Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
|
@ -0,0 +1,77 @@
|
|||
"""
|
||||
Feature agglomeration. Base classes and functions for performing feature
|
||||
agglomeration.
|
||||
"""
|
||||
# Author: V. Michel, A. Gramfort
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..base import TransformerMixin
|
||||
from ..utils import check_array
|
||||
from ..utils.validation import check_is_fitted
|
||||
from scipy.sparse import issparse
|
||||
|
||||
###############################################################################
|
||||
# Mixin class for feature agglomeration.
|
||||
|
||||
|
||||
class AgglomerationTransform(TransformerMixin):
|
||||
"""
|
||||
A class for feature agglomeration via the transform interface
|
||||
"""
|
||||
|
||||
def transform(self, X):
|
||||
"""
|
||||
Transform a new matrix using the built clustering
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or (n_samples,)
|
||||
A M by N array of M observations in N dimensions or a length
|
||||
M array of M one-dimensional observations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Y : array, shape = [n_samples, n_clusters] or [n_clusters]
|
||||
The pooled values for each feature cluster.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X)
|
||||
if len(self.labels_) != X.shape[1]:
|
||||
raise ValueError("X has a different number of features than "
|
||||
"during fitting.")
|
||||
if self.pooling_func == np.mean and not issparse(X):
|
||||
size = np.bincount(self.labels_)
|
||||
n_samples = X.shape[0]
|
||||
# a fast way to compute the mean of grouped features
|
||||
nX = np.array([np.bincount(self.labels_, X[i, :]) / size
|
||||
for i in range(n_samples)])
|
||||
else:
|
||||
nX = [self.pooling_func(X[:, self.labels_ == l], axis=1)
|
||||
for l in np.unique(self.labels_)]
|
||||
nX = np.array(nX).T
|
||||
return nX
|
||||
|
||||
def inverse_transform(self, Xred):
|
||||
"""
|
||||
Inverse the transformation.
|
||||
Return a vector of size nb_features with the values of Xred assigned
|
||||
to each group of features
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Xred : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||||
The values to be assigned to each cluster of samples
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : array, shape=[n_samples, n_features] or [n_features]
|
||||
A vector of size n_samples with the values of Xred assigned to
|
||||
each of the cluster of samples.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
unil, inverse = np.unique(self.labels_, return_inverse=True)
|
||||
return Xred[..., inverse]
|
Loading…
Add table
Add a link
Reference in a new issue