||
def test_inverse_transform():
|
||||
# Test FastICA.inverse_transform
|
||||
n_features = 10
|
||||
n_samples = 100
|
||||
n1, n2 = 5, 10
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.random_sample((n_samples, n_features))
|
||||
expected = {(True, n1): (n_features, n1),
|
||||
(True, n2): (n_features, n2),
|
||||
(False, n1): (n_features, n2),
|
||||
(False, n2): (n_features, n2)}
|
||||
for whiten in [True, False]:
|
||||
for n_components in [n1, n2]:
|
||||
n_components_ = (n_components if n_components is not None else
|
||||
X.shape[1])
|
||||
ica = FastICA(n_components=n_components, random_state=rng,
|
||||
whiten=whiten)
|
||||
with warnings.catch_warnings(record=True):
|
||||
# catch "n_components ignored" warning
|
||||
Xt = ica.fit_transform(X)
|
||||
expected_shape = expected[(whiten, n_components_)]
|
||||
assert ica.mixing_.shape == expected_shape
|
||||
X2 = ica.inverse_transform(Xt)
|
||||
assert X.shape == X2.shape
|
||||
|
||||
# reversibility test in non-reduction case
|
||||
if n_components == X.shape[1]:
|
||||
assert_array_almost_equal(X, X2)
|
||||
|
||||
|
||||
def test_fastica_errors():
|
||||
n_features = 3
|
||||
n_samples = 10
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.random_sample((n_samples, n_features))
|
||||
w_init = rng.randn(n_features + 1, n_features + 1)
|
||||
with pytest.raises(ValueError, match='max_iter should be greater than 1'):
|
||||
FastICA(max_iter=0)
|
||||
with pytest.raises(ValueError, match=r'alpha must be in \[1,2\]'):
|
||||
fastica(X, fun_args={'alpha': 0})
|
||||
with pytest.raises(ValueError, match='w_init has invalid shape.+'
|
||||
r'should be \(3L?, 3L?\)'):
|
||||
fastica(X, w_init=w_init)
|
||||
with pytest.raises(ValueError, match='Invalid algorithm.+must '
|
||||
'be.+parallel.+or.+deflation'):
|
||||
fastica(X, algorithm='pizza')
|
||||
|
||||
|
||||
@pytest.mark.parametrize('whiten', [True, False])
|
||||
@pytest.mark.parametrize('return_X_mean', [True, False])
|
||||
@pytest.mark.parametrize('return_n_iter', [True, False])
|
||||
def test_fastica_output_shape(whiten, return_X_mean, return_n_iter):
|
||||
n_features = 3
|
||||
n_samples = 10
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.random_sample((n_samples, n_features))
|
||||
|
||||
expected_len = 3 + return_X_mean + return_n_iter
|
||||
|
||||
out = fastica(X, whiten=whiten, return_n_iter=return_n_iter,
|
||||
return_X_mean=return_X_mean)
|
||||
|
||||
assert len(out) == expected_len
|
||||
if not whiten:
|
||||
assert out[0] is None
|
|
@ -0,0 +1,401 @@
|
|||
"""Tests for Incremental PCA."""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_allclose_dense_sparse
|
||||
|
||||
from sklearn import datasets
|
||||
from sklearn.decomposition import PCA, IncrementalPCA
|
||||
|
||||
from scipy import sparse
|
||||
|
||||
iris = datasets.load_iris()
|
||||
|
||||
|
||||
def test_incremental_pca():
|
||||
# Incremental PCA on dense arrays.
|
||||
X = iris.data
|
||||
batch_size = X.shape[0] // 3
|
||||
ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
|
||||
pca = PCA(n_components=2)
|
||||
pca.fit_transform(X)
|
||||
|
||||
X_transformed = ipca.fit_transform(X)
|
||||
|
||||
assert X_transformed.shape == (X.shape[0], 2)
|
||||
np.testing.assert_allclose(ipca.explained_variance_ratio_.sum(),
|
||||
pca.explained_variance_ratio_.sum(), rtol=1e-3)
|
||||
|
||||
for n_components in [1, 2, X.shape[1]]:
|
||||
ipca = IncrementalPCA(n_components, batch_size=batch_size)
|
||||
ipca.fit(X)
|
||||
cov = ipca.get_covariance()
|
||||
precision = ipca.get_precision()
|
||||
np.testing.assert_allclose(np.dot(cov, precision),
|
||||
np.eye(X.shape[1]), atol=1e-13)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"matrix_class",
|
||||
[sparse.csc_matrix, sparse.csr_matrix, sparse.lil_matrix])
|
||||
def test_incremental_pca_sparse(matrix_class):
|
||||
# Incremental PCA on sparse arrays.
|
||||
X = iris.data
|
||||
pca = PCA(n_components=2)
|
||||
pca.fit_transform(X)
|
||||
X_sparse = matrix_class(X)
|
||||
batch_size = X_sparse.shape[0] // 3
|
||||
ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
|
||||
|
||||
X_transformed = ipca.fit_transform(X_sparse)
|
||||
|
||||
assert X_transformed.shape == (X_sparse.shape[0], 2)
|
||||
np.testing.assert_allclose(ipca.explained_variance_ratio_.sum(),
|
||||
pca.explained_variance_ratio_.sum(), rtol=1e-3)
|
||||
|
||||
for n_components in [1, 2, X.shape[1]]:
|
||||
ipca = IncrementalPCA(n_components, batch_size=batch_size)
|
||||
ipca.fit(X_sparse)
|
||||
cov = ipca.get_covariance()
|
||||
precision = ipca.get_precision()
|
||||
np.testing.assert_allclose(np.dot(cov, precision),
|
||||
np.eye(X_sparse.shape[1]), atol=1e-13)
|
||||
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="IncrementalPCA.partial_fit does not support "
|
||||
"sparse input. Either convert data to dense "
|
||||
"or use IncrementalPCA.fit to do so in batches."):
|
||||
ipca.partial_fit(X_sparse)
|
||||
|
||||
|
||||
def test_incremental_pca_check_projection():
|
||||
# Test that the projection of data is correct.
|
||||
rng = np.random.RandomState(1999)
|
||||
n, p = 100, 3
|
||||
X = rng.randn(n, p) * .1
|
||||
X[:10] += np.array([3, 4, 5])
|
||||
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
|
||||
|
||||
# Get the reconstruction of the generated data X
|
||||
# Note that Xt has the same "components" as X, just separated
|
||||
# This is what we want to ensure is recreated correctly
|
||||
Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt)
|
||||
|
||||
# Normalize
|
||||
Yt /= np.sqrt((Yt ** 2).sum())
|
||||
|
||||
# Make sure that the first element of Yt is ~1, this means
|
||||
# the reconstruction worked as expected
|
||||
assert_almost_equal(np.abs(Yt[0][0]), 1., 1)
|
||||
|
||||
|
||||
def test_incremental_pca_inverse():
|
||||
# Test that the projection of data can be inverted.
|
||||
rng = np.random.RandomState(1999)
|
||||
n, p = 50, 3
|
||||
X = rng.randn(n, p) # spherical data
|
||||
X[:, 1] *= .00001 # make middle component relatively small
|
||||
X += [5, 4, 3] # make a large mean
|
||||
|
||||
# same check that we can find the original data from the transformed
|
||||
# signal (since the data is almost of rank n_components)
|
||||
ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X)
|
||||
Y = ipca.transform(X)
|
||||
Y_inverse = ipca.inverse_transform(Y)
|
||||
assert_almost_equal(X, Y_inverse, decimal=3)
|
||||
|
||||
|
||||
def test_incremental_pca_validation():
|
||||
# Test that n_components is >=1 and <= n_features.
|
||||
X = np.array([[0, 1, 0], [1, 0, 0]])
|
||||
n_samples, n_features = X.shape
|
||||
for n_components in [-1, 0, .99, 4]:
|
||||
with pytest.raises(ValueError, match="n_components={} invalid"
|
||||
" for n_features={}, need more rows than"
|
||||
" columns for IncrementalPCA"
|
||||
" processing".format(n_components,
|
||||
n_features)):
|
||||
IncrementalPCA(n_components, batch_size=10).fit(X)
|
||||
|
||||
# Tests that n_components is also <= n_samples.
|
||||
n_components = 3
|
||||
with pytest.raises(ValueError, match="n_components={} must be"
|
||||
" less or equal to the batch number of"
|
||||
" samples {}".format(n_components, n_samples)):
|
||||
IncrementalPCA(n_components=n_components).partial_fit(X)
|
||||
|
||||
|
||||
def test_n_components_none():
|
||||
# Ensures that n_components == None is handled correctly
|
||||
rng = np.random.RandomState(1999)
|
||||
for n_samples, n_features in [(50, 10), (10, 50)]:
|
||||
X = rng.rand(n_samples, n_features)
|
||||
ipca = IncrementalPCA(n_components=None)
|
||||
|
||||
# First partial_fit call, ipca.n_components_ is inferred from
|
||||
# min(X.shape)
|
||||
ipca.partial_fit(X)
|
||||
assert ipca.n_components_ == min(X.shape)
|
||||
|
||||
# Second partial_fit call, ipca.n_components_ is inferred from
|
||||
# ipca.components_ computed from the first partial_fit call
|
||||
ipca.partial_fit(X)
|
||||
assert ipca.n_components_ == ipca.components_.shape[0]
|
||||
|
||||
|
||||
def test_incremental_pca_set_params():
|
||||
# Test that components_ sign is stable over batch sizes.
|
||||
rng = np.random.RandomState(1999)
|
||||
n_samples = 100
|
||||
n_features = 20
|
||||
X = rng.randn(n_samples, n_features)
|
||||
X2 = rng.randn(n_samples, n_features)
|
||||
X3 = rng.randn(n_samples, n_features)
|
||||
ipca = IncrementalPCA(n_components=20)
|
||||
ipca.fit(X)
|
||||
# Decreasing number of components
|
||||
ipca.set_params(n_components=10)
|
||||
with pytest.raises(ValueError):
|
||||
ipca.partial_fit(X2)
|
||||
# Increasing number of components
|
||||
ipca.set_params(n_components=15)
|
||||
with pytest.raises(ValueError):
|
||||
ipca.partial_fit(X3)
|
||||
# Returning to original setting
|
||||
ipca.set_params(n_components=20)
|
||||
ipca.partial_fit(X)
|
||||
|
||||
|
||||
def test_incremental_pca_num_features_change():
|
||||
# Test that changing n_components will raise an error.
|
||||
rng = np.random.RandomState(1999)
|
||||
n_samples = 100
|
||||
X = rng.randn(n_samples, 20)
|
||||
X2 = rng.randn(n_samples, 50)
|
||||
ipca = IncrementalPCA(n_components=None)
|
||||
ipca.fit(X)
|
||||
with pytest.raises(ValueError):
|
||||
ipca.partial_fit(X2)
|
||||
|
||||
|
||||
def test_incremental_pca_batch_signs():
|
||||
# Test that components_ sign is stable over batch sizes.
|
||||
rng = np.random.RandomState(1999)
|
||||
n_samples = 100
|
||||
n_features = 3
|
||||
X = rng.randn(n_samples, n_features)
|
||||
all_components = []
|
||||
batch_sizes = np.arange(10, 20)
|
||||
for batch_size in batch_sizes:
|
||||
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
|
||||
all_components.append(ipca.components_)
|
||||
|
||||
for i, j in zip(all_components[:-1], all_components[1:]):
|
||||
assert_almost_equal(np.sign(i), np.sign(j), decimal=6)
|
||||
|
||||
|
||||
def test_incremental_pca_batch_values():
|
||||
# Test that components_ values are stable over batch sizes.
|
||||
rng = np.random.RandomState(1999)
|
||||
n_samples = 100
|
||||
n_features = 3
|
||||
X = rng.randn(n_samples, n_features)
|
||||
all_components = []
|
||||
batch_sizes = np.arange(20, 40, 3)
|
||||
for batch_size in batch_sizes:
|
||||
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
|
||||
all_components.append(ipca.components_)
|
||||
|
||||
for i, j in zip(all_components[:-1], all_components[1:]):
|
||||
assert_almost_equal(i, j, decimal=1)
|
||||
|
||||
|
||||
def test_incremental_pca_batch_rank():
|
||||
# Test sample size in each batch is always larger or equal to n_components
|
||||
rng = np.random.RandomState(1999)
|
||||
n_samples = 100
|
||||
n_features = 20
|
||||
X = rng.randn(n_samples, n_features)
|
||||
all_components = []
|
||||
batch_sizes = np.arange(20, 90, 3)
|
||||
for batch_size in batch_sizes:
|
||||
ipca = IncrementalPCA(n_components=20, batch_size=batch_size).fit(X)
|
||||
all_components.append(ipca.components_)
|
||||
|
||||
for components_i, components_j in zip(all_components[:-1],
|
||||
all_components[1:]):
|
||||
assert_allclose_dense_sparse(components_i, components_j)
|
||||
|
||||
|
||||
def test_incremental_pca_partial_fit():
|
||||
# Test that fit and partial_fit get equivalent results.
|
||||
rng = np.random.RandomState(1999)
|
||||
n, p = 50, 3
|
||||
X = rng.randn(n, p) # spherical data
|
||||
X[:, 1] *= .00001 # make middle component relatively small
|
||||
X += [5, 4, 3] # make a large mean
|
||||
|
||||
# same check that we can find the original data from the transformed
|
||||
# signal (since the data is almost of rank n_components)
|
||||
batch_size = 10
|
||||
ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X)
|
||||
pipca = IncrementalPCA(n_components=2, batch_size=batch_size)
|
||||
# Add one to make sure endpoint is included
|
||||
batch_itr = np.arange(0, n + 1, batch_size)
|
||||
for i, j in zip(batch_itr[:-1], batch_itr[1:]):
|
||||
pipca.partial_fit(X[i:j, :])
|
||||
assert_almost_equal(ipca.components_, pipca.components_, decimal=3)
|
||||
|
||||
|
||||
def test_incremental_pca_against_pca_iris():
|
||||
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
|
||||
X = iris.data
|
||||
|
||||
Y_pca = PCA(n_components=2).fit_transform(X)
|
||||
Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X)
|
||||
|
||||
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
|
||||
|
||||
|
||||
def test_incremental_pca_against_pca_random_data():
|
||||
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
|
||||
rng = np.random.RandomState(1999)
|
||||
n_samples = 100
|
||||
n_features = 3
|
||||
X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features)
|
||||
|
||||
Y_pca = PCA(n_components=3).fit_transform(X)
|
||||
Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X)
|
||||
|
||||
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
|
||||
|
||||
|
||||
def test_explained_variances():
|
||||
# Test that PCA and IncrementalPCA calculations match
|
||||
X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0.,
|
||||
effective_rank=10, random_state=1999)
|
||||
prec = 3
|
||||
n_samples, n_features = X.shape
|
||||
for nc in [None, 99]:
|
||||
pca = PCA(n_components=nc).fit(X)
|
||||
ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X)
|
||||
assert_almost_equal(pca.explained_variance_, ipca.explained_variance_,
|
||||
decimal=prec)
|
||||
assert_almost_equal(pca.explained_variance_ratio_,
|
||||
ipca.explained_variance_ratio_, decimal=prec)
|
||||
assert_almost_equal(pca.noise_variance_, ipca.noise_variance_,
|
||||
decimal=prec)
|
||||
|
||||
|
||||
def test_singular_values():
|
||||
# Check that the IncrementalPCA output has the correct singular values
|
||||
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples = 1000
|
||||
n_features = 100
|
||||
|
||||
X = datasets.make_low_rank_matrix(n_samples, n_features, tail_strength=0.0,
|
||||
effective_rank=10, random_state=rng)
|
||||
|
||||
pca = PCA(n_components=10, svd_solver='full', random_state=rng).fit(X)
|
||||
ipca = IncrementalPCA(n_components=10, batch_size=100).fit(X)
|
||||
assert_array_almost_equal(pca.singular_values_, ipca.singular_values_, 2)
|
||||
|
||||
# Compare to the Frobenius norm
|
||||
X_pca = pca.transform(X)
|
||||
X_ipca = ipca.transform(X)
|
||||
assert_array_almost_equal(np.sum(pca.singular_values_**2.0),
|
||||
np.linalg.norm(X_pca, "fro")**2.0, 12)
|
||||
assert_array_almost_equal(np.sum(ipca.singular_values_**2.0),
|
||||
np.linalg.norm(X_ipca, "fro")**2.0, 2)
|
||||
|
||||
# Compare to the 2-norms of the score vectors
|
||||
assert_array_almost_equal(pca.singular_values_,
|
||||
np.sqrt(np.sum(X_pca**2.0, axis=0)), 12)
|
||||
assert_array_almost_equal(ipca.singular_values_,
|
||||
np.sqrt(np.sum(X_ipca**2.0, axis=0)), 2)
|
||||
|
||||
# Set the singular values and see what we get back
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples = 100
|
||||
n_features = 110
|
||||
|
||||
X = datasets.make_low_rank_matrix(n_samples, n_features, tail_strength=0.0,
|
||||
effective_rank=3, random_state=rng)
|
||||
|
||||
pca = PCA(n_components=3, svd_solver='full', random_state=rng)
|
||||
ipca = IncrementalPCA(n_components=3, batch_size=100)
|
||||
|
||||
X_pca = pca.fit_transform(X)
|
||||
X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0))
|
||||
X_pca[:, 0] *= 3.142
|
||||
X_pca[:, 1] *= 2.718
|
||||
|
||||
X_hat = np.dot(X_pca, pca.components_)
|
||||
pca.fit(X_hat)
|
||||
ipca.fit(X_hat)
|
||||
assert_array_almost_equal(pca.singular_values_, [3.142, 2.718, 1.0], 14)
|
||||
assert_array_almost_equal(ipca.singular_values_, [3.142, 2.718, 1.0], 14)
|
||||
|
||||
|
||||
def test_whitening():
|
||||
# Test that PCA and IncrementalPCA transforms match to sign flip.
|
||||
X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0.,
|
||||
effective_rank=2, random_state=1999)
|
||||
prec = 3
|
||||
n_samples, n_features = X.shape
|
||||
for nc in [None, 9]:
|
||||
pca = PCA(whiten=True, n_components=nc).fit(X)
|
||||
ipca = IncrementalPCA(whiten=True, n_components=nc,
|
||||
batch_size=250).fit(X)
|
||||
|
||||
Xt_pca = pca.transform(X)
|
||||
Xt_ipca = ipca.transform(X)
|
||||
assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec)
|
||||
Xinv_ipca = ipca.inverse_transform(Xt_ipca)
|
||||
Xinv_pca = pca.inverse_transform(Xt_pca)
|
||||
assert_almost_equal(X, Xinv_ipca, decimal=prec)
|
||||
assert_almost_equal(X, Xinv_pca, decimal=prec)
|
||||
assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
|
||||
|
||||
|
||||
def test_incremental_pca_partial_fit_float_division():
|
||||
# Test to ensure float division is used in all versions of Python
|
||||
# (non-regression test for issue #9489)
|
||||
|
||||
rng = np.random.RandomState(0)
|
||||
A = rng.randn(5, 3) + 2
|
||||
B = rng.randn(7, 3) + 5
|
||||
|
||||
pca = IncrementalPCA(n_components=2)
|
||||
pca.partial_fit(A)
|
||||
# Set n_samples_seen_ to be a floating point number instead of an int
|
||||
pca.n_samples_seen_ = float(pca.n_samples_seen_)
|
||||
pca.partial_fit(B)
|
||||
singular_vals_float_samples_seen = pca.singular_values_
|
||||
|
||||
pca2 = IncrementalPCA(n_components=2)
|
||||
pca2.partial_fit(A)
|
||||
pca2.partial_fit(B)
|
||||
singular_vals_int_samples_seen = pca2.singular_values_
|
||||
|
||||
np.testing.assert_allclose(singular_vals_float_samples_seen,
|
||||
singular_vals_int_samples_seen)
|
||||
|
||||
|
||||
def test_incremental_pca_fit_overflow_error():
|
||||
# Test for overflow error on Windows OS
|
||||
# (non-regression test for issue #17693)
|
||||
rng = np.random.RandomState(0)
|
||||
A = rng.rand(500000, 2)
|
||||
|
||||
ipca = IncrementalPCA(n_components=2, batch_size=10000)
|
||||
ipca.fit(A)
|
||||
|
||||
pca = PCA(n_components=2)
|
||||
pca.fit(A)
|
||||
|
||||
np.testing.assert_allclose(ipca.singular_values_, pca.singular_values_)
|
|
@ -0,0 +1,297 @@
|
|||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
import pytest
|
||||
|
||||
from sklearn.utils._testing import (assert_array_almost_equal,
|
||||
assert_allclose)
|
||||
|
||||
from sklearn.decomposition import PCA, KernelPCA
|
||||
from sklearn.datasets import make_circles
|
||||
from sklearn.datasets import make_blobs
|
||||
from sklearn.linear_model import Perceptron
|
||||
from sklearn.pipeline import Pipeline
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.metrics.pairwise import rbf_kernel
|
||||
from sklearn.utils.validation import _check_psd_eigenvalues
|
||||
|
||||
|
||||
def test_kernel_pca():
|
||||
rng = np.random.RandomState(0)
|
||||
X_fit = rng.random_sample((5, 4))
|
||||
X_pred = rng.random_sample((2, 4))
|
||||
|
||||
def histogram(x, y, **kwargs):
|
||||
# Histogram kernel implemented as a callable.
|
||||
assert kwargs == {} # no kernel_params that we didn't ask for
|
||||
return np.minimum(x, y).sum()
|
||||
|
||||
for eigen_solver in ("auto", "dense", "arpack"):
|
||||
for kernel in ("linear", "rbf", "poly", histogram):
|
||||
# histogram kernel produces singular matrix inside linalg.solve
|
||||
# XXX use a least-squares approximation?
|
||||
inv = not callable(kernel)
|
||||
|
||||
# transform fit data
|
||||
kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver,
|
||||
fit_inverse_transform=inv)
|
||||
X_fit_transformed = kpca.fit_transform(X_fit)
|
||||
X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
|
||||
assert_array_almost_equal(np.abs(X_fit_transformed),
|
||||
np.abs(X_fit_transformed2))
|
||||
|
||||
# non-regression test: previously, gamma would be 0 by default,
|
||||
# forcing all eigenvalues to 0 under the poly kernel
|
||||
assert X_fit_transformed.size != 0
|
||||
|
||||
# transform new data
|
||||
X_pred_transformed = kpca.transform(X_pred)
|
||||
assert (X_pred_transformed.shape[1] ==
|
||||
X_fit_transformed.shape[1])
|
||||
|
||||
# inverse transform
|
||||
if inv:
|
||||
X_pred2 = kpca.inverse_transform(X_pred_transformed)
|
||||
assert X_pred2.shape == X_pred.shape
|
||||
|
||||
|
||||
def test_kernel_pca_invalid_parameters():
|
||||
with pytest.raises(ValueError):
|
||||
KernelPCA(10, fit_inverse_transform=True, kernel='precomputed')
|
||||
|
||||
|
||||
def test_kernel_pca_consistent_transform():
|
||||
# X_fit_ needs to retain the old, unmodified copy of X
|
||||
state = np.random.RandomState(0)
|
||||
X = state.rand(10, 10)
|
||||
kpca = KernelPCA(random_state=state).fit(X)
|
||||
transformed1 = kpca.transform(X)
|
||||
|
||||
X_copy = X.copy()
|
||||
X[:, 0] = 666
|
||||
transformed2 = kpca.transform(X_copy)
|
||||
assert_array_almost_equal(transformed1, transformed2)
|
||||
|
||||
|
||||
def test_kernel_pca_deterministic_output():
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(10, 10)
|
||||
eigen_solver = ('arpack', 'dense')
|
||||
|
||||
for solver in eigen_solver:
|
||||
transformed_X = np.zeros((20, 2))
|
||||
for i in range(20):
|
||||
kpca = KernelPCA(n_components=2, eigen_solver=solver,
|
||||
random_state=rng)
|
||||
transformed_X[i, :] = kpca.fit_transform(X)[0]
|
||||
assert_allclose(
|
||||
transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2))
|
||||
|
||||
|
||||
def test_kernel_pca_sparse():
|
||||
rng = np.random.RandomState(0)
|
||||
X_fit = sp.csr_matrix(rng.random_sample((5, 4)))
|
||||
X_pred = sp.csr_matrix(rng.random_sample((2, 4)))
|
||||
|
||||
for eigen_solver in ("auto", "arpack"):
|
||||
for kernel in ("linear", "rbf", "poly"):
|
||||
# transform fit data
|
||||
kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver,
|
||||
fit_inverse_transform=False)
|
||||
X_fit_transformed = kpca.fit_transform(X_fit)
|
||||
X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
|
||||
assert_array_almost_equal(np.abs(X_fit_transformed),
|
||||
np.abs(X_fit_transformed2))
|
||||
|
||||
# transform new data
|
||||
X_pred_transformed = kpca.transform(X_pred)
|
||||
assert (X_pred_transformed.shape[1] ==
|
||||
X_fit_transformed.shape[1])
|
||||
|
||||
# inverse transform
|
||||
# X_pred2 = kpca.inverse_transform(X_pred_transformed)
|
||||
# assert X_pred2.shape == X_pred.shape)
|
||||
|
||||
|
||||
def test_kernel_pca_linear_kernel():
|
||||
rng = np.random.RandomState(0)
|
||||
X_fit = rng.random_sample((5, 4))
|
||||
X_pred = rng.random_sample((2, 4))
|
||||
|
||||
# for a linear kernel, kernel PCA should find the same projection as PCA
|
||||
# modulo the sign (direction)
|
||||
# fit only the first four components: fifth is near zero eigenvalue, so
|
||||
# can be trimmed due to roundoff error
|
||||
assert_array_almost_equal(
|
||||
np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)),
|
||||
np.abs(PCA(4).fit(X_fit).transform(X_pred)))
|
||||
|
||||
|
||||
def test_kernel_pca_n_components():
|
||||
rng = np.random.RandomState(0)
|
||||
X_fit = rng.random_sample((5, 4))
|
||||
X_pred = rng.random_sample((2, 4))
|
||||
|
||||
for eigen_solver in ("dense", "arpack"):
|
||||
for c in [1, 2, 4]:
|
||||
kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver)
|
||||
shape = kpca.fit(X_fit).transform(X_pred).shape
|
||||
|
||||
assert shape == (2, c)
|
||||
|
||||
|
||||
def test_remove_zero_eig():
|
||||
X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]])
|
||||
|
||||
# n_components=None (default) => remove_zero_eig is True
|
||||
kpca = KernelPCA()
|
||||
Xt = kpca.fit_transform(X)
|
||||
assert Xt.shape == (3, 0)
|
||||
|
||||
kpca = KernelPCA(n_components=2)
|
||||
Xt = kpca.fit_transform(X)
|
||||
assert Xt.shape == (3, 2)
|
||||
|
||||
kpca = KernelPCA(n_components=2, remove_zero_eig=True)
|
||||
Xt = kpca.fit_transform(X)
|
||||
assert Xt.shape == (3, 0)
|
||||
|
||||
|
||||
def test_leave_zero_eig():
|
||||
"""This test checks that fit().transform() returns the same result as
|
||||
fit_transform() in case of non-removed zero eigenvalue.
|
||||
Non-regression test for issue #12141 (PR #12143)"""
|
||||
X_fit = np.array([[1, 1], [0, 0]])
|
||||
|
||||
# Assert that even with all np warnings on, there is no div by zero warning
|
||||
with pytest.warns(None) as record:
|
||||
with np.errstate(all='warn'):
|
||||
k = KernelPCA(n_components=2, remove_zero_eig=False,
|
||||
eigen_solver="dense")
|
||||
# Fit, then transform
|
||||
A = k.fit(X_fit).transform(X_fit)
|
||||
# Do both at once
|
||||
B = k.fit_transform(X_fit)
|
||||
# Compare
|
||||
assert_array_almost_equal(np.abs(A), np.abs(B))
|
||||
|
||||
for w in record:
|
||||
# There might be warnings about the kernel being badly conditioned,
|
||||
# but there should not be warnings about division by zero.
|
||||
# (Numpy division by zero warning can have many message variants, but
|
||||
# at least we know that it is a RuntimeWarning so lets check only this)
|
||||
assert not issubclass(w.category, RuntimeWarning)
|
||||
|
||||
|
||||
def test_kernel_pca_precomputed():
|
||||
rng = np.random.RandomState(0)
|
||||
X_fit = rng.random_sample((5, 4))
|
||||
X_pred = rng.random_sample((2, 4))
|
||||
|
||||
for eigen_solver in ("dense", "arpack"):
|
||||
X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\
|
||||
fit(X_fit).transform(X_pred)
|
||||
X_kpca2 = KernelPCA(
|
||||
4, eigen_solver=eigen_solver, kernel='precomputed').fit(
|
||||
np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T))
|
||||
|
||||
X_kpca_train = KernelPCA(
|
||||
4, eigen_solver=eigen_solver,
|
||||
kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T))
|
||||
X_kpca_train2 = KernelPCA(
|
||||
4, eigen_solver=eigen_solver, kernel='precomputed').fit(
|
||||
np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T))
|
||||
|
||||
assert_array_almost_equal(np.abs(X_kpca),
|
||||
np.abs(X_kpca2))
|
||||
|
||||
assert_array_almost_equal(np.abs(X_kpca_train),
|
||||
np.abs(X_kpca_train2))
|
||||
|
||||
|
||||
def test_kernel_pca_invalid_kernel():
|
||||
rng = np.random.RandomState(0)
|
||||
X_fit = rng.random_sample((2, 4))
|
||||
kpca = KernelPCA(kernel="tototiti")
|
||||
with pytest.raises(ValueError):
|
||||
kpca.fit(X_fit)
|
||||
|
||||
|
||||
def test_gridsearch_pipeline():
|
||||
# Test if we can do a grid-search to find parameters to separate
|
||||
# circles with a perceptron model.
|
||||
X, y = make_circles(n_samples=400, factor=.3, noise=.05,
|
||||
random_state=0)
|
||||
kpca = KernelPCA(kernel="rbf", n_components=2)
|
||||
pipeline = Pipeline([("kernel_pca", kpca),
|
||||
("Perceptron", Perceptron(max_iter=5))])
|
||||
param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2))
|
||||
grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
|
||||
grid_search.fit(X, y)
|
||||
assert grid_search.best_score_ == 1
|
||||
|
||||
|
||||
def test_gridsearch_pipeline_precomputed():
|
||||
# Test if we can do a grid-search to find parameters to separate
|
||||
# circles with a perceptron model using a precomputed kernel.
|
||||
X, y = make_circles(n_samples=400, factor=.3, noise=.05,
|
||||
random_state=0)
|
||||
kpca = KernelPCA(kernel="precomputed", n_components=2)
|
||||
pipeline = Pipeline([("kernel_pca", kpca),
|
||||
("Perceptron", Perceptron(max_iter=5))])
|
||||
param_grid = dict(Perceptron__max_iter=np.arange(1, 5))
|
||||
grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid)
|
||||
X_kernel = rbf_kernel(X, gamma=2.)
|
||||
grid_search.fit(X_kernel, y)
|
||||
assert grid_search.best_score_ == 1
|
||||
|
||||
|
||||
def test_nested_circles():
|
||||
# Test the linear separability of the first 2D KPCA transform
|
||||
X, y = make_circles(n_samples=400, factor=.3, noise=.05,
|
||||
random_state=0)
|
||||
|
||||
# 2D nested circles are not linearly separable
|
||||
train_score = Perceptron(max_iter=5).fit(X, y).score(X, y)
|
||||
assert train_score < 0.8
|
||||
|
||||
# Project the circles data into the first 2 components of a RBF Kernel
|
||||
# PCA model.
|
||||
# Note that the gamma value is data dependent. If this test breaks
|
||||
# and the gamma value has to be updated, the Kernel PCA example will
|
||||
# have to be updated too.
|
||||
kpca = KernelPCA(kernel="rbf", n_components=2,
|
||||
fit_inverse_transform=True, gamma=2.)
|
||||
X_kpca = kpca.fit_transform(X)
|
||||
|
||||
# The data is perfectly linearly separable in that space
|
||||
train_score = Perceptron(max_iter=5).fit(X_kpca, y).score(X_kpca, y)
|
||||
assert train_score == 1.0
|
||||
|
||||
|
||||
def test_kernel_conditioning():
|
||||
""" Test that ``_check_psd_eigenvalues`` is correctly called
|
||||
Non-regression test for issue #12140 (PR #12145)"""
|
||||
|
||||
# create a pathological X leading to small non-zero eigenvalue
|
||||
X = [[5, 1],
|
||||
[5+1e-8, 1e-8],
|
||||
[5+1e-8, 0]]
|
||||
kpca = KernelPCA(kernel="linear", n_components=2,
|
||||
fit_inverse_transform=True)
|
||||
kpca.fit(X)
|
||||
|
||||
# check that the small non-zero eigenvalue was correctly set to zero
|
||||
assert kpca.lambdas_.min() == 0
|
||||
assert np.all(kpca.lambdas_ == _check_psd_eigenvalues(kpca.lambdas_))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("kernel",
|
||||
["linear", "poly", "rbf", "sigmoid", "cosine"])
|
||||
def test_kernel_pca_inverse_transform(kernel):
|
||||
X, *_ = make_blobs(n_samples=100, n_features=4, centers=[[1, 1, 1, 1]],
|
||||
random_state=0)
|
||||
|
||||
kp = KernelPCA(n_components=2, kernel=kernel, fit_inverse_transform=True)
|
||||
X_trans = kp.fit_transform(X)
|
||||
X_inv = kp.inverse_transform(X_trans)
|
||||
assert_allclose(X, X_inv)
|
554
venv/Lib/site-packages/sklearn/decomposition/tests/test_nmf.py
Normal file
554
venv/Lib/site-packages/sklearn/decomposition/tests/test_nmf.py
Normal file
|
@ -0,0 +1,554 @@
|
|||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
|
||||
from scipy import linalg
|
||||
from sklearn.decomposition import NMF, non_negative_factorization
|
||||
from sklearn.decomposition import _nmf as nmf # For testing internals
|
||||
from scipy.sparse import csc_matrix
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.utils._testing import assert_raise_message
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import assert_allclose
|
||||
from sklearn.utils._testing import ignore_warnings
|
||||
from sklearn.utils.extmath import squared_norm
|
||||
from sklearn.base import clone
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
|
||||
|
||||
@pytest.mark.parametrize('solver', ['cd', 'mu'])
|
||||
def test_convergence_warning(solver):
|
||||
convergence_warning = ("Maximum number of iterations 1 reached. "
|
||||
"Increase it to improve convergence.")
|
||||
A = np.ones((2, 2))
|
||||
with pytest.warns(ConvergenceWarning, match=convergence_warning):
|
||||
NMF(solver=solver, max_iter=1).fit(A)
|
||||
|
||||
|
||||
def test_initialize_nn_output():
|
||||
# Test that initialization does not return negative values
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
data = np.abs(rng.randn(10, 10))
|
||||
for init in ('random', 'nndsvd', 'nndsvda', 'nndsvdar'):
|
||||
W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0)
|
||||
assert not ((W < 0).any() or (H < 0).any())
|
||||
|
||||
|
||||
def test_parameter_checking():
|
||||
A = np.ones((2, 2))
|
||||
name = 'spam'
|
||||
msg = "Invalid solver parameter: got 'spam' instead of one of"
|
||||
assert_raise_message(ValueError, msg, NMF(solver=name).fit, A)
|
||||
msg = "Invalid init parameter: got 'spam' instead of one of"
|
||||
assert_raise_message(ValueError, msg, NMF(init=name).fit, A)
|
||||
msg = "Invalid beta_loss parameter: got 'spam' instead of one"
|
||||
assert_raise_message(ValueError, msg, NMF(solver='mu',
|
||||
beta_loss=name).fit, A)
|
||||
msg = "Invalid beta_loss parameter: solver 'cd' does not handle "
|
||||
msg += "beta_loss = 1.0"
|
||||
assert_raise_message(ValueError, msg, NMF(solver='cd',
|
||||
beta_loss=1.0).fit, A)
|
||||
|
||||
msg = "Negative values in data passed to"
|
||||
assert_raise_message(ValueError, msg, NMF().fit, -A)
|
||||
assert_raise_message(ValueError, msg, nmf._initialize_nmf, -A,
|
||||
2, 'nndsvd')
|
||||
clf = NMF(2, tol=0.1).fit(A)
|
||||
assert_raise_message(ValueError, msg, clf.transform, -A)
|
||||
|
||||
for init in ['nndsvd', 'nndsvda', 'nndsvdar']:
|
||||
msg = ("init = '{}' can only be used when "
|
||||
"n_components <= min(n_samples, n_features)"
|
||||
.format(init))
|
||||
assert_raise_message(ValueError, msg, NMF(3, init=init).fit, A)
|
||||
assert_raise_message(ValueError, msg, nmf._initialize_nmf, A,
|
||||
3, init)
|
||||
|
||||
|
||||
def test_initialize_close():
|
||||
# Test NNDSVD error
|
||||
# Test that _initialize_nmf error is less than the standard deviation of
|
||||
# the entries in the matrix.
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
A = np.abs(rng.randn(10, 10))
|
||||
W, H = nmf._initialize_nmf(A, 10, init='nndsvd')
|
||||
error = linalg.norm(np.dot(W, H) - A)
|
||||
sdev = linalg.norm(A - A.mean())
|
||||
assert error <= sdev
|
||||
|
||||
|
||||
def test_initialize_variants():
|
||||
# Test NNDSVD variants correctness
|
||||
# Test that the variants 'nndsvda' and 'nndsvdar' differ from basic
|
||||
# 'nndsvd' only where the basic version has zeros.
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
data = np.abs(rng.randn(10, 10))
|
||||
W0, H0 = nmf._initialize_nmf(data, 10, init='nndsvd')
|
||||
Wa, Ha = nmf._initialize_nmf(data, 10, init='nndsvda')
|
||||
War, Har = nmf._initialize_nmf(data, 10, init='nndsvdar',
|
||||
random_state=0)
|
||||
|
||||
for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)):
|
||||
assert_almost_equal(evl[ref != 0], ref[ref != 0])
|
||||
|
||||
|
||||
# ignore UserWarning raised when both solver='mu' and init='nndsvd'
|
||||
@ignore_warnings(category=UserWarning)
|
||||
def test_nmf_fit_nn_output():
|
||||
# Test that the decomposition does not contain negative values
|
||||
A = np.c_[5. - np.arange(1, 6),
|
||||
5. + np.arange(1, 6)]
|
||||
for solver in ('cd', 'mu'):
|
||||
for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'):
|
||||
model = NMF(n_components=2, solver=solver, init=init,
|
||||
random_state=0)
|
||||
transf = model.fit_transform(A)
|
||||
assert not((model.components_ < 0).any() or
|
||||
(transf < 0).any())
|
||||
|
||||
|
||||
@pytest.mark.parametrize('solver', ('cd', 'mu'))
|
||||
def test_nmf_fit_close(solver):
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
# Test that the fit is not too far away
|
||||
pnmf = NMF(5, solver=solver, init='nndsvdar', random_state=0,
|
||||
max_iter=600)
|
||||
X = np.abs(rng.randn(6, 5))
|
||||
assert pnmf.fit(X).reconstruction_err_ < 0.1
|
||||
|
||||
|
||||
@pytest.mark.parametrize('solver', ('cd', 'mu'))
|
||||
def test_nmf_transform(solver):
|
||||
# Test that NMF.transform returns close values
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
A = np.abs(rng.randn(6, 5))
|
||||
m = NMF(solver=solver, n_components=3, init='random',
|
||||
random_state=0, tol=1e-5)
|
||||
ft = m.fit_transform(A)
|
||||
t = m.transform(A)
|
||||
assert_array_almost_equal(ft, t, decimal=2)
|
||||
|
||||
|
||||
def test_nmf_transform_custom_init():
|
||||
# Smoke test that checks if NMF.transform works with custom initialization
|
||||
random_state = np.random.RandomState(0)
|
||||
A = np.abs(random_state.randn(6, 5))
|
||||
n_components = 4
|
||||
avg = np.sqrt(A.mean() / n_components)
|
||||
H_init = np.abs(avg * random_state.randn(n_components, 5))
|
||||
W_init = np.abs(avg * random_state.randn(6, n_components))
|
||||
|
||||
m = NMF(solver='cd', n_components=n_components, init='custom',
|
||||
random_state=0)
|
||||
m.fit_transform(A, W=W_init, H=H_init)
|
||||
m.transform(A)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('solver', ('cd', 'mu'))
|
||||
def test_nmf_inverse_transform(solver):
|
||||
# Test that NMF.inverse_transform returns close values
|
||||
random_state = np.random.RandomState(0)
|
||||
A = np.abs(random_state.randn(6, 4))
|
||||
m = NMF(solver=solver, n_components=4, init='random', random_state=0,
|
||||
max_iter=1000)
|
||||
ft = m.fit_transform(A)
|
||||
A_new = m.inverse_transform(ft)
|
||||
assert_array_almost_equal(A, A_new, decimal=2)
|
||||
|
||||
|
||||
def test_n_components_greater_n_features():
|
||||
# Smoke test for the case of more components than features.
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
A = np.abs(rng.randn(30, 10))
|
||||
NMF(n_components=15, random_state=0, tol=1e-2).fit(A)
|
||||
|
||||
|
||||
def test_nmf_sparse_input():
|
||||
# Test that sparse matrices are accepted as input
|
||||
from scipy.sparse import csc_matrix
|
||||
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
A = np.abs(rng.randn(10, 10))
|
||||
A[:, 2 * np.arange(5)] = 0
|
||||
A_sparse = csc_matrix(A)
|
||||
|
||||
for solver in ('cd', 'mu'):
|
||||
est1 = NMF(solver=solver, n_components=5, init='random',
|
||||
random_state=0, tol=1e-2)
|
||||
est2 = clone(est1)
|
||||
|
||||
W1 = est1.fit_transform(A)
|
||||
W2 = est2.fit_transform(A_sparse)
|
||||
H1 = est1.components_
|
||||
H2 = est2.components_
|
||||
|
||||
assert_array_almost_equal(W1, W2)
|
||||
assert_array_almost_equal(H1, H2)
|
||||
|
||||
|
||||
def test_nmf_sparse_transform():
|
||||
# Test that transform works on sparse data. Issue #2124
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
A = np.abs(rng.randn(3, 2))
|
||||
A[1, 1] = 0
|
||||
A = csc_matrix(A)
|
||||
|
||||
for solver in ('cd', 'mu'):
|
||||
model = NMF(solver=solver, random_state=0, n_components=2,
|
||||
max_iter=400)
|
||||
A_fit_tr = model.fit_transform(A)
|
||||
A_tr = model.transform(A)
|
||||
assert_array_almost_equal(A_fit_tr, A_tr, decimal=1)
|
||||
|
||||
|
||||
def test_non_negative_factorization_consistency():
|
||||
# Test that the function is called in the same way, either directly
|
||||
# or through the NMF class
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
A = np.abs(rng.randn(10, 10))
|
||||
A[:, 2 * np.arange(5)] = 0
|
||||
|
||||
for init in ['random', 'nndsvd']:
|
||||
for solver in ('cd', 'mu'):
|
||||
W_nmf, H, _ = non_negative_factorization(
|
||||
A, init=init, solver=solver, random_state=1, tol=1e-2)
|
||||
W_nmf_2, _, _ = non_negative_factorization(
|
||||
A, H=H, update_H=False, init=init, solver=solver,
|
||||
random_state=1, tol=1e-2)
|
||||
|
||||
model_class = NMF(init=init, solver=solver, random_state=1,
|
||||
tol=1e-2)
|
||||
W_cls = model_class.fit_transform(A)
|
||||
W_cls_2 = model_class.transform(A)
|
||||
|
||||
assert_array_almost_equal(W_nmf, W_cls, decimal=10)
|
||||
assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10)
|
||||
|
||||
|
||||
def test_non_negative_factorization_checking():
|
||||
A = np.ones((2, 2))
|
||||
# Test parameters checking is public function
|
||||
nnmf = non_negative_factorization
|
||||
msg = ("Number of components must be a positive integer; "
|
||||
"got (n_components=1.5)")
|
||||
assert_raise_message(ValueError, msg, nnmf, A, A, A, 1.5, init='random')
|
||||
msg = ("Number of components must be a positive integer; "
|
||||
"got (n_components='2')")
|
||||
assert_raise_message(ValueError, msg, nnmf, A, A, A, '2', init='random')
|
||||
msg = "Negative values in data passed to NMF (input H)"
|
||||
assert_raise_message(ValueError, msg, nnmf, A, A, -A, 2, init='custom')
|
||||
msg = "Negative values in data passed to NMF (input W)"
|
||||
assert_raise_message(ValueError, msg, nnmf, A, -A, A, 2, init='custom')
|
||||
msg = "Array passed to NMF (input H) is full of zeros"
|
||||
assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, init='custom')
|
||||
msg = "Invalid regularization parameter: got 'spam' instead of one of"
|
||||
assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, init='custom',
|
||||
regularization='spam')
|
||||
|
||||
|
||||
def _beta_divergence_dense(X, W, H, beta):
|
||||
"""Compute the beta-divergence of X and W.H for dense array only.
|
||||
|
||||
Used as a reference for testing nmf._beta_divergence.
|
||||
"""
|
||||
WH = np.dot(W, H)
|
||||
|
||||
if beta == 2:
|
||||
return squared_norm(X - WH) / 2
|
||||
|
||||
WH_Xnonzero = WH[X != 0]
|
||||
X_nonzero = X[X != 0]
|
||||
np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero)
|
||||
|
||||
if beta == 1:
|
||||
res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero))
|
||||
res += WH.sum() - X.sum()
|
||||
|
||||
elif beta == 0:
|
||||
div = X_nonzero / WH_Xnonzero
|
||||
res = np.sum(div) - X.size - np.sum(np.log(div))
|
||||
else:
|
||||
res = (X_nonzero ** beta).sum()
|
||||
res += (beta - 1) * (WH ** beta).sum()
|
||||
res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum()
|
||||
res /= beta * (beta - 1)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def test_beta_divergence():
|
||||
# Compare _beta_divergence with the reference _beta_divergence_dense
|
||||
n_samples = 20
|
||||
n_features = 10
|
||||
n_components = 5
|
||||
beta_losses = [0., 0.5, 1., 1.5, 2.]
|
||||
|
||||
# initialization
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
X = rng.randn(n_samples, n_features)
|
||||
np.clip(X, 0, None, out=X)
|
||||
X_csr = sp.csr_matrix(X)
|
||||
W, H = nmf._initialize_nmf(X, n_components, init='random', random_state=42)
|
||||
|
||||
for beta in beta_losses:
|
||||
ref = _beta_divergence_dense(X, W, H, beta)
|
||||
loss = nmf._beta_divergence(X, W, H, beta)
|
||||
loss_csr = nmf._beta_divergence(X_csr, W, H, beta)
|
||||
|
||||
assert_almost_equal(ref, loss, decimal=7)
|
||||
assert_almost_equal(ref, loss_csr, decimal=7)
|
||||
|
||||
|
||||
def test_special_sparse_dot():
|
||||
# Test the function that computes np.dot(W, H), only where X is non zero.
|
||||
n_samples = 10
|
||||
n_features = 5
|
||||
n_components = 3
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
X = rng.randn(n_samples, n_features)
|
||||
np.clip(X, 0, None, out=X)
|
||||
X_csr = sp.csr_matrix(X)
|
||||
|
||||
W = np.abs(rng.randn(n_samples, n_components))
|
||||
H = np.abs(rng.randn(n_components, n_features))
|
||||
|
||||
WH_safe = nmf._special_sparse_dot(W, H, X_csr)
|
||||
WH = nmf._special_sparse_dot(W, H, X)
|
||||
|
||||
# test that both results have same values, in X_csr nonzero elements
|
||||
ii, jj = X_csr.nonzero()
|
||||
WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel()
|
||||
assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10)
|
||||
|
||||
# test that WH_safe and X_csr have the same sparse structure
|
||||
assert_array_equal(WH_safe.indices, X_csr.indices)
|
||||
assert_array_equal(WH_safe.indptr, X_csr.indptr)
|
||||
assert_array_equal(WH_safe.shape, X_csr.shape)
|
||||
|
||||
|
||||
@ignore_warnings(category=ConvergenceWarning)
|
||||
def test_nmf_multiplicative_update_sparse():
|
||||
# Compare sparse and dense input in multiplicative update NMF
|
||||
# Also test continuity of the results with respect to beta_loss parameter
|
||||
n_samples = 20
|
||||
n_features = 10
|
||||
n_components = 5
|
||||
alpha = 0.1
|
||||
l1_ratio = 0.5
|
||||
n_iter = 20
|
||||
|
||||
# initialization
|
||||
rng = np.random.mtrand.RandomState(1337)
|
||||
X = rng.randn(n_samples, n_features)
|
||||
X = np.abs(X)
|
||||
X_csr = sp.csr_matrix(X)
|
||||
W0, H0 = nmf._initialize_nmf(X, n_components, init='random',
|
||||
random_state=42)
|
||||
|
||||
for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5):
|
||||
# Reference with dense array X
|
||||
W, H = W0.copy(), H0.copy()
|
||||
W1, H1, _ = non_negative_factorization(
|
||||
X, W, H, n_components, init='custom', update_H=True,
|
||||
solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
|
||||
l1_ratio=l1_ratio, regularization='both', random_state=42)
|
||||
|
||||
# Compare with sparse X
|
||||
W, H = W0.copy(), H0.copy()
|
||||
W2, H2, _ = non_negative_factorization(
|
||||
X_csr, W, H, n_components, init='custom', update_H=True,
|
||||
solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
|
||||
l1_ratio=l1_ratio, regularization='both', random_state=42)
|
||||
|
||||
assert_array_almost_equal(W1, W2, decimal=7)
|
||||
assert_array_almost_equal(H1, H2, decimal=7)
|
||||
|
||||
# Compare with almost same beta_loss, since some values have a specific
|
||||
# behavior, but the results should be continuous w.r.t beta_loss
|
||||
beta_loss -= 1.e-5
|
||||
W, H = W0.copy(), H0.copy()
|
||||
W3, H3, _ = non_negative_factorization(
|
||||
X_csr, W, H, n_components, init='custom', update_H=True,
|
||||
solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha,
|
||||
l1_ratio=l1_ratio, regularization='both', random_state=42)
|
||||
|
||||
assert_array_almost_equal(W1, W3, decimal=4)
|
||||
assert_array_almost_equal(H1, H3, decimal=4)
|
||||
|
||||
|
||||
def test_nmf_negative_beta_loss():
|
||||
# Test that an error is raised if beta_loss < 0 and X contains zeros.
|
||||
# Test that the output has not NaN values when the input contains zeros.
|
||||
n_samples = 6
|
||||
n_features = 5
|
||||
n_components = 3
|
||||
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
X = rng.randn(n_samples, n_features)
|
||||
np.clip(X, 0, None, out=X)
|
||||
X_csr = sp.csr_matrix(X)
|
||||
|
||||
def _assert_nmf_no_nan(X, beta_loss):
|
||||
W, H, _ = non_negative_factorization(
|
||||
X, init='random', n_components=n_components, solver='mu',
|
||||
beta_loss=beta_loss, random_state=0, max_iter=1000)
|
||||
assert not np.any(np.isnan(W))
|
||||
assert not np.any(np.isnan(H))
|
||||
|
||||
msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge."
|
||||
for beta_loss in (-0.6, 0.):
|
||||
assert_raise_message(ValueError, msg, _assert_nmf_no_nan, X, beta_loss)
|
||||
_assert_nmf_no_nan(X + 1e-9, beta_loss)
|
||||
|
||||
for beta_loss in (0.2, 1., 1.2, 2., 2.5):
|
||||
_assert_nmf_no_nan(X, beta_loss)
|
||||
_assert_nmf_no_nan(X_csr, beta_loss)
|
||||
|
||||
|
||||
def test_nmf_regularization():
|
||||
# Test the effect of L1 and L2 regularizations
|
||||
n_samples = 6
|
||||
n_features = 5
|
||||
n_components = 3
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
X = np.abs(rng.randn(n_samples, n_features))
|
||||
|
||||
# L1 regularization should increase the number of zeros
|
||||
l1_ratio = 1.
|
||||
for solver in ['cd', 'mu']:
|
||||
regul = nmf.NMF(n_components=n_components, solver=solver,
|
||||
alpha=0.5, l1_ratio=l1_ratio, random_state=42)
|
||||
model = nmf.NMF(n_components=n_components, solver=solver,
|
||||
alpha=0., l1_ratio=l1_ratio, random_state=42)
|
||||
|
||||
W_regul = regul.fit_transform(X)
|
||||
W_model = model.fit_transform(X)
|
||||
|
||||
H_regul = regul.components_
|
||||
H_model = model.components_
|
||||
|
||||
W_regul_n_zeros = W_regul[W_regul == 0].size
|
||||
W_model_n_zeros = W_model[W_model == 0].size
|
||||
H_regul_n_zeros = H_regul[H_regul == 0].size
|
||||
H_model_n_zeros = H_model[H_model == 0].size
|
||||
|
||||
assert W_regul_n_zeros > W_model_n_zeros
|
||||
assert H_regul_n_zeros > H_model_n_zeros
|
||||
|
||||
# L2 regularization should decrease the mean of the coefficients
|
||||
l1_ratio = 0.
|
||||
for solver in ['cd', 'mu']:
|
||||
regul = nmf.NMF(n_components=n_components, solver=solver,
|
||||
alpha=0.5, l1_ratio=l1_ratio, random_state=42)
|
||||
model = nmf.NMF(n_components=n_components, solver=solver,
|
||||
alpha=0., l1_ratio=l1_ratio, random_state=42)
|
||||
|
||||
W_regul = regul.fit_transform(X)
|
||||
W_model = model.fit_transform(X)
|
||||
|
||||
H_regul = regul.components_
|
||||
H_model = model.components_
|
||||
|
||||
assert W_model.mean() > W_regul.mean()
|
||||
assert H_model.mean() > H_regul.mean()
|
||||
|
||||
|
||||
@ignore_warnings(category=ConvergenceWarning)
|
||||
def test_nmf_decreasing():
|
||||
# test that the objective function is decreasing at each iteration
|
||||
n_samples = 20
|
||||
n_features = 15
|
||||
n_components = 10
|
||||
alpha = 0.1
|
||||
l1_ratio = 0.5
|
||||
tol = 0.
|
||||
|
||||
# initialization
|
||||
rng = np.random.mtrand.RandomState(42)
|
||||
X = rng.randn(n_samples, n_features)
|
||||
np.abs(X, X)
|
||||
W0, H0 = nmf._initialize_nmf(X, n_components, init='random',
|
||||
random_state=42)
|
||||
|
||||
for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5):
|
||||
for solver in ('cd', 'mu'):
|
||||
if solver != 'mu' and beta_loss != 2:
|
||||
# not implemented
|
||||
continue
|
||||
W, H = W0.copy(), H0.copy()
|
||||
previous_loss = None
|
||||
for _ in range(30):
|
||||
# one more iteration starting from the previous results
|
||||
W, H, _ = non_negative_factorization(
|
||||
X, W, H, beta_loss=beta_loss, init='custom',
|
||||
n_components=n_components, max_iter=1, alpha=alpha,
|
||||
solver=solver, tol=tol, l1_ratio=l1_ratio, verbose=0,
|
||||
regularization='both', random_state=0, update_H=True)
|
||||
|
||||
loss = nmf._beta_divergence(X, W, H, beta_loss)
|
||||
if previous_loss is not None:
|
||||
assert previous_loss > loss
|
||||
previous_loss = loss
|
||||
|
||||
|
||||
def test_nmf_underflow():
|
||||
# Regression test for an underflow issue in _beta_divergence
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features, n_components = 10, 2, 2
|
||||
X = np.abs(rng.randn(n_samples, n_features)) * 10
|
||||
W = np.abs(rng.randn(n_samples, n_components)) * 10
|
||||
H = np.abs(rng.randn(n_components, n_features))
|
||||
|
||||
X[0, 0] = 0
|
||||
ref = nmf._beta_divergence(X, W, H, beta=1.0)
|
||||
X[0, 0] = 1e-323
|
||||
res = nmf._beta_divergence(X, W, H, beta=1.0)
|
||||
assert_almost_equal(res, ref)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype_in, dtype_out", [
|
||||
(np.float32, np.float32),
|
||||
(np.float64, np.float64),
|
||||
(np.int32, np.float64),
|
||||
(np.int64, np.float64)])
|
||||
@pytest.mark.parametrize("solver", ["cd", "mu"])
|
||||
def test_nmf_dtype_match(dtype_in, dtype_out, solver):
|
||||
# Check that NMF preserves dtype (float32 and float64)
|
||||
X = np.random.RandomState(0).randn(20, 15).astype(dtype_in, copy=False)
|
||||
np.abs(X, out=X)
|
||||
nmf = NMF(solver=solver)
|
||||
|
||||
assert nmf.fit(X).transform(X).dtype == dtype_out
|
||||
assert nmf.fit_transform(X).dtype == dtype_out
|
||||
assert nmf.components_.dtype == dtype_out
|
||||
|
||||
|
||||
@pytest.mark.parametrize("solver", ["cd", "mu"])
|
||||
def test_nmf_float32_float64_consistency(solver):
|
||||
# Check that the result of NMF is the same between float32 and float64
|
||||
X = np.random.RandomState(0).randn(50, 7)
|
||||
np.abs(X, out=X)
|
||||
nmf32 = NMF(solver=solver, random_state=0)
|
||||
W32 = nmf32.fit_transform(X.astype(np.float32))
|
||||
nmf64 = NMF(solver=solver, random_state=0)
|
||||
W64 = nmf64.fit_transform(X)
|
||||
|
||||
assert_allclose(W32, W64, rtol=1e-6, atol=1e-5)
|
||||
|
||||
|
||||
def test_nmf_custom_init_dtype_error():
|
||||
# Check that an error is raise if custom H and/or W don't have the same
|
||||
# dtype as X.
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.random_sample((20, 15))
|
||||
H = rng.random_sample((15, 15)).astype(np.float32)
|
||||
W = rng.random_sample((20, 15))
|
||||
|
||||
with pytest.raises(TypeError, match="should have the same dtype as X"):
|
||||
NMF(init='custom').fit(X, H=H, W=W)
|
||||
|
||||
with pytest.raises(TypeError, match="should have the same dtype as X"):
|
||||
non_negative_factorization(X, H=H, update_H=False)
|
|
@ -0,0 +1,401 @@
|
|||
import sys
|
||||
|
||||
import numpy as np
|
||||
from scipy.linalg import block_diag
|
||||
from scipy.sparse import csr_matrix
|
||||
from scipy.special import psi
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.decomposition import LatentDirichletAllocation
|
||||
from sklearn.decomposition._lda import (_dirichlet_expectation_1d,
|
||||
_dirichlet_expectation_2d)
|
||||
|
||||
from sklearn.utils._testing import assert_allclose
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import if_safe_multiprocessing_with_blas
|
||||
|
||||
from sklearn.exceptions import NotFittedError
|
||||
from io import StringIO
|
||||
|
||||
|
||||
def _build_sparse_mtx():
|
||||
# Create 3 topics and each topic has 3 distinct words.
|
||||
# (Each word only belongs to a single topic.)
|
||||
n_components = 3
|
||||
block = np.full((3, 3), n_components, dtype=np.int)
|
||||
blocks = [block] * n_components
|
||||
X = block_diag(*blocks)
|
||||
X = csr_matrix(X)
|
||||
return (n_components, X)
|
||||
|
||||
|
||||
def test_lda_default_prior_params():
|
||||
# default prior parameter should be `1 / topics`
|
||||
# and verbose params should not affect result
|
||||
n_components, X = _build_sparse_mtx()
|
||||
prior = 1. / n_components
|
||||
lda_1 = LatentDirichletAllocation(n_components=n_components,
|
||||
doc_topic_prior=prior,
|
||||
topic_word_prior=prior, random_state=0)
|
||||
lda_2 = LatentDirichletAllocation(n_components=n_components,
|
||||
random_state=0)
|
||||
topic_distr_1 = lda_1.fit_transform(X)
|
||||
topic_distr_2 = lda_2.fit_transform(X)
|
||||
assert_almost_equal(topic_distr_1, topic_distr_2)
|
||||
|
||||
|
||||
def test_lda_fit_batch():
|
||||
# Test LDA batch learning_offset (`fit` method with 'batch' learning)
|
||||
rng = np.random.RandomState(0)
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
evaluate_every=1, learning_method='batch',
|
||||
random_state=rng)
|
||||
lda.fit(X)
|
||||
|
||||
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
||||
for component in lda.components_:
|
||||
# Find top 3 words in each LDA component
|
||||
top_idx = set(component.argsort()[-3:][::-1])
|
||||
assert tuple(sorted(top_idx)) in correct_idx_grps
|
||||
|
||||
|
||||
def test_lda_fit_online():
|
||||
# Test LDA online learning (`fit` method with 'online' learning)
|
||||
rng = np.random.RandomState(0)
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
learning_offset=10., evaluate_every=1,
|
||||
learning_method='online', random_state=rng)
|
||||
lda.fit(X)
|
||||
|
||||
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
||||
for component in lda.components_:
|
||||
# Find top 3 words in each LDA component
|
||||
top_idx = set(component.argsort()[-3:][::-1])
|
||||
assert tuple(sorted(top_idx)) in correct_idx_grps
|
||||
|
||||
|
||||
def test_lda_partial_fit():
|
||||
# Test LDA online learning (`partial_fit` method)
|
||||
# (same as test_lda_batch)
|
||||
rng = np.random.RandomState(0)
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
learning_offset=10., total_samples=100,
|
||||
random_state=rng)
|
||||
for i in range(3):
|
||||
lda.partial_fit(X)
|
||||
|
||||
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
||||
for c in lda.components_:
|
||||
top_idx = set(c.argsort()[-3:][::-1])
|
||||
assert tuple(sorted(top_idx)) in correct_idx_grps
|
||||
|
||||
|
||||
def test_lda_dense_input():
|
||||
# Test LDA with dense input.
|
||||
rng = np.random.RandomState(0)
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
learning_method='batch', random_state=rng)
|
||||
lda.fit(X.toarray())
|
||||
|
||||
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
||||
for component in lda.components_:
|
||||
# Find top 3 words in each LDA component
|
||||
top_idx = set(component.argsort()[-3:][::-1])
|
||||
assert tuple(sorted(top_idx)) in correct_idx_grps
|
||||
|
||||
|
||||
def test_lda_transform():
|
||||
# Test LDA transform.
|
||||
# Transform result cannot be negative and should be normalized
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randint(5, size=(20, 10))
|
||||
n_components = 3
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
random_state=rng)
|
||||
X_trans = lda.fit_transform(X)
|
||||
assert (X_trans > 0.0).any()
|
||||
assert_array_almost_equal(np.sum(X_trans, axis=1),
|
||||
np.ones(X_trans.shape[0]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize('method', ('online', 'batch'))
|
||||
def test_lda_fit_transform(method):
|
||||
# Test LDA fit_transform & transform
|
||||
# fit_transform and transform result should be the same
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randint(10, size=(50, 20))
|
||||
lda = LatentDirichletAllocation(n_components=5, learning_method=method,
|
||||
random_state=rng)
|
||||
X_fit = lda.fit_transform(X)
|
||||
X_trans = lda.transform(X)
|
||||
assert_array_almost_equal(X_fit, X_trans, 4)
|
||||
|
||||
|
||||
def test_lda_partial_fit_dim_mismatch():
|
||||
# test `n_features` mismatch in `partial_fit`
|
||||
rng = np.random.RandomState(0)
|
||||
n_components = rng.randint(3, 6)
|
||||
n_col = rng.randint(6, 10)
|
||||
X_1 = np.random.randint(4, size=(10, n_col))
|
||||
X_2 = np.random.randint(4, size=(10, n_col + 1))
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
learning_offset=5., total_samples=20,
|
||||
random_state=rng)
|
||||
lda.partial_fit(X_1)
|
||||
with pytest.raises(ValueError, match=r"^The provided data has"):
|
||||
lda.partial_fit(X_2)
|
||||
|
||||
|
||||
def test_invalid_params():
|
||||
# test `_check_params` method
|
||||
X = np.ones((5, 10))
|
||||
|
||||
invalid_models = (
|
||||
('n_components', LatentDirichletAllocation(n_components=0)),
|
||||
('learning_method',
|
||||
LatentDirichletAllocation(learning_method='unknown')),
|
||||
('total_samples', LatentDirichletAllocation(total_samples=0)),
|
||||
('learning_offset', LatentDirichletAllocation(learning_offset=-1)),
|
||||
)
|
||||
for param, model in invalid_models:
|
||||
regex = r"^Invalid %r parameter" % param
|
||||
with pytest.raises(ValueError, match=regex):
|
||||
model.fit(X)
|
||||
|
||||
|
||||
def test_lda_negative_input():
|
||||
# test pass dense matrix with sparse negative input.
|
||||
X = np.full((5, 10), -1.)
|
||||
lda = LatentDirichletAllocation()
|
||||
regex = r"^Negative values in data passed"
|
||||
with pytest.raises(ValueError, match=regex):
|
||||
lda.fit(X)
|
||||
|
||||
|
||||
def test_lda_no_component_error():
|
||||
# test `perplexity` before `fit`
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randint(4, size=(20, 10))
|
||||
lda = LatentDirichletAllocation()
|
||||
regex = ("This LatentDirichletAllocation instance is not fitted yet. "
|
||||
"Call 'fit' with appropriate arguments before using this "
|
||||
"estimator.")
|
||||
with pytest.raises(NotFittedError, match=regex):
|
||||
lda.perplexity(X)
|
||||
|
||||
|
||||
def test_lda_transform_mismatch():
|
||||
# test `n_features` mismatch in partial_fit and transform
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randint(4, size=(20, 10))
|
||||
X_2 = rng.randint(4, size=(10, 8))
|
||||
|
||||
n_components = rng.randint(3, 6)
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
random_state=rng)
|
||||
lda.partial_fit(X)
|
||||
with pytest.raises(ValueError, match=r"^The provided data has"):
|
||||
lda.partial_fit(X_2)
|
||||
|
||||
|
||||
@if_safe_multiprocessing_with_blas
|
||||
@pytest.mark.parametrize('method', ('online', 'batch'))
|
||||
def test_lda_multi_jobs(method):
|
||||
n_components, X = _build_sparse_mtx()
|
||||
# Test LDA batch training with multi CPU
|
||||
rng = np.random.RandomState(0)
|
||||
lda = LatentDirichletAllocation(n_components=n_components, n_jobs=2,
|
||||
learning_method=method,
|
||||
evaluate_every=1, random_state=rng)
|
||||
lda.fit(X)
|
||||
|
||||
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
||||
for c in lda.components_:
|
||||
top_idx = set(c.argsort()[-3:][::-1])
|
||||
assert tuple(sorted(top_idx)) in correct_idx_grps
|
||||
|
||||
|
||||
@if_safe_multiprocessing_with_blas
|
||||
def test_lda_partial_fit_multi_jobs():
|
||||
# Test LDA online training with multi CPU
|
||||
rng = np.random.RandomState(0)
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components, n_jobs=2,
|
||||
learning_offset=5., total_samples=30,
|
||||
random_state=rng)
|
||||
for i in range(2):
|
||||
lda.partial_fit(X)
|
||||
|
||||
correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
|
||||
for c in lda.components_:
|
||||
top_idx = set(c.argsort()[-3:][::-1])
|
||||
assert tuple(sorted(top_idx)) in correct_idx_grps
|
||||
|
||||
|
||||
def test_lda_preplexity_mismatch():
|
||||
# test dimension mismatch in `perplexity` method
|
||||
rng = np.random.RandomState(0)
|
||||
n_components = rng.randint(3, 6)
|
||||
n_samples = rng.randint(6, 10)
|
||||
X = np.random.randint(4, size=(n_samples, 10))
|
||||
lda = LatentDirichletAllocation(n_components=n_components,
|
||||
learning_offset=5., total_samples=20,
|
||||
random_state=rng)
|
||||
lda.fit(X)
|
||||
# invalid samples
|
||||
invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_components))
|
||||
with pytest.raises(ValueError, match=r'Number of samples'):
|
||||
lda._perplexity_precomp_distr(X, invalid_n_samples)
|
||||
# invalid topic number
|
||||
invalid_n_components = rng.randint(4, size=(n_samples, n_components + 1))
|
||||
with pytest.raises(ValueError, match=r'Number of topics'):
|
||||
lda._perplexity_precomp_distr(X, invalid_n_components)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('method', ('online', 'batch'))
|
||||
def test_lda_perplexity(method):
|
||||
# Test LDA perplexity for batch training
|
||||
# perplexity should be lower after each iteration
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda_1 = LatentDirichletAllocation(n_components=n_components,
|
||||
max_iter=1, learning_method=method,
|
||||
total_samples=100, random_state=0)
|
||||
lda_2 = LatentDirichletAllocation(n_components=n_components,
|
||||
max_iter=10, learning_method=method,
|
||||
total_samples=100, random_state=0)
|
||||
lda_1.fit(X)
|
||||
perp_1 = lda_1.perplexity(X, sub_sampling=False)
|
||||
|
||||
lda_2.fit(X)
|
||||
perp_2 = lda_2.perplexity(X, sub_sampling=False)
|
||||
assert perp_1 >= perp_2
|
||||
|
||||
perp_1_subsampling = lda_1.perplexity(X, sub_sampling=True)
|
||||
perp_2_subsampling = lda_2.perplexity(X, sub_sampling=True)
|
||||
assert perp_1_subsampling >= perp_2_subsampling
|
||||
|
||||
|
||||
@pytest.mark.parametrize('method', ('online', 'batch'))
|
||||
def test_lda_score(method):
|
||||
# Test LDA score for batch training
|
||||
# score should be higher after each iteration
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda_1 = LatentDirichletAllocation(n_components=n_components,
|
||||
max_iter=1, learning_method=method,
|
||||
total_samples=100, random_state=0)
|
||||
lda_2 = LatentDirichletAllocation(n_components=n_components,
|
||||
max_iter=10, learning_method=method,
|
||||
total_samples=100, random_state=0)
|
||||
lda_1.fit_transform(X)
|
||||
score_1 = lda_1.score(X)
|
||||
|
||||
lda_2.fit_transform(X)
|
||||
score_2 = lda_2.score(X)
|
||||
assert score_2 >= score_1
|
||||
|
||||
|
||||
def test_perplexity_input_format():
|
||||
# Test LDA perplexity for sparse and dense input
|
||||
# score should be the same for both dense and sparse input
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components, max_iter=1,
|
||||
learning_method='batch',
|
||||
total_samples=100, random_state=0)
|
||||
lda.fit(X)
|
||||
perp_1 = lda.perplexity(X)
|
||||
perp_2 = lda.perplexity(X.toarray())
|
||||
assert_almost_equal(perp_1, perp_2)
|
||||
|
||||
|
||||
def test_lda_score_perplexity():
|
||||
# Test the relationship between LDA score and perplexity
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components, max_iter=10,
|
||||
random_state=0)
|
||||
lda.fit(X)
|
||||
perplexity_1 = lda.perplexity(X, sub_sampling=False)
|
||||
|
||||
score = lda.score(X)
|
||||
perplexity_2 = np.exp(-1. * (score / np.sum(X.data)))
|
||||
assert_almost_equal(perplexity_1, perplexity_2)
|
||||
|
||||
|
||||
def test_lda_fit_perplexity():
|
||||
# Test that the perplexity computed during fit is consistent with what is
|
||||
# returned by the perplexity method
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components, max_iter=1,
|
||||
learning_method='batch', random_state=0,
|
||||
evaluate_every=1)
|
||||
lda.fit(X)
|
||||
|
||||
# Perplexity computed at end of fit method
|
||||
perplexity1 = lda.bound_
|
||||
|
||||
# Result of perplexity method on the train set
|
||||
perplexity2 = lda.perplexity(X)
|
||||
|
||||
assert_almost_equal(perplexity1, perplexity2)
|
||||
|
||||
|
||||
def test_lda_empty_docs():
|
||||
"""Test LDA on empty document (all-zero rows)."""
|
||||
Z = np.zeros((5, 4))
|
||||
for X in [Z, csr_matrix(Z)]:
|
||||
lda = LatentDirichletAllocation(max_iter=750).fit(X)
|
||||
assert_almost_equal(lda.components_.sum(axis=0),
|
||||
np.ones(lda.components_.shape[1]))
|
||||
|
||||
|
||||
def test_dirichlet_expectation():
|
||||
"""Test Cython version of Dirichlet expectation calculation."""
|
||||
x = np.logspace(-100, 10, 10000)
|
||||
expectation = np.empty_like(x)
|
||||
_dirichlet_expectation_1d(x, 0, expectation)
|
||||
assert_allclose(expectation, np.exp(psi(x) - psi(np.sum(x))),
|
||||
atol=1e-19)
|
||||
|
||||
x = x.reshape(100, 100)
|
||||
assert_allclose(_dirichlet_expectation_2d(x),
|
||||
psi(x) - psi(np.sum(x, axis=1)[:, np.newaxis]),
|
||||
rtol=1e-11, atol=3e-9)
|
||||
|
||||
|
||||
def check_verbosity(verbose, evaluate_every, expected_lines,
|
||||
expected_perplexities):
|
||||
n_components, X = _build_sparse_mtx()
|
||||
lda = LatentDirichletAllocation(n_components=n_components, max_iter=3,
|
||||
learning_method='batch',
|
||||
verbose=verbose,
|
||||
evaluate_every=evaluate_every,
|
||||
random_state=0)
|
||||
out = StringIO()
|
||||
old_out, sys.stdout = sys.stdout, out
|
||||
try:
|
||||
lda.fit(X)
|
||||
finally:
|
||||
sys.stdout = old_out
|
||||
|
||||
n_lines = out.getvalue().count('\n')
|
||||
n_perplexity = out.getvalue().count('perplexity')
|
||||
assert expected_lines == n_lines
|
||||
assert expected_perplexities == n_perplexity
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'verbose,evaluate_every,expected_lines,expected_perplexities',
|
||||
[(False, 1, 0, 0),
|
||||
(False, 0, 0, 0),
|
||||
(True, 0, 3, 0),
|
||||
(True, 1, 3, 3),
|
||||
(True, 2, 3, 1)])
|
||||
def test_verbosity(verbose, evaluate_every, expected_lines,
|
||||
expected_perplexities):
|
||||
check_verbosity(verbose, evaluate_every, expected_lines,
|
||||
expected_perplexities)
|
640
venv/Lib/site-packages/sklearn/decomposition/tests/test_pca.py
Normal file
640
venv/Lib/site-packages/sklearn/decomposition/tests/test_pca.py
Normal file
|
@ -0,0 +1,640 @@
|
|||
import numpy as np
|
||||
import scipy as sp
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.utils._testing import assert_allclose
|
||||
|
||||
from sklearn import datasets
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.decomposition._pca import _assess_dimension
|
||||
from sklearn.decomposition._pca import _infer_dimension
|
||||
|
||||
iris = datasets.load_iris()
|
||||
PCA_SOLVERS = ['full', 'arpack', 'randomized', 'auto']
|
||||
|
||||
|
||||
@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
|
||||
@pytest.mark.parametrize('n_components', range(1, iris.data.shape[1]))
|
||||
def test_pca(svd_solver, n_components):
|
||||
X = iris.data
|
||||
pca = PCA(n_components=n_components, svd_solver=svd_solver)
|
||||
|
||||
# check the shape of fit.transform
|
||||
X_r = pca.fit(X).transform(X)
|
||||
assert X_r.shape[1] == n_components
|
||||
|
||||
# check the equivalence of fit.transform and fit_transform
|
||||
X_r2 = pca.fit_transform(X)
|
||||
assert_allclose(X_r, X_r2)
|
||||
X_r = pca.transform(X)
|
||||
assert_allclose(X_r, X_r2)
|
||||
|
||||
# Test get_covariance and get_precision
|
||||
cov = pca.get_covariance()
|
||||
precision = pca.get_precision()
|
||||
assert_allclose(np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-12)
|
||||
|
||||
|
||||
def test_no_empty_slice_warning():
|
||||
# test if we avoid numpy warnings for computing over empty arrays
|
||||
n_components = 10
|
||||
n_features = n_components + 2 # anything > n_comps triggered it in 0.16
|
||||
X = np.random.uniform(-1, 1, size=(n_components, n_features))
|
||||
pca = PCA(n_components=n_components)
|
||||
with pytest.warns(None) as record:
|
||||
pca.fit(X)
|
||||
assert not record.list
|
||||
|
||||
|
||||
@pytest.mark.parametrize('copy', [True, False])
|
||||
@pytest.mark.parametrize('solver', PCA_SOLVERS)
|
||||
def test_whitening(solver, copy):
|
||||
# Check that PCA output has unit-variance
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples = 100
|
||||
n_features = 80
|
||||
n_components = 30
|
||||
rank = 50
|
||||
|
||||
# some low rank data with correlated features
|
||||
X = np.dot(rng.randn(n_samples, rank),
|
||||
np.dot(np.diag(np.linspace(10.0, 1.0, rank)),
|
||||
rng.randn(rank, n_features)))
|
||||
# the component-wise variance of the first 50 features is 3 times the
|
||||
# mean component-wise variance of the remaining 30 features
|
||||
X[:, :50] *= 3
|
||||
|
||||
assert X.shape == (n_samples, n_features)
|
||||
|
||||
# the component-wise variance is thus highly varying:
|
||||
assert X.std(axis=0).std() > 43.8
|
||||
|
||||
# whiten the data while projecting to the lower dim subspace
|
||||
X_ = X.copy() # make sure we keep an original across iterations.
|
||||
pca = PCA(n_components=n_components, whiten=True, copy=copy,
|
||||
svd_solver=solver, random_state=0, iterated_power=7)
|
||||
# test fit_transform
|
||||
X_whitened = pca.fit_transform(X_.copy())
|
||||
assert X_whitened.shape == (n_samples, n_components)
|
||||
X_whitened2 = pca.transform(X_)
|
||||
assert_allclose(X_whitened, X_whitened2, rtol=5e-4)
|
||||
|
||||
assert_allclose(X_whitened.std(ddof=1, axis=0), np.ones(n_components))
|
||||
assert_allclose(
|
||||
X_whitened.mean(axis=0), np.zeros(n_components), atol=1e-12
|
||||
)
|
||||
|
||||
X_ = X.copy()
|
||||
pca = PCA(n_components=n_components, whiten=False, copy=copy,
|
||||
svd_solver=solver).fit(X_)
|
||||
X_unwhitened = pca.transform(X_)
|
||||
assert X_unwhitened.shape == (n_samples, n_components)
|
||||
|
||||
# in that case the output components still have varying variances
|
||||
assert X_unwhitened.std(axis=0).std() == pytest.approx(74.1, rel=1e-1)
|
||||
# we always center, so no test for non-centering.
|
||||
|
||||
|
||||
@pytest.mark.parametrize('svd_solver', ['arpack', 'randomized'])
|
||||
def test_pca_explained_variance_equivalence_solver(svd_solver):
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 100, 80
|
||||
X = rng.randn(n_samples, n_features)
|
||||
|
||||
pca_full = PCA(n_components=2, svd_solver='full')
|
||||
pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
|
||||
|
||||
pca_full.fit(X)
|
||||
pca_other.fit(X)
|
||||
|
||||
assert_allclose(
|
||||
pca_full.explained_variance_,
|
||||
pca_other.explained_variance_,
|
||||
rtol=5e-2
|
||||
)
|
||||
assert_allclose(
|
||||
pca_full.explained_variance_ratio_,
|
||||
pca_other.explained_variance_ratio_,
|
||||
rtol=5e-2
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'X',
|
||||
[np.random.RandomState(0).randn(100, 80),
|
||||
datasets.make_classification(100, 80, n_informative=78,
|
||||
random_state=0)[0]],
|
||||
ids=['random-data', 'correlated-data']
|
||||
)
|
||||
@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
|
||||
def test_pca_explained_variance_empirical(X, svd_solver):
|
||||
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
|
||||
X_pca = pca.fit_transform(X)
|
||||
assert_allclose(pca.explained_variance_, np.var(X_pca, ddof=1, axis=0))
|
||||
|
||||
expected_result = np.linalg.eig(np.cov(X, rowvar=False))[0]
|
||||
expected_result = sorted(expected_result, reverse=True)[:2]
|
||||
assert_allclose(pca.explained_variance_, expected_result, rtol=5e-3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", ['arpack', 'randomized'])
|
||||
def test_pca_singular_values_consistency(svd_solver):
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 100, 80
|
||||
X = rng.randn(n_samples, n_features)
|
||||
|
||||
pca_full = PCA(n_components=2, svd_solver='full', random_state=rng)
|
||||
pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
||||
|
||||
pca_full.fit(X)
|
||||
pca_other.fit(X)
|
||||
|
||||
assert_allclose(
|
||||
pca_full.singular_values_, pca_other.singular_values_, rtol=5e-3
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||||
def test_pca_singular_values(svd_solver):
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 100, 80
|
||||
X = rng.randn(n_samples, n_features)
|
||||
|
||||
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
||||
X_trans = pca.fit_transform(X)
|
||||
|
||||
# compare to the Frobenius norm
|
||||
assert_allclose(
|
||||
np.sum(pca.singular_values_ ** 2), np.linalg.norm(X_trans, "fro") ** 2
|
||||
)
|
||||
# Compare to the 2-norms of the score vectors
|
||||
assert_allclose(
|
||||
pca.singular_values_, np.sqrt(np.sum(X_trans ** 2, axis=0))
|
||||
)
|
||||
|
||||
# set the singular values and see what er get back
|
||||
n_samples, n_features = 100, 110
|
||||
X = rng.randn(n_samples, n_features)
|
||||
|
||||
pca = PCA(n_components=3, svd_solver=svd_solver, random_state=rng)
|
||||
X_trans = pca.fit_transform(X)
|
||||
X_trans /= np.sqrt(np.sum(X_trans ** 2, axis=0))
|
||||
X_trans[:, 0] *= 3.142
|
||||
X_trans[:, 1] *= 2.718
|
||||
X_hat = np.dot(X_trans, pca.components_)
|
||||
pca.fit(X_hat)
|
||||
assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0])
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||||
def test_pca_check_projection(svd_solver):
|
||||
# Test that the projection of data is correct
|
||||
rng = np.random.RandomState(0)
|
||||
n, p = 100, 3
|
||||
X = rng.randn(n, p) * .1
|
||||
X[:10] += np.array([3, 4, 5])
|
||||
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
|
||||
|
||||
Yt = PCA(n_components=2, svd_solver=svd_solver).fit(X).transform(Xt)
|
||||
Yt /= np.sqrt((Yt ** 2).sum())
|
||||
|
||||
assert_allclose(np.abs(Yt[0][0]), 1., rtol=5e-3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||||
def test_pca_check_projection_list(svd_solver):
|
||||
# Test that the projection of data is correct
|
||||
X = [[1.0, 0.0], [0.0, 1.0]]
|
||||
pca = PCA(n_components=1, svd_solver=svd_solver, random_state=0)
|
||||
X_trans = pca.fit_transform(X)
|
||||
assert X_trans.shape, (2, 1)
|
||||
assert_allclose(X_trans.mean(), 0.00, atol=1e-12)
|
||||
assert_allclose(X_trans.std(), 0.71, rtol=5e-3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", ['full', 'arpack', 'randomized'])
|
||||
@pytest.mark.parametrize("whiten", [False, True])
|
||||
def test_pca_inverse(svd_solver, whiten):
|
||||
# Test that the projection of data can be inverted
|
||||
rng = np.random.RandomState(0)
|
||||
n, p = 50, 3
|
||||
X = rng.randn(n, p) # spherical data
|
||||
X[:, 1] *= .00001 # make middle component relatively small
|
||||
X += [5, 4, 3] # make a large mean
|
||||
|
||||
# same check that we can find the original data from the transformed
|
||||
# signal (since the data is almost of rank n_components)
|
||||
pca = PCA(n_components=2, svd_solver=svd_solver, whiten=whiten).fit(X)
|
||||
Y = pca.transform(X)
|
||||
Y_inverse = pca.inverse_transform(Y)
|
||||
assert_allclose(X, Y_inverse, rtol=5e-6)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'data',
|
||||
[np.array([[0, 1, 0], [1, 0, 0]]), np.array([[0, 1, 0], [1, 0, 0]]).T]
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"svd_solver, n_components, err_msg",
|
||||
[('arpack', 0, r'must be between 1 and min\(n_samples, n_features\)'),
|
||||
('randomized', 0, r'must be between 1 and min\(n_samples, n_features\)'),
|
||||
('arpack', 2, r'must be strictly less than min'),
|
||||
('auto', -1, (r"n_components={}L? must be between {}L? and "
|
||||
r"min\(n_samples, n_features\)={}L? with "
|
||||
r"svd_solver=\'{}\'")),
|
||||
('auto', 3, (r"n_components={}L? must be between {}L? and "
|
||||
r"min\(n_samples, n_features\)={}L? with "
|
||||
r"svd_solver=\'{}\'")),
|
||||
('auto', 1.0, "must be of type int")]
|
||||
)
|
||||
def test_pca_validation(svd_solver, data, n_components, err_msg):
|
||||
# Ensures that solver-specific extreme inputs for the n_components
|
||||
# parameter raise errors
|
||||
smallest_d = 2 # The smallest dimension
|
||||
lower_limit = {'randomized': 1, 'arpack': 1, 'full': 0, 'auto': 0}
|
||||
pca_fitted = PCA(n_components, svd_solver=svd_solver)
|
||||
|
||||
solver_reported = 'full' if svd_solver == 'auto' else svd_solver
|
||||
err_msg = err_msg.format(
|
||||
n_components, lower_limit[svd_solver], smallest_d, solver_reported
|
||||
)
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
pca_fitted.fit(data)
|
||||
|
||||
# Additional case for arpack
|
||||
if svd_solver == 'arpack':
|
||||
n_components = smallest_d
|
||||
|
||||
err_msg = ("n_components={}L? must be strictly less than "
|
||||
r"min\(n_samples, n_features\)={}L? with "
|
||||
"svd_solver=\'arpack\'".format(n_components, smallest_d))
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
PCA(n_components, svd_solver=svd_solver).fit(data)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'solver, n_components_',
|
||||
[('full', min(iris.data.shape)),
|
||||
('arpack', min(iris.data.shape) - 1),
|
||||
('randomized', min(iris.data.shape))]
|
||||
)
|
||||
@pytest.mark.parametrize("data", [iris.data, iris.data.T])
|
||||
def test_n_components_none(data, solver, n_components_):
|
||||
pca = PCA(svd_solver=solver)
|
||||
pca.fit(data)
|
||||
assert pca.n_components_ == n_components_
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", ['auto', 'full'])
|
||||
def test_n_components_mle(svd_solver):
|
||||
# Ensure that n_components == 'mle' doesn't raise error for auto/full
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 600, 10
|
||||
X = rng.randn(n_samples, n_features)
|
||||
pca = PCA(n_components='mle', svd_solver=svd_solver)
|
||||
pca.fit(X)
|
||||
assert pca.n_components_ == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
||||
def test_n_components_mle_error(svd_solver):
|
||||
# Ensure that n_components == 'mle' will raise an error for unsupported
|
||||
# solvers
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 600, 10
|
||||
X = rng.randn(n_samples, n_features)
|
||||
pca = PCA(n_components='mle', svd_solver=svd_solver)
|
||||
err_msg = ("n_components='mle' cannot be a string with svd_solver='{}'"
|
||||
.format(svd_solver))
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
pca.fit(X)
|
||||
|
||||
|
||||
def test_pca_dim():
|
||||
# Check automated dimensionality setting
|
||||
rng = np.random.RandomState(0)
|
||||
n, p = 100, 5
|
||||
X = rng.randn(n, p) * .1
|
||||
X[:10] += np.array([3, 4, 5, 1, 2])
|
||||
pca = PCA(n_components='mle', svd_solver='full').fit(X)
|
||||
assert pca.n_components == 'mle'
|
||||
assert pca.n_components_ == 1
|
||||
|
||||
|
||||
def test_infer_dim_1():
|
||||
# TODO: explain what this is testing
|
||||
# Or at least use explicit variable names...
|
||||
n, p = 1000, 5
|
||||
rng = np.random.RandomState(0)
|
||||
X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) +
|
||||
np.array([1, 0, 7, 4, 6]))
|
||||
pca = PCA(n_components=p, svd_solver='full')
|
||||
pca.fit(X)
|
||||
spect = pca.explained_variance_
|
||||
ll = np.array([_assess_dimension(spect, k, n) for k in range(1, p)])
|
||||
assert ll[1] > ll.max() - .01 * n
|
||||
|
||||
|
||||
def test_infer_dim_2():
|
||||
# TODO: explain what this is testing
|
||||
# Or at least use explicit variable names...
|
||||
n, p = 1000, 5
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(n, p) * .1
|
||||
X[:10] += np.array([3, 4, 5, 1, 2])
|
||||
X[10:20] += np.array([6, 0, 7, 2, -1])
|
||||
pca = PCA(n_components=p, svd_solver='full')
|
||||
pca.fit(X)
|
||||
spect = pca.explained_variance_
|
||||
assert _infer_dimension(spect, n) > 1
|
||||
|
||||
|
||||
def test_infer_dim_3():
|
||||
n, p = 100, 5
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(n, p) * .1
|
||||
X[:10] += np.array([3, 4, 5, 1, 2])
|
||||
X[10:20] += np.array([6, 0, 7, 2, -1])
|
||||
X[30:40] += 2 * np.array([-1, 1, -1, 1, -1])
|
||||
pca = PCA(n_components=p, svd_solver='full')
|
||||
pca.fit(X)
|
||||
spect = pca.explained_variance_
|
||||
assert _infer_dimension(spect, n) > 2
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"X, n_components, n_components_validated",
|
||||
[(iris.data, 0.95, 2), # row > col
|
||||
(iris.data, 0.01, 1), # row > col
|
||||
(np.random.RandomState(0).rand(5, 20), 0.5, 2)] # row < col
|
||||
)
|
||||
def test_infer_dim_by_explained_variance(X, n_components,
|
||||
n_components_validated):
|
||||
pca = PCA(n_components=n_components, svd_solver='full')
|
||||
pca.fit(X)
|
||||
assert pca.n_components == pytest.approx(n_components)
|
||||
assert pca.n_components_ == n_components_validated
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||||
def test_pca_score(svd_solver):
|
||||
# Test that probabilistic PCA scoring yields a reasonable score
|
||||
n, p = 1000, 3
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(n, p) * .1 + np.array([3, 4, 5])
|
||||
pca = PCA(n_components=2, svd_solver=svd_solver)
|
||||
pca.fit(X)
|
||||
|
||||
ll1 = pca.score(X)
|
||||
h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p
|
||||
assert_allclose(ll1 / h, 1, rtol=5e-2)
|
||||
|
||||
ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5]))
|
||||
assert ll1 > ll2
|
||||
|
||||
pca = PCA(n_components=2, whiten=True, svd_solver=svd_solver)
|
||||
pca.fit(X)
|
||||
ll2 = pca.score(X)
|
||||
assert ll1 > ll2
|
||||
|
||||
|
||||
def test_pca_score3():
|
||||
# Check that probabilistic PCA selects the right model
|
||||
n, p = 200, 3
|
||||
rng = np.random.RandomState(0)
|
||||
Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
|
||||
np.array([1, 0, 7]))
|
||||
Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
|
||||
np.array([1, 0, 7]))
|
||||
ll = np.zeros(p)
|
||||
for k in range(p):
|
||||
pca = PCA(n_components=k, svd_solver='full')
|
||||
pca.fit(Xl)
|
||||
ll[k] = pca.score(Xt)
|
||||
|
||||
assert ll.argmax() == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||||
def test_pca_sanity_noise_variance(svd_solver):
|
||||
# Sanity check for the noise_variance_. For more details see
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/7568
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/8541
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/8544
|
||||
X, _ = datasets.load_digits(return_X_y=True)
|
||||
pca = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
|
||||
pca.fit(X)
|
||||
assert np.all((pca.explained_variance_ - pca.noise_variance_) >= 0)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
||||
def test_pca_score_consistency_solvers(svd_solver):
|
||||
# Check the consistency of score between solvers
|
||||
X, _ = datasets.load_digits(return_X_y=True)
|
||||
pca_full = PCA(n_components=30, svd_solver='full', random_state=0)
|
||||
pca_other = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
|
||||
pca_full.fit(X)
|
||||
pca_other.fit(X)
|
||||
assert_allclose(pca_full.score(X), pca_other.score(X), rtol=5e-6)
|
||||
|
||||
|
||||
# arpack raises ValueError for n_components == min(n_samples, n_features)
|
||||
@pytest.mark.parametrize("svd_solver", ["full", "randomized"])
|
||||
def test_pca_zero_noise_variance_edge_cases(svd_solver):
|
||||
# ensure that noise_variance_ is 0 in edge cases
|
||||
# when n_components == min(n_samples, n_features)
|
||||
n, p = 100, 3
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(n, p) * .1 + np.array([3, 4, 5])
|
||||
|
||||
pca = PCA(n_components=p, svd_solver=svd_solver)
|
||||
pca.fit(X)
|
||||
assert pca.noise_variance_ == 0
|
||||
|
||||
pca.fit(X.T)
|
||||
assert pca.noise_variance_ == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'data, n_components, expected_solver',
|
||||
[ # case: n_components in (0,1) => 'full'
|
||||
(np.random.RandomState(0).uniform(size=(1000, 50)), 0.5, 'full'),
|
||||
# case: max(X.shape) <= 500 => 'full'
|
||||
(np.random.RandomState(0).uniform(size=(10, 50)), 5, 'full'),
|
||||
# case: n_components >= .8 * min(X.shape) => 'full'
|
||||
(np.random.RandomState(0).uniform(size=(1000, 50)), 50, 'full'),
|
||||
# n_components >= 1 and n_components < .8*min(X.shape) => 'randomized'
|
||||
(np.random.RandomState(0).uniform(size=(1000, 50)), 10, 'randomized')
|
||||
]
|
||||
)
|
||||
def test_pca_svd_solver_auto(data, n_components, expected_solver):
|
||||
pca_auto = PCA(n_components=n_components, random_state=0)
|
||||
pca_test = PCA(
|
||||
n_components=n_components, svd_solver=expected_solver, random_state=0
|
||||
)
|
||||
pca_auto.fit(data)
|
||||
pca_test.fit(data)
|
||||
assert_allclose(pca_auto.components_, pca_test.components_)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
|
||||
def test_pca_sparse_input(svd_solver):
|
||||
X = np.random.RandomState(0).rand(5, 4)
|
||||
X = sp.sparse.csr_matrix(X)
|
||||
assert sp.sparse.issparse(X)
|
||||
|
||||
pca = PCA(n_components=3, svd_solver=svd_solver)
|
||||
with pytest.raises(TypeError):
|
||||
pca.fit(X)
|
||||
|
||||
|
||||
def test_pca_bad_solver():
|
||||
X = np.random.RandomState(0).rand(5, 4)
|
||||
pca = PCA(n_components=3, svd_solver='bad_argument')
|
||||
with pytest.raises(ValueError):
|
||||
pca.fit(X)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||||
def test_pca_deterministic_output(svd_solver):
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(10, 10)
|
||||
|
||||
transformed_X = np.zeros((20, 2))
|
||||
for i in range(20):
|
||||
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
||||
transformed_X[i, :] = pca.fit_transform(X)[0]
|
||||
assert_allclose(
|
||||
transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2)
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
|
||||
def test_pca_dtype_preservation(svd_solver):
|
||||
check_pca_float_dtype_preservation(svd_solver)
|
||||
check_pca_int_dtype_upcast_to_double(svd_solver)
|
||||
|
||||
|
||||
def check_pca_float_dtype_preservation(svd_solver):
|
||||
# Ensure that PCA does not upscale the dtype when input is float32
|
||||
X_64 = np.random.RandomState(0).rand(1000, 4).astype(np.float64,
|
||||
copy=False)
|
||||
X_32 = X_64.astype(np.float32)
|
||||
|
||||
pca_64 = PCA(n_components=3, svd_solver=svd_solver,
|
||||
random_state=0).fit(X_64)
|
||||
pca_32 = PCA(n_components=3, svd_solver=svd_solver,
|
||||
random_state=0).fit(X_32)
|
||||
|
||||
assert pca_64.components_.dtype == np.float64
|
||||
assert pca_32.components_.dtype == np.float32
|
||||
assert pca_64.transform(X_64).dtype == np.float64
|
||||
assert pca_32.transform(X_32).dtype == np.float32
|
||||
|
||||
# the rtol is set such that the test passes on all platforms tested on
|
||||
# conda-forge: PR#15775
|
||||
# see: https://github.com/conda-forge/scikit-learn-feedstock/pull/113
|
||||
assert_allclose(pca_64.components_, pca_32.components_, rtol=2e-4)
|
||||
|
||||
|
||||
def check_pca_int_dtype_upcast_to_double(svd_solver):
|
||||
# Ensure that all int types will be upcast to float64
|
||||
X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
|
||||
X_i64 = X_i64.astype(np.int64, copy=False)
|
||||
X_i32 = X_i64.astype(np.int32, copy=False)
|
||||
|
||||
pca_64 = PCA(n_components=3, svd_solver=svd_solver,
|
||||
random_state=0).fit(X_i64)
|
||||
pca_32 = PCA(n_components=3, svd_solver=svd_solver,
|
||||
random_state=0).fit(X_i32)
|
||||
|
||||
assert pca_64.components_.dtype == np.float64
|
||||
assert pca_32.components_.dtype == np.float64
|
||||
assert pca_64.transform(X_i64).dtype == np.float64
|
||||
assert pca_32.transform(X_i32).dtype == np.float64
|
||||
|
||||
assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-4)
|
||||
|
||||
|
||||
def test_pca_n_components_mostly_explained_variance_ratio():
|
||||
# when n_components is the second highest cumulative sum of the
|
||||
# explained_variance_ratio_, then n_components_ should equal the
|
||||
# number of features in the dataset #15669
|
||||
X, y = load_iris(return_X_y=True)
|
||||
pca1 = PCA().fit(X, y)
|
||||
|
||||
n_components = pca1.explained_variance_ratio_.cumsum()[-2]
|
||||
pca2 = PCA(n_components=n_components).fit(X, y)
|
||||
assert pca2.n_components_ == X.shape[1]
|
||||
|
||||
|
||||
def test_assess_dimension_bad_rank():
|
||||
# Test error when tested rank not in [1, n_features - 1]
|
||||
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
|
||||
n_samples = 10
|
||||
for rank in (0, 5):
|
||||
with pytest.raises(ValueError,
|
||||
match=r"should be in \[1, n_features - 1\]"):
|
||||
_assess_dimension(spectrum, rank, n_samples)
|
||||
|
||||
|
||||
def test_small_eigenvalues_mle():
|
||||
# Test rank associated with tiny eigenvalues are given a log-likelihood of
|
||||
# -inf. The inferred rank will be 1
|
||||
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
|
||||
|
||||
assert _assess_dimension(spectrum, rank=1, n_samples=10) > -np.inf
|
||||
|
||||
for rank in (2, 3):
|
||||
assert _assess_dimension(spectrum, rank, 10) == -np.inf
|
||||
|
||||
assert _infer_dimension(spectrum, 10) == 1
|
||||
|
||||
|
||||
def test_mle_redundant_data():
|
||||
# Test 'mle' with pathological X: only one relevant feature should give a
|
||||
# rank of 1
|
||||
X, _ = datasets.make_classification(n_features=20,
|
||||
n_informative=1, n_repeated=18,
|
||||
n_redundant=1, n_clusters_per_class=1,
|
||||
random_state=42)
|
||||
pca = PCA(n_components='mle').fit(X)
|
||||
assert pca.n_components_ == 1
|
||||
|
||||
|
||||
def test_fit_mle_too_few_samples():
|
||||
# Tests that an error is raised when the number of samples is smaller
|
||||
# than the number of features during an mle fit
|
||||
X, _ = datasets.make_classification(n_samples=20, n_features=21,
|
||||
random_state=42)
|
||||
|
||||
pca = PCA(n_components='mle', svd_solver='full')
|
||||
with pytest.raises(ValueError, match="n_components='mle' is only "
|
||||
"supported if "
|
||||
"n_samples >= n_features"):
|
||||
pca.fit(X)
|
||||
|
||||
|
||||
def test_mle_simple_case():
|
||||
# non-regression test for issue
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/16730
|
||||
n_samples, n_dim = 1000, 10
|
||||
X = np.random.RandomState(0).randn(n_samples, n_dim)
|
||||
X[:, -1] = np.mean(X[:, :-1], axis=-1) # true X dim is ndim - 1
|
||||
pca_skl = PCA('mle', svd_solver='full')
|
||||
pca_skl.fit(X)
|
||||
assert pca_skl.n_components_ == n_dim - 1
|
||||
|
||||
|
||||
def test_assess_dimesion_rank_one():
|
||||
# Make sure assess_dimension works properly on a matrix of rank 1
|
||||
n_samples, n_features = 9, 6
|
||||
X = np.ones((n_samples, n_features)) # rank 1 matrix
|
||||
_, s, _ = np.linalg.svd(X, full_matrices=True)
|
||||
assert sum(s[1:]) == 0 # except for rank 1, all eigenvalues are 0
|
||||
|
||||
assert np.isfinite(_assess_dimension(s, rank=1, n_samples=n_samples))
|
||||
for rank in range(2, n_features):
|
||||
assert _assess_dimension(s, rank, n_samples) == -np.inf
|
|
@ -0,0 +1,224 @@
|
|||
# Author: Vlad Niculae
|
||||
# License: BSD 3 clause
|
||||
|
||||
import sys
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_allclose
|
||||
from sklearn.utils._testing import if_safe_multiprocessing_with_blas
|
||||
|
||||
from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA, PCA
|
||||
from sklearn.utils import check_random_state
|
||||
|
||||
def generate_toy_data(n_components, n_samples, image_size, random_state=None):
|
||||
n_features = image_size[0] * image_size[1]
|
||||
|
||||
rng = check_random_state(random_state)
|
||||
U = rng.randn(n_samples, n_components)
|
||||
V = rng.randn(n_components, n_features)
|
||||
|
||||
centers = [(3, 3), (6, 7), (8, 1)]
|
||||
sz = [1, 2, 1]
|
||||
for k in range(n_components):
|
||||
img = np.zeros(image_size)
|
||||
xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k]
|
||||
ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k]
|
||||
img[xmin:xmax][:, ymin:ymax] = 1.0
|
||||
V[k, :] = img.ravel()
|
||||
|
||||
# Y is defined by : Y = UV + noise
|
||||
Y = np.dot(U, V)
|
||||
Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise
|
||||
return Y, U, V
|
||||
|
||||
# SparsePCA can be a bit slow. To avoid having test times go up, we
|
||||
# test different aspects of the code in the same test
|
||||
|
||||
|
||||
def test_correct_shapes():
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(12, 10)
|
||||
spca = SparsePCA(n_components=8, random_state=rng)
|
||||
U = spca.fit_transform(X)
|
||||
assert spca.components_.shape == (8, 10)
|
||||
assert U.shape == (12, 8)
|
||||
# test overcomplete decomposition
|
||||
spca = SparsePCA(n_components=13, random_state=rng)
|
||||
U = spca.fit_transform(X)
|
||||
assert spca.components_.shape == (13, 10)
|
||||
assert U.shape == (12, 13)
|
||||
|
||||
|
||||
def test_fit_transform():
|
||||
alpha = 1
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
|
||||
spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
|
||||
random_state=0)
|
||||
spca_lars.fit(Y)
|
||||
|
||||
# Test that CD gives similar results
|
||||
spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0,
|
||||
alpha=alpha)
|
||||
spca_lasso.fit(Y)
|
||||
assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
|
||||
|
||||
|
||||
@if_safe_multiprocessing_with_blas
|
||||
def test_fit_transform_parallel():
|
||||
alpha = 1
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
|
||||
spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
|
||||
random_state=0)
|
||||
spca_lars.fit(Y)
|
||||
U1 = spca_lars.transform(Y)
|
||||
# Test multiple CPUs
|
||||
spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha,
|
||||
random_state=0).fit(Y)
|
||||
U2 = spca.transform(Y)
|
||||
assert not np.all(spca_lars.components_ == 0)
|
||||
assert_array_almost_equal(U1, U2)
|
||||
|
||||
|
||||
def test_transform_nan():
|
||||
# Test that SparsePCA won't return NaN when there is 0 feature in all
|
||||
# samples.
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
|
||||
Y[:, 0] = 0
|
||||
estimator = SparsePCA(n_components=8)
|
||||
assert not np.any(np.isnan(estimator.fit_transform(Y)))
|
||||
|
||||
|
||||
def test_fit_transform_tall():
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array
|
||||
spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng)
|
||||
U1 = spca_lars.fit_transform(Y)
|
||||
spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng)
|
||||
U2 = spca_lasso.fit(Y).transform(Y)
|
||||
assert_array_almost_equal(U1, U2)
|
||||
|
||||
|
||||
def test_initialization():
|
||||
rng = np.random.RandomState(0)
|
||||
U_init = rng.randn(5, 3)
|
||||
V_init = rng.randn(3, 4)
|
||||
model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0,
|
||||
random_state=rng)
|
||||
model.fit(rng.randn(5, 4))
|
||||
assert_allclose(model.components_,
|
||||
V_init / np.linalg.norm(V_init, axis=1)[:, None])
|
||||
|
||||
|
||||
def test_mini_batch_correct_shapes():
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(12, 10)
|
||||
pca = MiniBatchSparsePCA(n_components=8, random_state=rng)
|
||||
U = pca.fit_transform(X)
|
||||
assert pca.components_.shape == (8, 10)
|
||||
assert U.shape == (12, 8)
|
||||
# test overcomplete decomposition
|
||||
pca = MiniBatchSparsePCA(n_components=13, random_state=rng)
|
||||
U = pca.fit_transform(X)
|
||||
assert pca.components_.shape == (13, 10)
|
||||
assert U.shape == (12, 13)
|
||||
|
||||
|
||||
# XXX: test always skipped
|
||||
@pytest.mark.skipif(True, reason="skipping mini_batch_fit_transform.")
|
||||
def test_mini_batch_fit_transform():
|
||||
alpha = 1
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array
|
||||
spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0,
|
||||
alpha=alpha).fit(Y)
|
||||
U1 = spca_lars.transform(Y)
|
||||
# Test multiple CPUs
|
||||
if sys.platform == 'win32': # fake parallelism for win32
|
||||
import joblib
|
||||
_mp = joblib.parallel.multiprocessing
|
||||
joblib.parallel.multiprocessing = None
|
||||
try:
|
||||
spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
|
||||
random_state=0)
|
||||
U2 = spca.fit(Y).transform(Y)
|
||||
finally:
|
||||
joblib.parallel.multiprocessing = _mp
|
||||
else: # we can efficiently use parallelism
|
||||
spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
|
||||
random_state=0)
|
||||
U2 = spca.fit(Y).transform(Y)
|
||||
assert not np.all(spca_lars.components_ == 0)
|
||||
assert_array_almost_equal(U1, U2)
|
||||
# Test that CD gives similar results
|
||||
spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha,
|
||||
random_state=0).fit(Y)
|
||||
assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
|
||||
|
||||
|
||||
def test_scaling_fit_transform():
|
||||
alpha = 1
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 1000, (8, 8), random_state=rng)
|
||||
spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha,
|
||||
random_state=rng)
|
||||
results_train = spca_lars.fit_transform(Y)
|
||||
results_test = spca_lars.transform(Y[:10])
|
||||
assert_allclose(results_train[0], results_test[0])
|
||||
|
||||
|
||||
def test_pca_vs_spca():
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 1000, (8, 8), random_state=rng)
|
||||
Z, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)
|
||||
spca = SparsePCA(alpha=0, ridge_alpha=0, n_components=2)
|
||||
pca = PCA(n_components=2)
|
||||
pca.fit(Y)
|
||||
spca.fit(Y)
|
||||
results_test_pca = pca.transform(Z)
|
||||
results_test_spca = spca.transform(Z)
|
||||
assert_allclose(np.abs(spca.components_.dot(pca.components_.T)),
|
||||
np.eye(2), atol=1e-5)
|
||||
results_test_pca *= np.sign(results_test_pca[0, :])
|
||||
results_test_spca *= np.sign(results_test_spca[0, :])
|
||||
assert_allclose(results_test_pca, results_test_spca)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("spca", [SparsePCA, MiniBatchSparsePCA])
|
||||
def test_spca_deprecation_warning(spca):
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)
|
||||
|
||||
warn_msg = "'normalize_components' has been deprecated in 0.22"
|
||||
with pytest.warns(FutureWarning, match=warn_msg):
|
||||
spca(normalize_components=True).fit(Y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("spca", [SparsePCA, MiniBatchSparsePCA])
|
||||
def test_spca_error_unormalized_components(spca):
|
||||
rng = np.random.RandomState(0)
|
||||
Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)
|
||||
|
||||
err_msg = "normalize_components=False is not supported starting "
|
||||
with pytest.raises(NotImplementedError, match=err_msg):
|
||||
spca(normalize_components=False).fit(Y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("SPCA", [SparsePCA, MiniBatchSparsePCA])
|
||||
@pytest.mark.parametrize("n_components", [None, 3])
|
||||
def test_spca_n_components_(SPCA, n_components):
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 12, 10
|
||||
X = rng.randn(n_samples, n_features)
|
||||
|
||||
model = SPCA(n_components=n_components).fit(X)
|
||||
|
||||
if n_components is not None:
|
||||
assert model.n_components_ == n_components
|
||||
else:
|
||||
assert model.n_components_ == n_features
|
|
@ -0,0 +1,193 @@
|
|||
"""Test truncated SVD transformer."""
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as sp
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.decomposition import TruncatedSVD, PCA
|
||||
from sklearn.utils import check_random_state
|
||||
from sklearn.utils._testing import assert_array_less, assert_allclose
|
||||
|
||||
SVD_SOLVERS = ['arpack', 'randomized']
|
||||
|
||||
|
||||
@pytest.fixture(scope='module')
|
||||
def X_sparse():
|
||||
# Make an X that looks somewhat like a small tf-idf matrix.
|
||||
rng = check_random_state(42)
|
||||
X = sp.random(60, 55, density=0.2, format="csr", random_state=rng)
|
||||
X.data[:] = 1 + np.log(X.data)
|
||||
return X
|
||||
|
||||
|
||||
@pytest.mark.parametrize("solver", ['randomized'])
|
||||
@pytest.mark.parametrize('kind', ('dense', 'sparse'))
|
||||
def test_solvers(X_sparse, solver, kind):
|
||||
X = X_sparse if kind == 'sparse' else X_sparse.toarray()
|
||||
svd_a = TruncatedSVD(30, algorithm="arpack")
|
||||
svd = TruncatedSVD(30, algorithm=solver, random_state=42)
|
||||
|
||||
Xa = svd_a.fit_transform(X)[:, :6]
|
||||
Xr = svd.fit_transform(X)[:, :6]
|
||||
assert_allclose(Xa, Xr, rtol=2e-3)
|
||||
|
||||
comp_a = np.abs(svd_a.components_)
|
||||
comp = np.abs(svd.components_)
|
||||
# All elements are equal, but some elements are more equal than others.
|
||||
assert_allclose(comp_a[:9], comp[:9], rtol=1e-3)
|
||||
assert_allclose(comp_a[9:], comp[9:], atol=1e-2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("n_components", (10, 25, 41))
|
||||
def test_attributes(n_components, X_sparse):
|
||||
n_features = X_sparse.shape[1]
|
||||
tsvd = TruncatedSVD(n_components).fit(X_sparse)
|
||||
assert tsvd.n_components == n_components
|
||||
assert tsvd.components_.shape == (n_components, n_features)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('algorithm', SVD_SOLVERS)
|
||||
def test_too_many_components(algorithm, X_sparse):
|
||||
n_features = X_sparse.shape[1]
|
||||
for n_components in (n_features, n_features + 1):
|
||||
tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm)
|
||||
with pytest.raises(ValueError):
|
||||
tsvd.fit(X_sparse)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('fmt', ("array", "csr", "csc", "coo", "lil"))
|
||||
def test_sparse_formats(fmt, X_sparse):
|
||||
n_samples = X_sparse.shape[0]
|
||||
Xfmt = (X_sparse.toarray()
|
||||
if fmt == "dense" else getattr(X_sparse, "to" + fmt)())
|
||||
tsvd = TruncatedSVD(n_components=11)
|
||||
Xtrans = tsvd.fit_transform(Xfmt)
|
||||
assert Xtrans.shape == (n_samples, 11)
|
||||
Xtrans = tsvd.transform(Xfmt)
|
||||
assert Xtrans.shape == (n_samples, 11)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('algo', SVD_SOLVERS)
|
||||
def test_inverse_transform(algo, X_sparse):
|
||||
# We need a lot of components for the reconstruction to be "almost
|
||||
# equal" in all positions. XXX Test means or sums instead?
|
||||
tsvd = TruncatedSVD(n_components=52, random_state=42, algorithm=algo)
|
||||
Xt = tsvd.fit_transform(X_sparse)
|
||||
Xinv = tsvd.inverse_transform(Xt)
|
||||
assert_allclose(Xinv, X_sparse.toarray(), rtol=1e-1, atol=2e-1)
|
||||
|
||||
|
||||
def test_integers(X_sparse):
|
||||
n_samples = X_sparse.shape[0]
|
||||
Xint = X_sparse.astype(np.int64)
|
||||
tsvd = TruncatedSVD(n_components=6)
|
||||
Xtrans = tsvd.fit_transform(Xint)
|
||||
assert Xtrans.shape == (n_samples, tsvd.n_components)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kind', ('dense', 'sparse'))
|
||||
@pytest.mark.parametrize('n_components', [10, 20])
|
||||
@pytest.mark.parametrize('solver', SVD_SOLVERS)
|
||||
def test_explained_variance(X_sparse, kind, n_components, solver):
|
||||
X = X_sparse if kind == 'sparse' else X_sparse.toarray()
|
||||
svd = TruncatedSVD(n_components, algorithm=solver)
|
||||
X_tr = svd.fit_transform(X)
|
||||
# Assert that all the values are greater than 0
|
||||
assert_array_less(0.0, svd.explained_variance_ratio_)
|
||||
|
||||
# Assert that total explained variance is less than 1
|
||||
assert_array_less(svd.explained_variance_ratio_.sum(), 1.0)
|
||||
|
||||
# Test that explained_variance is correct
|
||||
total_variance = np.var(X_sparse.toarray(), axis=0).sum()
|
||||
variances = np.var(X_tr, axis=0)
|
||||
true_explained_variance_ratio = variances / total_variance
|
||||
|
||||
assert_allclose(
|
||||
svd.explained_variance_ratio_,
|
||||
true_explained_variance_ratio,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('kind', ('dense', 'sparse'))
|
||||
@pytest.mark.parametrize('solver', SVD_SOLVERS)
|
||||
def test_explained_variance_components_10_20(X_sparse, kind, solver):
|
||||
X = X_sparse if kind == 'sparse' else X_sparse.toarray()
|
||||
svd_10 = TruncatedSVD(10, algorithm=solver, n_iter=10).fit(X)
|
||||
svd_20 = TruncatedSVD(20, algorithm=solver, n_iter=10).fit(X)
|
||||
|
||||
# Assert the 1st component is equal
|
||||
assert_allclose(
|
||||
svd_10.explained_variance_ratio_,
|
||||
svd_20.explained_variance_ratio_[:10],
|
||||
rtol=5e-3,
|
||||
)
|
||||
|
||||
# Assert that 20 components has higher explained variance than 10
|
||||
assert (
|
||||
svd_20.explained_variance_ratio_.sum() >
|
||||
svd_10.explained_variance_ratio_.sum()
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('solver', SVD_SOLVERS)
|
||||
def test_singular_values_consistency(solver):
|
||||
# Check that the TruncatedSVD output has the correct singular values
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples, n_features = 100, 80
|
||||
X = rng.randn(n_samples, n_features)
|
||||
|
||||
pca = TruncatedSVD(n_components=2, algorithm=solver,
|
||||
random_state=rng).fit(X)
|
||||
|
||||
# Compare to the Frobenius norm
|
||||
X_pca = pca.transform(X)
|
||||
assert_allclose(np.sum(pca.singular_values_**2.0),
|
||||
np.linalg.norm(X_pca, "fro")**2.0, rtol=1e-2)
|
||||
|
||||
# Compare to the 2-norms of the score vectors
|
||||
assert_allclose(pca.singular_values_,
|
||||
np.sqrt(np.sum(X_pca**2.0, axis=0)), rtol=1e-2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('solver', SVD_SOLVERS)
|
||||
def test_singular_values_expected(solver):
|
||||
# Set the singular values and see what we get back
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples = 100
|
||||
n_features = 110
|
||||
|
||||
X = rng.randn(n_samples, n_features)
|
||||
|
||||
pca = TruncatedSVD(n_components=3, algorithm=solver,
|
||||
random_state=rng)
|
||||
X_pca = pca.fit_transform(X)
|
||||
|
||||
X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0))
|
||||
X_pca[:, 0] *= 3.142
|
||||
X_pca[:, 1] *= 2.718
|
||||
|
||||
X_hat_pca = np.dot(X_pca, pca.components_)
|
||||
pca.fit(X_hat_pca)
|
||||
assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0], rtol=1e-14)
|
||||
|
||||
|
||||
def test_truncated_svd_eq_pca(X_sparse):
|
||||
# TruncatedSVD should be equal to PCA on centered data
|
||||
|
||||
X_dense = X_sparse.toarray()
|
||||
|
||||
X_c = X_dense - X_dense.mean(axis=0)
|
||||
|
||||
params = dict(n_components=10, random_state=42)
|
||||
|
||||
svd = TruncatedSVD(algorithm='arpack', **params)
|
||||
pca = PCA(svd_solver='arpack', **params)
|
||||
|
||||
Xt_svd = svd.fit_transform(X_c)
|
||||
Xt_pca = pca.fit_transform(X_c)
|
||||
|
||||
assert_allclose(Xt_svd, Xt_pca, rtol=1e-9)
|
||||
assert_allclose(pca.mean_, 0, atol=1e-9)
|
||||
assert_allclose(svd.components_, pca.components_)
|
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _truncated_svd # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.decomposition.truncated_svd'
|
||||
correct_import_path = 'sklearn.decomposition'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_truncated_svd, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
Loading…
Add table
Add a link
Reference in a new issue