Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
42
venv/Lib/site-packages/sklearn/cluster/__init__.py
Normal file
42
venv/Lib/site-packages/sklearn/cluster/__init__.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
"""
|
||||
The :mod:`sklearn.cluster` module gathers popular unsupervised clustering
|
||||
algorithms.
|
||||
"""
|
||||
|
||||
from ._spectral import spectral_clustering, SpectralClustering
|
||||
from ._mean_shift import (mean_shift, MeanShift,
|
||||
estimate_bandwidth, get_bin_seeds)
|
||||
from ._affinity_propagation import affinity_propagation, AffinityPropagation
|
||||
from ._agglomerative import (ward_tree, AgglomerativeClustering,
|
||||
linkage_tree, FeatureAgglomeration)
|
||||
from ._kmeans import k_means, KMeans, MiniBatchKMeans
|
||||
from ._dbscan import dbscan, DBSCAN
|
||||
from ._optics import (OPTICS, cluster_optics_dbscan, compute_optics_graph,
|
||||
cluster_optics_xi)
|
||||
from ._bicluster import SpectralBiclustering, SpectralCoclustering
|
||||
from ._birch import Birch
|
||||
|
||||
__all__ = ['AffinityPropagation',
|
||||
'AgglomerativeClustering',
|
||||
'Birch',
|
||||
'DBSCAN',
|
||||
'OPTICS',
|
||||
'cluster_optics_dbscan',
|
||||
'cluster_optics_xi',
|
||||
'compute_optics_graph',
|
||||
'KMeans',
|
||||
'FeatureAgglomeration',
|
||||
'MeanShift',
|
||||
'MiniBatchKMeans',
|
||||
'SpectralClustering',
|
||||
'affinity_propagation',
|
||||
'dbscan',
|
||||
'estimate_bandwidth',
|
||||
'get_bin_seeds',
|
||||
'k_means',
|
||||
'linkage_tree',
|
||||
'mean_shift',
|
||||
'spectral_clustering',
|
||||
'ward_tree',
|
||||
'SpectralBiclustering',
|
||||
'SpectralCoclustering']
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
474
venv/Lib/site-packages/sklearn/cluster/_affinity_propagation.py
Normal file
474
venv/Lib/site-packages/sklearn/cluster/_affinity_propagation.py
Normal file
|
@ -0,0 +1,474 @@
|
|||
"""Affinity Propagation clustering algorithm."""
|
||||
|
||||
# Author: Alexandre Gramfort alexandre.gramfort@inria.fr
|
||||
# Gael Varoquaux gael.varoquaux@normalesup.org
|
||||
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
import warnings
|
||||
|
||||
from ..exceptions import ConvergenceWarning
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..utils import as_float_array, check_array, check_random_state
|
||||
from ..utils.validation import check_is_fitted, _deprecate_positional_args
|
||||
from ..metrics import euclidean_distances
|
||||
from ..metrics import pairwise_distances_argmin
|
||||
|
||||
|
||||
def _equal_similarities_and_preferences(S, preference):
|
||||
def all_equal_preferences():
|
||||
return np.all(preference == preference.flat[0])
|
||||
|
||||
def all_equal_similarities():
|
||||
# Create mask to ignore diagonal of S
|
||||
mask = np.ones(S.shape, dtype=bool)
|
||||
np.fill_diagonal(mask, 0)
|
||||
|
||||
return np.all(S[mask].flat == S[mask].flat[0])
|
||||
|
||||
return all_equal_preferences() and all_equal_similarities()
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def affinity_propagation(S, *, preference=None, convergence_iter=15,
|
||||
max_iter=200, damping=0.5, copy=True, verbose=False,
|
||||
return_n_iter=False, random_state='warn'):
|
||||
"""Perform Affinity Propagation Clustering of data
|
||||
|
||||
Read more in the :ref:`User Guide <affinity_propagation>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
S : array-like, shape (n_samples, n_samples)
|
||||
Matrix of similarities between points
|
||||
|
||||
preference : array-like, shape (n_samples,) or float, optional
|
||||
Preferences for each point - points with larger values of
|
||||
preferences are more likely to be chosen as exemplars. The number of
|
||||
exemplars, i.e. of clusters, is influenced by the input preferences
|
||||
value. If the preferences are not passed as arguments, they will be
|
||||
set to the median of the input similarities (resulting in a moderate
|
||||
number of clusters). For a smaller amount of clusters, this can be set
|
||||
to the minimum value of the similarities.
|
||||
|
||||
convergence_iter : int, optional, default: 15
|
||||
Number of iterations with no change in the number
|
||||
of estimated clusters that stops the convergence.
|
||||
|
||||
max_iter : int, optional, default: 200
|
||||
Maximum number of iterations
|
||||
|
||||
damping : float, optional, default: 0.5
|
||||
Damping factor between 0.5 and 1.
|
||||
|
||||
copy : boolean, optional, default: True
|
||||
If copy is False, the affinity matrix is modified inplace by the
|
||||
algorithm, for memory efficiency
|
||||
|
||||
verbose : boolean, optional, default: False
|
||||
The verbosity level
|
||||
|
||||
return_n_iter : bool, default False
|
||||
Whether or not to return the number of iterations.
|
||||
|
||||
random_state : int or np.random.RandomStateInstance, default: 0
|
||||
Pseudo-random number generator to control the starting state.
|
||||
Use an int for reproducible results across function calls.
|
||||
See the :term:`Glossary <random_state>`.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
this parameter was previously hardcoded as 0.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
||||
cluster_centers_indices : array, shape (n_clusters,)
|
||||
index of clusters centers
|
||||
|
||||
labels : array, shape (n_samples,)
|
||||
cluster labels for each point
|
||||
|
||||
n_iter : int
|
||||
number of iterations run. Returned only if `return_n_iter` is
|
||||
set to True.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
|
||||
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
|
||||
|
||||
When the algorithm does not converge, it returns an empty array as
|
||||
``cluster_center_indices`` and ``-1`` as label for each training sample.
|
||||
|
||||
When all training samples have equal similarities and equal preferences,
|
||||
the assignment of cluster centers and labels depends on the preference.
|
||||
If the preference is smaller than the similarities, a single cluster center
|
||||
and label ``0`` for every sample will be returned. Otherwise, every
|
||||
training sample becomes its own cluster center and is assigned a unique
|
||||
label.
|
||||
|
||||
References
|
||||
----------
|
||||
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
|
||||
Between Data Points", Science Feb. 2007
|
||||
"""
|
||||
S = as_float_array(S, copy=copy)
|
||||
n_samples = S.shape[0]
|
||||
|
||||
if S.shape[0] != S.shape[1]:
|
||||
raise ValueError("S must be a square array (shape=%s)" % repr(S.shape))
|
||||
|
||||
if preference is None:
|
||||
preference = np.median(S)
|
||||
if damping < 0.5 or damping >= 1:
|
||||
raise ValueError('damping must be >= 0.5 and < 1')
|
||||
|
||||
preference = np.array(preference)
|
||||
|
||||
if (n_samples == 1 or
|
||||
_equal_similarities_and_preferences(S, preference)):
|
||||
# It makes no sense to run the algorithm in this case, so return 1 or
|
||||
# n_samples clusters, depending on preferences
|
||||
warnings.warn("All samples have mutually equal similarities. "
|
||||
"Returning arbitrary cluster center(s).")
|
||||
if preference.flat[0] >= S.flat[n_samples - 1]:
|
||||
return ((np.arange(n_samples), np.arange(n_samples), 0)
|
||||
if return_n_iter
|
||||
else (np.arange(n_samples), np.arange(n_samples)))
|
||||
else:
|
||||
return ((np.array([0]), np.array([0] * n_samples), 0)
|
||||
if return_n_iter
|
||||
else (np.array([0]), np.array([0] * n_samples)))
|
||||
|
||||
if random_state == 'warn':
|
||||
warnings.warn(("'random_state' has been introduced in 0.23. "
|
||||
"It will be set to None starting from 0.25 which "
|
||||
"means that results will differ at every function "
|
||||
"call. Set 'random_state' to None to silence this "
|
||||
"warning, or to 0 to keep the behavior of versions "
|
||||
"<0.23."),
|
||||
FutureWarning)
|
||||
random_state = 0
|
||||
random_state = check_random_state(random_state)
|
||||
|
||||
# Place preference on the diagonal of S
|
||||
S.flat[::(n_samples + 1)] = preference
|
||||
|
||||
A = np.zeros((n_samples, n_samples))
|
||||
R = np.zeros((n_samples, n_samples)) # Initialize messages
|
||||
# Intermediate results
|
||||
tmp = np.zeros((n_samples, n_samples))
|
||||
|
||||
# Remove degeneracies
|
||||
S += ((np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100) *
|
||||
random_state.randn(n_samples, n_samples))
|
||||
|
||||
# Execute parallel affinity propagation updates
|
||||
e = np.zeros((n_samples, convergence_iter))
|
||||
|
||||
ind = np.arange(n_samples)
|
||||
|
||||
for it in range(max_iter):
|
||||
# tmp = A + S; compute responsibilities
|
||||
np.add(A, S, tmp)
|
||||
I = np.argmax(tmp, axis=1)
|
||||
Y = tmp[ind, I] # np.max(A + S, axis=1)
|
||||
tmp[ind, I] = -np.inf
|
||||
Y2 = np.max(tmp, axis=1)
|
||||
|
||||
# tmp = Rnew
|
||||
np.subtract(S, Y[:, None], tmp)
|
||||
tmp[ind, I] = S[ind, I] - Y2
|
||||
|
||||
# Damping
|
||||
tmp *= 1 - damping
|
||||
R *= damping
|
||||
R += tmp
|
||||
|
||||
# tmp = Rp; compute availabilities
|
||||
np.maximum(R, 0, tmp)
|
||||
tmp.flat[::n_samples + 1] = R.flat[::n_samples + 1]
|
||||
|
||||
# tmp = -Anew
|
||||
tmp -= np.sum(tmp, axis=0)
|
||||
dA = np.diag(tmp).copy()
|
||||
tmp.clip(0, np.inf, tmp)
|
||||
tmp.flat[::n_samples + 1] = dA
|
||||
|
||||
# Damping
|
||||
tmp *= 1 - damping
|
||||
A *= damping
|
||||
A -= tmp
|
||||
|
||||
# Check for convergence
|
||||
E = (np.diag(A) + np.diag(R)) > 0
|
||||
e[:, it % convergence_iter] = E
|
||||
K = np.sum(E, axis=0)
|
||||
|
||||
if it >= convergence_iter:
|
||||
se = np.sum(e, axis=1)
|
||||
unconverged = (np.sum((se == convergence_iter) + (se == 0))
|
||||
!= n_samples)
|
||||
if (not unconverged and (K > 0)) or (it == max_iter):
|
||||
never_converged = False
|
||||
if verbose:
|
||||
print("Converged after %d iterations." % it)
|
||||
break
|
||||
else:
|
||||
never_converged = True
|
||||
if verbose:
|
||||
print("Did not converge")
|
||||
|
||||
I = np.flatnonzero(E)
|
||||
K = I.size # Identify exemplars
|
||||
|
||||
if K > 0 and not never_converged:
|
||||
c = np.argmax(S[:, I], axis=1)
|
||||
c[I] = np.arange(K) # Identify clusters
|
||||
# Refine the final set of exemplars and clusters and return results
|
||||
for k in range(K):
|
||||
ii = np.where(c == k)[0]
|
||||
j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0))
|
||||
I[k] = ii[j]
|
||||
|
||||
c = np.argmax(S[:, I], axis=1)
|
||||
c[I] = np.arange(K)
|
||||
labels = I[c]
|
||||
# Reduce labels to a sorted, gapless, list
|
||||
cluster_centers_indices = np.unique(labels)
|
||||
labels = np.searchsorted(cluster_centers_indices, labels)
|
||||
else:
|
||||
warnings.warn("Affinity propagation did not converge, this model "
|
||||
"will not have any cluster centers.", ConvergenceWarning)
|
||||
labels = np.array([-1] * n_samples)
|
||||
cluster_centers_indices = []
|
||||
|
||||
if return_n_iter:
|
||||
return cluster_centers_indices, labels, it + 1
|
||||
else:
|
||||
return cluster_centers_indices, labels
|
||||
|
||||
|
||||
###############################################################################
|
||||
|
||||
class AffinityPropagation(ClusterMixin, BaseEstimator):
|
||||
"""Perform Affinity Propagation Clustering of data.
|
||||
|
||||
Read more in the :ref:`User Guide <affinity_propagation>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
damping : float, default=0.5
|
||||
Damping factor (between 0.5 and 1) is the extent to
|
||||
which the current value is maintained relative to
|
||||
incoming values (weighted 1 - damping). This in order
|
||||
to avoid numerical oscillations when updating these
|
||||
values (messages).
|
||||
|
||||
max_iter : int, default=200
|
||||
Maximum number of iterations.
|
||||
|
||||
convergence_iter : int, default=15
|
||||
Number of iterations with no change in the number
|
||||
of estimated clusters that stops the convergence.
|
||||
|
||||
copy : bool, default=True
|
||||
Make a copy of input data.
|
||||
|
||||
preference : array-like of shape (n_samples,) or float, default=None
|
||||
Preferences for each point - points with larger values of
|
||||
preferences are more likely to be chosen as exemplars. The number
|
||||
of exemplars, ie of clusters, is influenced by the input
|
||||
preferences value. If the preferences are not passed as arguments,
|
||||
they will be set to the median of the input similarities.
|
||||
|
||||
affinity : {'euclidean', 'precomputed'}, default='euclidean'
|
||||
Which affinity to use. At the moment 'precomputed' and
|
||||
``euclidean`` are supported. 'euclidean' uses the
|
||||
negative squared euclidean distance between points.
|
||||
|
||||
verbose : bool, default=False
|
||||
Whether to be verbose.
|
||||
|
||||
random_state : int or np.random.RandomStateInstance, default: 0
|
||||
Pseudo-random number generator to control the starting state.
|
||||
Use an int for reproducible results across function calls.
|
||||
See the :term:`Glossary <random_state>`.
|
||||
|
||||
.. versionadded:: 0.23
|
||||
this parameter was previously hardcoded as 0.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
cluster_centers_indices_ : ndarray of shape (n_clusters,)
|
||||
Indices of cluster centers
|
||||
|
||||
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
||||
Cluster centers (if affinity != ``precomputed``).
|
||||
|
||||
labels_ : ndarray of shape (n_samples,)
|
||||
Labels of each point
|
||||
|
||||
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
|
||||
Stores the affinity matrix used in ``fit``.
|
||||
|
||||
n_iter_ : int
|
||||
Number of iterations taken to converge.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
|
||||
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
|
||||
|
||||
The algorithmic complexity of affinity propagation is quadratic
|
||||
in the number of points.
|
||||
|
||||
When ``fit`` does not converge, ``cluster_centers_`` becomes an empty
|
||||
array and all training samples will be labelled as ``-1``. In addition,
|
||||
``predict`` will then label every sample as ``-1``.
|
||||
|
||||
When all training samples have equal similarities and equal preferences,
|
||||
the assignment of cluster centers and labels depends on the preference.
|
||||
If the preference is smaller than the similarities, ``fit`` will result in
|
||||
a single cluster center and label ``0`` for every sample. Otherwise, every
|
||||
training sample becomes its own cluster center and is assigned a unique
|
||||
label.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
|
||||
Between Data Points", Science Feb. 2007
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import AffinityPropagation
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
||||
... [4, 2], [4, 4], [4, 0]])
|
||||
>>> clustering = AffinityPropagation(random_state=5).fit(X)
|
||||
>>> clustering
|
||||
AffinityPropagation(random_state=5)
|
||||
>>> clustering.labels_
|
||||
array([0, 0, 0, 1, 1, 1])
|
||||
>>> clustering.predict([[0, 0], [4, 4]])
|
||||
array([0, 1])
|
||||
>>> clustering.cluster_centers_
|
||||
array([[1, 2],
|
||||
[4, 2]])
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, damping=.5, max_iter=200, convergence_iter=15,
|
||||
copy=True, preference=None, affinity='euclidean',
|
||||
verbose=False, random_state='warn'):
|
||||
|
||||
self.damping = damping
|
||||
self.max_iter = max_iter
|
||||
self.convergence_iter = convergence_iter
|
||||
self.copy = copy
|
||||
self.verbose = verbose
|
||||
self.preference = preference
|
||||
self.affinity = affinity
|
||||
self.random_state = random_state
|
||||
|
||||
@property
|
||||
def _pairwise(self):
|
||||
return self.affinity == "precomputed"
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Fit the clustering from features, or affinity matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape (n_samples, n_features), or \
|
||||
array-like, shape (n_samples, n_samples)
|
||||
Training instances to cluster, or similarities / affinities between
|
||||
instances if ``affinity='precomputed'``. If a sparse feature matrix
|
||||
is provided, it will be converted into a sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
|
||||
"""
|
||||
if self.affinity == "precomputed":
|
||||
accept_sparse = False
|
||||
else:
|
||||
accept_sparse = 'csr'
|
||||
X = self._validate_data(X, accept_sparse=accept_sparse)
|
||||
if self.affinity == "precomputed":
|
||||
self.affinity_matrix_ = X
|
||||
elif self.affinity == "euclidean":
|
||||
self.affinity_matrix_ = -euclidean_distances(X, squared=True)
|
||||
else:
|
||||
raise ValueError("Affinity must be 'precomputed' or "
|
||||
"'euclidean'. Got %s instead"
|
||||
% str(self.affinity))
|
||||
|
||||
self.cluster_centers_indices_, self.labels_, self.n_iter_ = \
|
||||
affinity_propagation(
|
||||
self.affinity_matrix_, preference=self.preference,
|
||||
max_iter=self.max_iter,
|
||||
convergence_iter=self.convergence_iter, damping=self.damping,
|
||||
copy=self.copy, verbose=self.verbose, return_n_iter=True,
|
||||
random_state=self.random_state)
|
||||
|
||||
if self.affinity != "precomputed":
|
||||
self.cluster_centers_ = X[self.cluster_centers_indices_].copy()
|
||||
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
"""Predict the closest cluster each sample in X belongs to.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape (n_samples, n_features)
|
||||
New data to predict. If a sparse matrix is provided, it will be
|
||||
converted into a sparse ``csr_matrix``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray, shape (n_samples,)
|
||||
Cluster labels.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
X = check_array(X)
|
||||
if not hasattr(self, "cluster_centers_"):
|
||||
raise ValueError("Predict method is not supported when "
|
||||
"affinity='precomputed'.")
|
||||
|
||||
if self.cluster_centers_.shape[0] > 0:
|
||||
return pairwise_distances_argmin(X, self.cluster_centers_)
|
||||
else:
|
||||
warnings.warn("This model does not have any cluster centers "
|
||||
"because affinity propagation did not converge. "
|
||||
"Labeling every sample as '-1'.", ConvergenceWarning)
|
||||
return np.array([-1] * X.shape[0])
|
||||
|
||||
def fit_predict(self, X, y=None):
|
||||
"""Fit the clustering from features or affinity matrix, and return
|
||||
cluster labels.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape (n_samples, n_features), or \
|
||||
array-like, shape (n_samples, n_samples)
|
||||
Training instances to cluster, or similarities / affinities between
|
||||
instances if ``affinity='precomputed'``. If a sparse feature matrix
|
||||
is provided, it will be converted into a sparse ``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray, shape (n_samples,)
|
||||
Cluster labels.
|
||||
"""
|
||||
return super().fit_predict(X, y)
|
1079
venv/Lib/site-packages/sklearn/cluster/_agglomerative.py
Normal file
1079
venv/Lib/site-packages/sklearn/cluster/_agglomerative.py
Normal file
File diff suppressed because it is too large
Load diff
546
venv/Lib/site-packages/sklearn/cluster/_bicluster.py
Normal file
546
venv/Lib/site-packages/sklearn/cluster/_bicluster.py
Normal file
|
@ -0,0 +1,546 @@
|
|||
"""Spectral biclustering algorithms."""
|
||||
# Authors : Kemal Eren
|
||||
# License: BSD 3 clause
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy.linalg import norm
|
||||
from scipy.sparse import dia_matrix, issparse
|
||||
from scipy.sparse.linalg import eigsh, svds
|
||||
|
||||
from . import KMeans, MiniBatchKMeans
|
||||
from ..base import BaseEstimator, BiclusterMixin
|
||||
from ..utils import check_random_state
|
||||
|
||||
from ..utils.extmath import (make_nonnegative, randomized_svd,
|
||||
safe_sparse_dot)
|
||||
|
||||
from ..utils.validation import assert_all_finite, _deprecate_positional_args
|
||||
|
||||
|
||||
__all__ = ['SpectralCoclustering',
|
||||
'SpectralBiclustering']
|
||||
|
||||
|
||||
def _scale_normalize(X):
|
||||
"""Normalize ``X`` by scaling rows and columns independently.
|
||||
|
||||
Returns the normalized matrix and the row and column scaling
|
||||
factors.
|
||||
|
||||
"""
|
||||
X = make_nonnegative(X)
|
||||
row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze()
|
||||
col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze()
|
||||
row_diag = np.where(np.isnan(row_diag), 0, row_diag)
|
||||
col_diag = np.where(np.isnan(col_diag), 0, col_diag)
|
||||
if issparse(X):
|
||||
n_rows, n_cols = X.shape
|
||||
r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows))
|
||||
c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols))
|
||||
an = r * X * c
|
||||
else:
|
||||
an = row_diag[:, np.newaxis] * X * col_diag
|
||||
return an, row_diag, col_diag
|
||||
|
||||
|
||||
def _bistochastic_normalize(X, max_iter=1000, tol=1e-5):
|
||||
"""Normalize rows and columns of ``X`` simultaneously so that all
|
||||
rows sum to one constant and all columns sum to a different
|
||||
constant.
|
||||
|
||||
"""
|
||||
# According to paper, this can also be done more efficiently with
|
||||
# deviation reduction and balancing algorithms.
|
||||
X = make_nonnegative(X)
|
||||
X_scaled = X
|
||||
for _ in range(max_iter):
|
||||
X_new, _, _ = _scale_normalize(X_scaled)
|
||||
if issparse(X):
|
||||
dist = norm(X_scaled.data - X.data)
|
||||
else:
|
||||
dist = norm(X_scaled - X_new)
|
||||
X_scaled = X_new
|
||||
if dist is not None and dist < tol:
|
||||
break
|
||||
return X_scaled
|
||||
|
||||
|
||||
def _log_normalize(X):
|
||||
"""Normalize ``X`` according to Kluger's log-interactions scheme."""
|
||||
X = make_nonnegative(X, min_value=1)
|
||||
if issparse(X):
|
||||
raise ValueError("Cannot compute log of a sparse matrix,"
|
||||
" because log(x) diverges to -infinity as x"
|
||||
" goes to 0.")
|
||||
L = np.log(X)
|
||||
row_avg = L.mean(axis=1)[:, np.newaxis]
|
||||
col_avg = L.mean(axis=0)
|
||||
avg = L.mean()
|
||||
return L - row_avg - col_avg + avg
|
||||
|
||||
|
||||
class BaseSpectral(BiclusterMixin, BaseEstimator, metaclass=ABCMeta):
|
||||
"""Base class for spectral biclustering."""
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, n_clusters=3, svd_method="randomized",
|
||||
n_svd_vecs=None, mini_batch=False, init="k-means++",
|
||||
n_init=10, n_jobs='deprecated', random_state=None):
|
||||
self.n_clusters = n_clusters
|
||||
self.svd_method = svd_method
|
||||
self.n_svd_vecs = n_svd_vecs
|
||||
self.mini_batch = mini_batch
|
||||
self.init = init
|
||||
self.n_init = n_init
|
||||
self.n_jobs = n_jobs
|
||||
self.random_state = random_state
|
||||
|
||||
def _check_parameters(self):
|
||||
legal_svd_methods = ('randomized', 'arpack')
|
||||
if self.svd_method not in legal_svd_methods:
|
||||
raise ValueError("Unknown SVD method: '{0}'. svd_method must be"
|
||||
" one of {1}.".format(self.svd_method,
|
||||
legal_svd_methods))
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Creates a biclustering for X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
|
||||
y : Ignored
|
||||
|
||||
"""
|
||||
if self.n_jobs != 'deprecated':
|
||||
warnings.warn("'n_jobs' was deprecated in version 0.23 and will be"
|
||||
" removed in 0.25.", FutureWarning)
|
||||
|
||||
X = self._validate_data(X, accept_sparse='csr', dtype=np.float64)
|
||||
self._check_parameters()
|
||||
self._fit(X)
|
||||
return self
|
||||
|
||||
def _svd(self, array, n_components, n_discard):
|
||||
"""Returns first `n_components` left and right singular
|
||||
vectors u and v, discarding the first `n_discard`.
|
||||
|
||||
"""
|
||||
if self.svd_method == 'randomized':
|
||||
kwargs = {}
|
||||
if self.n_svd_vecs is not None:
|
||||
kwargs['n_oversamples'] = self.n_svd_vecs
|
||||
u, _, vt = randomized_svd(array, n_components,
|
||||
random_state=self.random_state,
|
||||
**kwargs)
|
||||
|
||||
elif self.svd_method == 'arpack':
|
||||
u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs)
|
||||
if np.any(np.isnan(vt)):
|
||||
# some eigenvalues of A * A.T are negative, causing
|
||||
# sqrt() to be np.nan. This causes some vectors in vt
|
||||
# to be np.nan.
|
||||
A = safe_sparse_dot(array.T, array)
|
||||
random_state = check_random_state(self.random_state)
|
||||
# initialize with [-1,1] as in ARPACK
|
||||
v0 = random_state.uniform(-1, 1, A.shape[0])
|
||||
_, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0)
|
||||
vt = v.T
|
||||
if np.any(np.isnan(u)):
|
||||
A = safe_sparse_dot(array, array.T)
|
||||
random_state = check_random_state(self.random_state)
|
||||
# initialize with [-1,1] as in ARPACK
|
||||
v0 = random_state.uniform(-1, 1, A.shape[0])
|
||||
_, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0)
|
||||
|
||||
assert_all_finite(u)
|
||||
assert_all_finite(vt)
|
||||
u = u[:, n_discard:]
|
||||
vt = vt[n_discard:]
|
||||
return u, vt.T
|
||||
|
||||
def _k_means(self, data, n_clusters):
|
||||
if self.mini_batch:
|
||||
model = MiniBatchKMeans(n_clusters,
|
||||
init=self.init,
|
||||
n_init=self.n_init,
|
||||
random_state=self.random_state)
|
||||
else:
|
||||
model = KMeans(n_clusters, init=self.init,
|
||||
n_init=self.n_init, n_jobs=self.n_jobs,
|
||||
random_state=self.random_state)
|
||||
model.fit(data)
|
||||
centroid = model.cluster_centers_
|
||||
labels = model.labels_
|
||||
return centroid, labels
|
||||
|
||||
|
||||
class SpectralCoclustering(BaseSpectral):
|
||||
"""Spectral Co-Clustering algorithm (Dhillon, 2001).
|
||||
|
||||
Clusters rows and columns of an array `X` to solve the relaxed
|
||||
normalized cut of the bipartite graph created from `X` as follows:
|
||||
the edge between row vertex `i` and column vertex `j` has weight
|
||||
`X[i, j]`.
|
||||
|
||||
The resulting bicluster structure is block-diagonal, since each
|
||||
row and each column belongs to exactly one bicluster.
|
||||
|
||||
Supports sparse matrices, as long as they are nonnegative.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_coclustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_clusters : int, default=3
|
||||
The number of biclusters to find.
|
||||
|
||||
svd_method : {'randomized', 'arpack'}, default='randomized'
|
||||
Selects the algorithm for finding singular vectors. May be
|
||||
'randomized' or 'arpack'. If 'randomized', use
|
||||
:func:`sklearn.utils.extmath.randomized_svd`, which may be faster
|
||||
for large matrices. If 'arpack', use
|
||||
:func:`scipy.sparse.linalg.svds`, which is more accurate, but
|
||||
possibly slower in some cases.
|
||||
|
||||
n_svd_vecs : int, default=None
|
||||
Number of vectors to use in calculating the SVD. Corresponds
|
||||
to `ncv` when `svd_method=arpack` and `n_oversamples` when
|
||||
`svd_method` is 'randomized`.
|
||||
|
||||
mini_batch : bool, default=False
|
||||
Whether to use mini-batch k-means, which is faster but may get
|
||||
different results.
|
||||
|
||||
init : {'k-means++', 'random', or ndarray of shape \
|
||||
(n_clusters, n_features), default='k-means++'
|
||||
Method for initialization of k-means algorithm; defaults to
|
||||
'k-means++'.
|
||||
|
||||
n_init : int, default=10
|
||||
Number of random initializations that are tried with the
|
||||
k-means algorithm.
|
||||
|
||||
If mini-batch k-means is used, the best initialization is
|
||||
chosen and the algorithm runs once. Otherwise, the algorithm
|
||||
is run for each initialization and the best solution chosen.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of jobs to use for the computation. This works by breaking
|
||||
down the pairwise matrix into n_jobs even slices and computing them in
|
||||
parallel.
|
||||
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
.. deprecated:: 0.23
|
||||
``n_jobs`` was deprecated in version 0.23 and will be removed in
|
||||
0.25.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used for randomizing the singular value decomposition and the k-means
|
||||
initialization. Use an int to make the randomness deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
rows_ : array-like of shape (n_row_clusters, n_rows)
|
||||
Results of the clustering. `rows[i, r]` is True if
|
||||
cluster `i` contains row `r`. Available only after calling ``fit``.
|
||||
|
||||
columns_ : array-like of shape (n_column_clusters, n_columns)
|
||||
Results of the clustering, like `rows`.
|
||||
|
||||
row_labels_ : array-like of shape (n_rows,)
|
||||
The bicluster label of each row.
|
||||
|
||||
column_labels_ : array-like of shape (n_cols,)
|
||||
The bicluster label of each column.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import SpectralCoclustering
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X)
|
||||
>>> clustering.row_labels_ #doctest: +SKIP
|
||||
array([0, 1, 1, 0, 0, 0], dtype=int32)
|
||||
>>> clustering.column_labels_ #doctest: +SKIP
|
||||
array([0, 0], dtype=int32)
|
||||
>>> clustering
|
||||
SpectralCoclustering(n_clusters=2, random_state=0)
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
* Dhillon, Inderjit S, 2001. `Co-clustering documents and words using
|
||||
bipartite spectral graph partitioning
|
||||
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__.
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_clusters=3, *, svd_method='randomized',
|
||||
n_svd_vecs=None, mini_batch=False, init='k-means++',
|
||||
n_init=10, n_jobs='deprecated', random_state=None):
|
||||
super().__init__(n_clusters,
|
||||
svd_method,
|
||||
n_svd_vecs,
|
||||
mini_batch,
|
||||
init,
|
||||
n_init,
|
||||
n_jobs,
|
||||
random_state)
|
||||
|
||||
def _fit(self, X):
|
||||
normalized_data, row_diag, col_diag = _scale_normalize(X)
|
||||
n_sv = 1 + int(np.ceil(np.log2(self.n_clusters)))
|
||||
u, v = self._svd(normalized_data, n_sv, n_discard=1)
|
||||
z = np.vstack((row_diag[:, np.newaxis] * u,
|
||||
col_diag[:, np.newaxis] * v))
|
||||
|
||||
_, labels = self._k_means(z, self.n_clusters)
|
||||
|
||||
n_rows = X.shape[0]
|
||||
self.row_labels_ = labels[:n_rows]
|
||||
self.column_labels_ = labels[n_rows:]
|
||||
|
||||
self.rows_ = np.vstack([self.row_labels_ == c
|
||||
for c in range(self.n_clusters)])
|
||||
self.columns_ = np.vstack([self.column_labels_ == c
|
||||
for c in range(self.n_clusters)])
|
||||
|
||||
|
||||
class SpectralBiclustering(BaseSpectral):
|
||||
"""Spectral biclustering (Kluger, 2003).
|
||||
|
||||
Partitions rows and columns under the assumption that the data has
|
||||
an underlying checkerboard structure. For instance, if there are
|
||||
two row partitions and three column partitions, each row will
|
||||
belong to three biclusters, and each column will belong to two
|
||||
biclusters. The outer product of the corresponding row and column
|
||||
label vectors gives this checkerboard structure.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_biclustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_clusters : int or tuple (n_row_clusters, n_column_clusters), default=3
|
||||
The number of row and column clusters in the checkerboard
|
||||
structure.
|
||||
|
||||
method : {'bistochastic', 'scale', 'log'}, default='bistochastic'
|
||||
Method of normalizing and converting singular vectors into
|
||||
biclusters. May be one of 'scale', 'bistochastic', or 'log'.
|
||||
The authors recommend using 'log'. If the data is sparse,
|
||||
however, log normalization will not work, which is why the
|
||||
default is 'bistochastic'.
|
||||
|
||||
.. warning::
|
||||
if `method='log'`, the data must be sparse.
|
||||
|
||||
n_components : int, default=6
|
||||
Number of singular vectors to check.
|
||||
|
||||
n_best : int, default=3
|
||||
Number of best singular vectors to which to project the data
|
||||
for clustering.
|
||||
|
||||
svd_method : {'randomized', 'arpack'}, default='randomized'
|
||||
Selects the algorithm for finding singular vectors. May be
|
||||
'randomized' or 'arpack'. If 'randomized', uses
|
||||
:func:`~sklearn.utils.extmath.randomized_svd`, which may be faster
|
||||
for large matrices. If 'arpack', uses
|
||||
`scipy.sparse.linalg.svds`, which is more accurate, but
|
||||
possibly slower in some cases.
|
||||
|
||||
n_svd_vecs : int, default=None
|
||||
Number of vectors to use in calculating the SVD. Corresponds
|
||||
to `ncv` when `svd_method=arpack` and `n_oversamples` when
|
||||
`svd_method` is 'randomized`.
|
||||
|
||||
mini_batch : bool, default=False
|
||||
Whether to use mini-batch k-means, which is faster but may get
|
||||
different results.
|
||||
|
||||
init : {'k-means++', 'random'} or ndarray of (n_clusters, n_features), \
|
||||
default='k-means++'
|
||||
Method for initialization of k-means algorithm; defaults to
|
||||
'k-means++'.
|
||||
|
||||
n_init : int, default=10
|
||||
Number of random initializations that are tried with the
|
||||
k-means algorithm.
|
||||
|
||||
If mini-batch k-means is used, the best initialization is
|
||||
chosen and the algorithm runs once. Otherwise, the algorithm
|
||||
is run for each initialization and the best solution chosen.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of jobs to use for the computation. This works by breaking
|
||||
down the pairwise matrix into n_jobs even slices and computing them in
|
||||
parallel.
|
||||
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
.. deprecated:: 0.23
|
||||
``n_jobs`` was deprecated in version 0.23 and will be removed in
|
||||
0.25.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Used for randomizing the singular value decomposition and the k-means
|
||||
initialization. Use an int to make the randomness deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
rows_ : array-like of shape (n_row_clusters, n_rows)
|
||||
Results of the clustering. `rows[i, r]` is True if
|
||||
cluster `i` contains row `r`. Available only after calling ``fit``.
|
||||
|
||||
columns_ : array-like of shape (n_column_clusters, n_columns)
|
||||
Results of the clustering, like `rows`.
|
||||
|
||||
row_labels_ : array-like of shape (n_rows,)
|
||||
Row partition labels.
|
||||
|
||||
column_labels_ : array-like of shape (n_cols,)
|
||||
Column partition labels.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import SpectralBiclustering
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = SpectralBiclustering(n_clusters=2, random_state=0).fit(X)
|
||||
>>> clustering.row_labels_
|
||||
array([1, 1, 1, 0, 0, 0], dtype=int32)
|
||||
>>> clustering.column_labels_
|
||||
array([0, 1], dtype=int32)
|
||||
>>> clustering
|
||||
SpectralBiclustering(n_clusters=2, random_state=0)
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
* Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray
|
||||
data: coclustering genes and conditions
|
||||
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__.
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_clusters=3, *, method='bistochastic',
|
||||
n_components=6, n_best=3, svd_method='randomized',
|
||||
n_svd_vecs=None, mini_batch=False, init='k-means++',
|
||||
n_init=10, n_jobs='deprecated', random_state=None):
|
||||
super().__init__(n_clusters,
|
||||
svd_method,
|
||||
n_svd_vecs,
|
||||
mini_batch,
|
||||
init,
|
||||
n_init,
|
||||
n_jobs,
|
||||
random_state)
|
||||
self.method = method
|
||||
self.n_components = n_components
|
||||
self.n_best = n_best
|
||||
|
||||
def _check_parameters(self):
|
||||
super()._check_parameters()
|
||||
legal_methods = ('bistochastic', 'scale', 'log')
|
||||
if self.method not in legal_methods:
|
||||
raise ValueError("Unknown method: '{0}'. method must be"
|
||||
" one of {1}.".format(self.method, legal_methods))
|
||||
try:
|
||||
int(self.n_clusters)
|
||||
except TypeError:
|
||||
try:
|
||||
r, c = self.n_clusters
|
||||
int(r)
|
||||
int(c)
|
||||
except (ValueError, TypeError):
|
||||
raise ValueError("Incorrect parameter n_clusters has value:"
|
||||
" {}. It should either be a single integer"
|
||||
" or an iterable with two integers:"
|
||||
" (n_row_clusters, n_column_clusters)")
|
||||
if self.n_components < 1:
|
||||
raise ValueError("Parameter n_components must be greater than 0,"
|
||||
" but its value is {}".format(self.n_components))
|
||||
if self.n_best < 1:
|
||||
raise ValueError("Parameter n_best must be greater than 0,"
|
||||
" but its value is {}".format(self.n_best))
|
||||
if self.n_best > self.n_components:
|
||||
raise ValueError("n_best cannot be larger than"
|
||||
" n_components, but {} > {}"
|
||||
"".format(self.n_best, self.n_components))
|
||||
|
||||
def _fit(self, X):
|
||||
n_sv = self.n_components
|
||||
if self.method == 'bistochastic':
|
||||
normalized_data = _bistochastic_normalize(X)
|
||||
n_sv += 1
|
||||
elif self.method == 'scale':
|
||||
normalized_data, _, _ = _scale_normalize(X)
|
||||
n_sv += 1
|
||||
elif self.method == 'log':
|
||||
normalized_data = _log_normalize(X)
|
||||
n_discard = 0 if self.method == 'log' else 1
|
||||
u, v = self._svd(normalized_data, n_sv, n_discard)
|
||||
ut = u.T
|
||||
vt = v.T
|
||||
|
||||
try:
|
||||
n_row_clusters, n_col_clusters = self.n_clusters
|
||||
except TypeError:
|
||||
n_row_clusters = n_col_clusters = self.n_clusters
|
||||
|
||||
best_ut = self._fit_best_piecewise(ut, self.n_best,
|
||||
n_row_clusters)
|
||||
|
||||
best_vt = self._fit_best_piecewise(vt, self.n_best,
|
||||
n_col_clusters)
|
||||
|
||||
self.row_labels_ = self._project_and_cluster(X, best_vt.T,
|
||||
n_row_clusters)
|
||||
|
||||
self.column_labels_ = self._project_and_cluster(X.T, best_ut.T,
|
||||
n_col_clusters)
|
||||
|
||||
self.rows_ = np.vstack([self.row_labels_ == label
|
||||
for label in range(n_row_clusters)
|
||||
for _ in range(n_col_clusters)])
|
||||
self.columns_ = np.vstack([self.column_labels_ == label
|
||||
for _ in range(n_row_clusters)
|
||||
for label in range(n_col_clusters)])
|
||||
|
||||
def _fit_best_piecewise(self, vectors, n_best, n_clusters):
|
||||
"""Find the ``n_best`` vectors that are best approximated by piecewise
|
||||
constant vectors.
|
||||
|
||||
The piecewise vectors are found by k-means; the best is chosen
|
||||
according to Euclidean distance.
|
||||
|
||||
"""
|
||||
def make_piecewise(v):
|
||||
centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters)
|
||||
return centroid[labels].ravel()
|
||||
piecewise_vectors = np.apply_along_axis(make_piecewise,
|
||||
axis=1, arr=vectors)
|
||||
dists = np.apply_along_axis(norm, axis=1,
|
||||
arr=(vectors - piecewise_vectors))
|
||||
result = vectors[np.argsort(dists)[:n_best]]
|
||||
return result
|
||||
|
||||
def _project_and_cluster(self, data, vectors, n_clusters):
|
||||
"""Project ``data`` to ``vectors`` and cluster the result."""
|
||||
projected = safe_sparse_dot(data, vectors)
|
||||
_, labels = self._k_means(projected, n_clusters)
|
||||
return labels
|
658
venv/Lib/site-packages/sklearn/cluster/_birch.py
Normal file
658
venv/Lib/site-packages/sklearn/cluster/_birch.py
Normal file
|
@ -0,0 +1,658 @@
|
|||
# Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com>
|
||||
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
|
||||
# Joel Nothman <joel.nothman@gmail.com>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import warnings
|
||||
import numbers
|
||||
import numpy as np
|
||||
from scipy import sparse
|
||||
from math import sqrt
|
||||
|
||||
from ..metrics import pairwise_distances_argmin
|
||||
from ..metrics.pairwise import euclidean_distances
|
||||
from ..base import TransformerMixin, ClusterMixin, BaseEstimator
|
||||
from ..utils import check_array
|
||||
from ..utils.extmath import row_norms
|
||||
from ..utils.validation import check_is_fitted, _deprecate_positional_args
|
||||
from ..exceptions import ConvergenceWarning
|
||||
from . import AgglomerativeClustering
|
||||
|
||||
|
||||
def _iterate_sparse_X(X):
|
||||
"""This little hack returns a densified row when iterating over a sparse
|
||||
matrix, instead of constructing a sparse matrix for every row that is
|
||||
expensive.
|
||||
"""
|
||||
n_samples = X.shape[0]
|
||||
X_indices = X.indices
|
||||
X_data = X.data
|
||||
X_indptr = X.indptr
|
||||
|
||||
for i in range(n_samples):
|
||||
row = np.zeros(X.shape[1])
|
||||
startptr, endptr = X_indptr[i], X_indptr[i + 1]
|
||||
nonzero_indices = X_indices[startptr:endptr]
|
||||
row[nonzero_indices] = X_data[startptr:endptr]
|
||||
yield row
|
||||
|
||||
|
||||
def _split_node(node, threshold, branching_factor):
|
||||
"""The node has to be split if there is no place for a new subcluster
|
||||
in the node.
|
||||
1. Two empty nodes and two empty subclusters are initialized.
|
||||
2. The pair of distant subclusters are found.
|
||||
3. The properties of the empty subclusters and nodes are updated
|
||||
according to the nearest distance between the subclusters to the
|
||||
pair of distant subclusters.
|
||||
4. The two nodes are set as children to the two subclusters.
|
||||
"""
|
||||
new_subcluster1 = _CFSubcluster()
|
||||
new_subcluster2 = _CFSubcluster()
|
||||
new_node1 = _CFNode(
|
||||
threshold=threshold, branching_factor=branching_factor,
|
||||
is_leaf=node.is_leaf,
|
||||
n_features=node.n_features)
|
||||
new_node2 = _CFNode(
|
||||
threshold=threshold, branching_factor=branching_factor,
|
||||
is_leaf=node.is_leaf,
|
||||
n_features=node.n_features)
|
||||
new_subcluster1.child_ = new_node1
|
||||
new_subcluster2.child_ = new_node2
|
||||
|
||||
if node.is_leaf:
|
||||
if node.prev_leaf_ is not None:
|
||||
node.prev_leaf_.next_leaf_ = new_node1
|
||||
new_node1.prev_leaf_ = node.prev_leaf_
|
||||
new_node1.next_leaf_ = new_node2
|
||||
new_node2.prev_leaf_ = new_node1
|
||||
new_node2.next_leaf_ = node.next_leaf_
|
||||
if node.next_leaf_ is not None:
|
||||
node.next_leaf_.prev_leaf_ = new_node2
|
||||
|
||||
dist = euclidean_distances(
|
||||
node.centroids_, Y_norm_squared=node.squared_norm_, squared=True)
|
||||
n_clusters = dist.shape[0]
|
||||
|
||||
farthest_idx = np.unravel_index(
|
||||
dist.argmax(), (n_clusters, n_clusters))
|
||||
node1_dist, node2_dist = dist[(farthest_idx,)]
|
||||
|
||||
node1_closer = node1_dist < node2_dist
|
||||
for idx, subcluster in enumerate(node.subclusters_):
|
||||
if node1_closer[idx]:
|
||||
new_node1.append_subcluster(subcluster)
|
||||
new_subcluster1.update(subcluster)
|
||||
else:
|
||||
new_node2.append_subcluster(subcluster)
|
||||
new_subcluster2.update(subcluster)
|
||||
return new_subcluster1, new_subcluster2
|
||||
|
||||
|
||||
class _CFNode:
|
||||
"""Each node in a CFTree is called a CFNode.
|
||||
|
||||
The CFNode can have a maximum of branching_factor
|
||||
number of CFSubclusters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
threshold : float
|
||||
Threshold needed for a new subcluster to enter a CFSubcluster.
|
||||
|
||||
branching_factor : int
|
||||
Maximum number of CF subclusters in each node.
|
||||
|
||||
is_leaf : bool
|
||||
We need to know if the CFNode is a leaf or not, in order to
|
||||
retrieve the final subclusters.
|
||||
|
||||
n_features : int
|
||||
The number of features.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
subclusters_ : list
|
||||
List of subclusters for a particular CFNode.
|
||||
|
||||
prev_leaf_ : _CFNode
|
||||
Useful only if is_leaf is True.
|
||||
|
||||
next_leaf_ : _CFNode
|
||||
next_leaf. Useful only if is_leaf is True.
|
||||
the final subclusters.
|
||||
|
||||
init_centroids_ : ndarray of shape (branching_factor + 1, n_features)
|
||||
Manipulate ``init_centroids_`` throughout rather than centroids_ since
|
||||
the centroids are just a view of the ``init_centroids_`` .
|
||||
|
||||
init_sq_norm_ : ndarray of shape (branching_factor + 1,)
|
||||
manipulate init_sq_norm_ throughout. similar to ``init_centroids_``.
|
||||
|
||||
centroids_ : ndarray of shape (branching_factor + 1, n_features)
|
||||
View of ``init_centroids_``.
|
||||
|
||||
squared_norm_ : ndarray of shape (branching_factor + 1,)
|
||||
View of ``init_sq_norm_``.
|
||||
|
||||
"""
|
||||
def __init__(self, *, threshold, branching_factor, is_leaf, n_features):
|
||||
self.threshold = threshold
|
||||
self.branching_factor = branching_factor
|
||||
self.is_leaf = is_leaf
|
||||
self.n_features = n_features
|
||||
|
||||
# The list of subclusters, centroids and squared norms
|
||||
# to manipulate throughout.
|
||||
self.subclusters_ = []
|
||||
self.init_centroids_ = np.zeros((branching_factor + 1, n_features))
|
||||
self.init_sq_norm_ = np.zeros((branching_factor + 1))
|
||||
self.squared_norm_ = []
|
||||
self.prev_leaf_ = None
|
||||
self.next_leaf_ = None
|
||||
|
||||
def append_subcluster(self, subcluster):
|
||||
n_samples = len(self.subclusters_)
|
||||
self.subclusters_.append(subcluster)
|
||||
self.init_centroids_[n_samples] = subcluster.centroid_
|
||||
self.init_sq_norm_[n_samples] = subcluster.sq_norm_
|
||||
|
||||
# Keep centroids and squared norm as views. In this way
|
||||
# if we change init_centroids and init_sq_norm_, it is
|
||||
# sufficient,
|
||||
self.centroids_ = self.init_centroids_[:n_samples + 1, :]
|
||||
self.squared_norm_ = self.init_sq_norm_[:n_samples + 1]
|
||||
|
||||
def update_split_subclusters(self, subcluster,
|
||||
new_subcluster1, new_subcluster2):
|
||||
"""Remove a subcluster from a node and update it with the
|
||||
split subclusters.
|
||||
"""
|
||||
ind = self.subclusters_.index(subcluster)
|
||||
self.subclusters_[ind] = new_subcluster1
|
||||
self.init_centroids_[ind] = new_subcluster1.centroid_
|
||||
self.init_sq_norm_[ind] = new_subcluster1.sq_norm_
|
||||
self.append_subcluster(new_subcluster2)
|
||||
|
||||
def insert_cf_subcluster(self, subcluster):
|
||||
"""Insert a new subcluster into the node."""
|
||||
if not self.subclusters_:
|
||||
self.append_subcluster(subcluster)
|
||||
return False
|
||||
|
||||
threshold = self.threshold
|
||||
branching_factor = self.branching_factor
|
||||
# We need to find the closest subcluster among all the
|
||||
# subclusters so that we can insert our new subcluster.
|
||||
dist_matrix = np.dot(self.centroids_, subcluster.centroid_)
|
||||
dist_matrix *= -2.
|
||||
dist_matrix += self.squared_norm_
|
||||
closest_index = np.argmin(dist_matrix)
|
||||
closest_subcluster = self.subclusters_[closest_index]
|
||||
|
||||
# If the subcluster has a child, we need a recursive strategy.
|
||||
if closest_subcluster.child_ is not None:
|
||||
split_child = closest_subcluster.child_.insert_cf_subcluster(
|
||||
subcluster)
|
||||
|
||||
if not split_child:
|
||||
# If it is determined that the child need not be split, we
|
||||
# can just update the closest_subcluster
|
||||
closest_subcluster.update(subcluster)
|
||||
self.init_centroids_[closest_index] = \
|
||||
self.subclusters_[closest_index].centroid_
|
||||
self.init_sq_norm_[closest_index] = \
|
||||
self.subclusters_[closest_index].sq_norm_
|
||||
return False
|
||||
|
||||
# things not too good. we need to redistribute the subclusters in
|
||||
# our child node, and add a new subcluster in the parent
|
||||
# subcluster to accommodate the new child.
|
||||
else:
|
||||
new_subcluster1, new_subcluster2 = _split_node(
|
||||
closest_subcluster.child_, threshold, branching_factor)
|
||||
self.update_split_subclusters(
|
||||
closest_subcluster, new_subcluster1, new_subcluster2)
|
||||
|
||||
if len(self.subclusters_) > self.branching_factor:
|
||||
return True
|
||||
return False
|
||||
|
||||
# good to go!
|
||||
else:
|
||||
merged = closest_subcluster.merge_subcluster(
|
||||
subcluster, self.threshold)
|
||||
if merged:
|
||||
self.init_centroids_[closest_index] = \
|
||||
closest_subcluster.centroid_
|
||||
self.init_sq_norm_[closest_index] = \
|
||||
closest_subcluster.sq_norm_
|
||||
return False
|
||||
|
||||
# not close to any other subclusters, and we still
|
||||
# have space, so add.
|
||||
elif len(self.subclusters_) < self.branching_factor:
|
||||
self.append_subcluster(subcluster)
|
||||
return False
|
||||
|
||||
# We do not have enough space nor is it closer to an
|
||||
# other subcluster. We need to split.
|
||||
else:
|
||||
self.append_subcluster(subcluster)
|
||||
return True
|
||||
|
||||
|
||||
class _CFSubcluster:
|
||||
"""Each subcluster in a CFNode is called a CFSubcluster.
|
||||
|
||||
A CFSubcluster can have a CFNode has its child.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
linear_sum : ndarray of shape (n_features,), default=None
|
||||
Sample. This is kept optional to allow initialization of empty
|
||||
subclusters.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
n_samples_ : int
|
||||
Number of samples that belong to each subcluster.
|
||||
|
||||
linear_sum_ : ndarray
|
||||
Linear sum of all the samples in a subcluster. Prevents holding
|
||||
all sample data in memory.
|
||||
|
||||
squared_sum_ : float
|
||||
Sum of the squared l2 norms of all samples belonging to a subcluster.
|
||||
|
||||
centroid_ : ndarray of shape (branching_factor + 1, n_features)
|
||||
Centroid of the subcluster. Prevent recomputing of centroids when
|
||||
``CFNode.centroids_`` is called.
|
||||
|
||||
child_ : _CFNode
|
||||
Child Node of the subcluster. Once a given _CFNode is set as the child
|
||||
of the _CFNode, it is set to ``self.child_``.
|
||||
|
||||
sq_norm_ : ndarray of shape (branching_factor + 1,)
|
||||
Squared norm of the subcluster. Used to prevent recomputing when
|
||||
pairwise minimum distances are computed.
|
||||
"""
|
||||
def __init__(self, *, linear_sum=None):
|
||||
if linear_sum is None:
|
||||
self.n_samples_ = 0
|
||||
self.squared_sum_ = 0.0
|
||||
self.centroid_ = self.linear_sum_ = 0
|
||||
else:
|
||||
self.n_samples_ = 1
|
||||
self.centroid_ = self.linear_sum_ = linear_sum
|
||||
self.squared_sum_ = self.sq_norm_ = np.dot(
|
||||
self.linear_sum_, self.linear_sum_)
|
||||
self.child_ = None
|
||||
|
||||
def update(self, subcluster):
|
||||
self.n_samples_ += subcluster.n_samples_
|
||||
self.linear_sum_ += subcluster.linear_sum_
|
||||
self.squared_sum_ += subcluster.squared_sum_
|
||||
self.centroid_ = self.linear_sum_ / self.n_samples_
|
||||
self.sq_norm_ = np.dot(self.centroid_, self.centroid_)
|
||||
|
||||
def merge_subcluster(self, nominee_cluster, threshold):
|
||||
"""Check if a cluster is worthy enough to be merged. If
|
||||
yes then merge.
|
||||
"""
|
||||
new_ss = self.squared_sum_ + nominee_cluster.squared_sum_
|
||||
new_ls = self.linear_sum_ + nominee_cluster.linear_sum_
|
||||
new_n = self.n_samples_ + nominee_cluster.n_samples_
|
||||
new_centroid = (1 / new_n) * new_ls
|
||||
new_norm = np.dot(new_centroid, new_centroid)
|
||||
dot_product = (-2 * new_n) * new_norm
|
||||
sq_radius = (new_ss + dot_product) / new_n + new_norm
|
||||
if sq_radius <= threshold ** 2:
|
||||
(self.n_samples_, self.linear_sum_, self.squared_sum_,
|
||||
self.centroid_, self.sq_norm_) = \
|
||||
new_n, new_ls, new_ss, new_centroid, new_norm
|
||||
return True
|
||||
return False
|
||||
|
||||
@property
|
||||
def radius(self):
|
||||
"""Return radius of the subcluster"""
|
||||
dot_product = -2 * np.dot(self.linear_sum_, self.centroid_)
|
||||
return sqrt(
|
||||
((self.squared_sum_ + dot_product) / self.n_samples_) +
|
||||
self.sq_norm_)
|
||||
|
||||
|
||||
class Birch(ClusterMixin, TransformerMixin, BaseEstimator):
|
||||
"""Implements the Birch clustering algorithm.
|
||||
|
||||
It is a memory-efficient, online-learning algorithm provided as an
|
||||
alternative to :class:`MiniBatchKMeans`. It constructs a tree
|
||||
data structure with the cluster centroids being read off the leaf.
|
||||
These can be either the final cluster centroids or can be provided as input
|
||||
to another clustering algorithm such as :class:`AgglomerativeClustering`.
|
||||
|
||||
Read more in the :ref:`User Guide <birch>`.
|
||||
|
||||
.. versionadded:: 0.16
|
||||
|
||||
Parameters
|
||||
----------
|
||||
threshold : float, default=0.5
|
||||
The radius of the subcluster obtained by merging a new sample and the
|
||||
closest subcluster should be lesser than the threshold. Otherwise a new
|
||||
subcluster is started. Setting this value to be very low promotes
|
||||
splitting and vice-versa.
|
||||
|
||||
branching_factor : int, default=50
|
||||
Maximum number of CF subclusters in each node. If a new samples enters
|
||||
such that the number of subclusters exceed the branching_factor then
|
||||
that node is split into two nodes with the subclusters redistributed
|
||||
in each. The parent subcluster of that node is removed and two new
|
||||
subclusters are added as parents of the 2 split nodes.
|
||||
|
||||
n_clusters : int, instance of sklearn.cluster model, default=3
|
||||
Number of clusters after the final clustering step, which treats the
|
||||
subclusters from the leaves as new samples.
|
||||
|
||||
- `None` : the final clustering step is not performed and the
|
||||
subclusters are returned as they are.
|
||||
|
||||
- :mod:`sklearn.cluster` Estimator : If a model is provided, the model
|
||||
is fit treating the subclusters as new samples and the initial data
|
||||
is mapped to the label of the closest subcluster.
|
||||
|
||||
- `int` : the model fit is :class:`AgglomerativeClustering` with
|
||||
`n_clusters` set to be equal to the int.
|
||||
|
||||
compute_labels : bool, default=True
|
||||
Whether or not to compute labels for each fit.
|
||||
|
||||
copy : bool, default=True
|
||||
Whether or not to make a copy of the given data. If set to False,
|
||||
the initial data will be overwritten.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
root_ : _CFNode
|
||||
Root of the CFTree.
|
||||
|
||||
dummy_leaf_ : _CFNode
|
||||
Start pointer to all the leaves.
|
||||
|
||||
subcluster_centers_ : ndarray
|
||||
Centroids of all subclusters read directly from the leaves.
|
||||
|
||||
subcluster_labels_ : ndarray
|
||||
Labels assigned to the centroids of the subclusters after
|
||||
they are clustered globally.
|
||||
|
||||
labels_ : ndarray of shape (n_samples,)
|
||||
Array of labels assigned to the input data.
|
||||
if partial_fit is used instead of fit, they are assigned to the
|
||||
last batch of data.
|
||||
|
||||
See Also
|
||||
--------
|
||||
|
||||
MiniBatchKMeans
|
||||
Alternative implementation that does incremental updates
|
||||
of the centers' positions using mini-batches.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The tree data structure consists of nodes with each node consisting of
|
||||
a number of subclusters. The maximum number of subclusters in a node
|
||||
is determined by the branching factor. Each subcluster maintains a
|
||||
linear sum, squared sum and the number of samples in that subcluster.
|
||||
In addition, each subcluster can also have a node as its child, if the
|
||||
subcluster is not a member of a leaf node.
|
||||
|
||||
For a new point entering the root, it is merged with the subcluster closest
|
||||
to it and the linear sum, squared sum and the number of samples of that
|
||||
subcluster are updated. This is done recursively till the properties of
|
||||
the leaf node are updated.
|
||||
|
||||
References
|
||||
----------
|
||||
* Tian Zhang, Raghu Ramakrishnan, Maron Livny
|
||||
BIRCH: An efficient data clustering method for large databases.
|
||||
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
|
||||
|
||||
* Roberto Perdisci
|
||||
JBirch - Java implementation of BIRCH clustering algorithm
|
||||
https://code.google.com/archive/p/jbirch
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import Birch
|
||||
>>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]]
|
||||
>>> brc = Birch(n_clusters=None)
|
||||
>>> brc.fit(X)
|
||||
Birch(n_clusters=None)
|
||||
>>> brc.predict(X)
|
||||
array([0, 0, 0, 1, 1, 1])
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, threshold=0.5, branching_factor=50, n_clusters=3,
|
||||
compute_labels=True, copy=True):
|
||||
self.threshold = threshold
|
||||
self.branching_factor = branching_factor
|
||||
self.n_clusters = n_clusters
|
||||
self.compute_labels = compute_labels
|
||||
self.copy = copy
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""
|
||||
Build a CF Tree for the input data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
Fitted estimator.
|
||||
"""
|
||||
self.fit_, self.partial_fit_ = True, False
|
||||
return self._fit(X)
|
||||
|
||||
def _fit(self, X):
|
||||
X = self._validate_data(X, accept_sparse='csr', copy=self.copy)
|
||||
threshold = self.threshold
|
||||
branching_factor = self.branching_factor
|
||||
|
||||
if branching_factor <= 1:
|
||||
raise ValueError("Branching_factor should be greater than one.")
|
||||
n_samples, n_features = X.shape
|
||||
|
||||
# If partial_fit is called for the first time or fit is called, we
|
||||
# start a new tree.
|
||||
partial_fit = getattr(self, 'partial_fit_')
|
||||
has_root = getattr(self, 'root_', None)
|
||||
if getattr(self, 'fit_') or (partial_fit and not has_root):
|
||||
# The first root is the leaf. Manipulate this object throughout.
|
||||
self.root_ = _CFNode(threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=True,
|
||||
n_features=n_features)
|
||||
|
||||
# To enable getting back subclusters.
|
||||
self.dummy_leaf_ = _CFNode(threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=True, n_features=n_features)
|
||||
self.dummy_leaf_.next_leaf_ = self.root_
|
||||
self.root_.prev_leaf_ = self.dummy_leaf_
|
||||
|
||||
# Cannot vectorize. Enough to convince to use cython.
|
||||
if not sparse.issparse(X):
|
||||
iter_func = iter
|
||||
else:
|
||||
iter_func = _iterate_sparse_X
|
||||
|
||||
for sample in iter_func(X):
|
||||
subcluster = _CFSubcluster(linear_sum=sample)
|
||||
split = self.root_.insert_cf_subcluster(subcluster)
|
||||
|
||||
if split:
|
||||
new_subcluster1, new_subcluster2 = _split_node(
|
||||
self.root_, threshold, branching_factor)
|
||||
del self.root_
|
||||
self.root_ = _CFNode(threshold=threshold,
|
||||
branching_factor=branching_factor,
|
||||
is_leaf=False,
|
||||
n_features=n_features)
|
||||
self.root_.append_subcluster(new_subcluster1)
|
||||
self.root_.append_subcluster(new_subcluster2)
|
||||
|
||||
centroids = np.concatenate([
|
||||
leaf.centroids_ for leaf in self._get_leaves()])
|
||||
self.subcluster_centers_ = centroids
|
||||
|
||||
self._global_clustering(X)
|
||||
return self
|
||||
|
||||
def _get_leaves(self):
|
||||
"""
|
||||
Retrieve the leaves of the CF Node.
|
||||
|
||||
Returns
|
||||
-------
|
||||
leaves : list of shape (n_leaves,)
|
||||
List of the leaf nodes.
|
||||
"""
|
||||
leaf_ptr = self.dummy_leaf_.next_leaf_
|
||||
leaves = []
|
||||
while leaf_ptr is not None:
|
||||
leaves.append(leaf_ptr)
|
||||
leaf_ptr = leaf_ptr.next_leaf_
|
||||
return leaves
|
||||
|
||||
def partial_fit(self, X=None, y=None):
|
||||
"""
|
||||
Online learning. Prevents rebuilding of CFTree from scratch.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), \
|
||||
default=None
|
||||
Input data. If X is not provided, only the global clustering
|
||||
step is done.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
Fitted estimator.
|
||||
"""
|
||||
self.partial_fit_, self.fit_ = True, False
|
||||
if X is None:
|
||||
# Perform just the final global clustering step.
|
||||
self._global_clustering()
|
||||
return self
|
||||
else:
|
||||
self._check_fit(X)
|
||||
return self._fit(X)
|
||||
|
||||
def _check_fit(self, X):
|
||||
check_is_fitted(self)
|
||||
|
||||
if (hasattr(self, 'subcluster_centers_') and
|
||||
X.shape[1] != self.subcluster_centers_.shape[1]):
|
||||
raise ValueError(
|
||||
"Training data and predicted data do "
|
||||
"not have same number of features.")
|
||||
|
||||
def predict(self, X):
|
||||
"""
|
||||
Predict data using the ``centroids_`` of subclusters.
|
||||
|
||||
Avoid computation of the row norms of X.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape(n_samples,)
|
||||
Labelled data.
|
||||
"""
|
||||
X = check_array(X, accept_sparse='csr')
|
||||
self._check_fit(X)
|
||||
kwargs = {'Y_norm_squared': self._subcluster_norms}
|
||||
return self.subcluster_labels_[
|
||||
pairwise_distances_argmin(X,
|
||||
self.subcluster_centers_,
|
||||
metric_kwargs=kwargs)
|
||||
]
|
||||
|
||||
def transform(self, X):
|
||||
"""
|
||||
Transform X into subcluster centroids dimension.
|
||||
|
||||
Each dimension represents the distance from the sample point to each
|
||||
cluster centroid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X_trans : {array-like, sparse matrix} of shape (n_samples, n_clusters)
|
||||
Transformed data.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
return euclidean_distances(X, self.subcluster_centers_)
|
||||
|
||||
def _global_clustering(self, X=None):
|
||||
"""
|
||||
Global clustering for the subclusters obtained after fitting
|
||||
"""
|
||||
clusterer = self.n_clusters
|
||||
centroids = self.subcluster_centers_
|
||||
compute_labels = (X is not None) and self.compute_labels
|
||||
|
||||
# Preprocessing for the global clustering.
|
||||
not_enough_centroids = False
|
||||
if isinstance(clusterer, numbers.Integral):
|
||||
clusterer = AgglomerativeClustering(
|
||||
n_clusters=self.n_clusters)
|
||||
# There is no need to perform the global clustering step.
|
||||
if len(centroids) < self.n_clusters:
|
||||
not_enough_centroids = True
|
||||
elif (clusterer is not None and not
|
||||
hasattr(clusterer, 'fit_predict')):
|
||||
raise ValueError("n_clusters should be an instance of "
|
||||
"ClusterMixin or an int")
|
||||
|
||||
# To use in predict to avoid recalculation.
|
||||
self._subcluster_norms = row_norms(
|
||||
self.subcluster_centers_, squared=True)
|
||||
|
||||
if clusterer is None or not_enough_centroids:
|
||||
self.subcluster_labels_ = np.arange(len(centroids))
|
||||
if not_enough_centroids:
|
||||
warnings.warn(
|
||||
"Number of subclusters found (%d) by Birch is less "
|
||||
"than (%d). Decrease the threshold."
|
||||
% (len(centroids), self.n_clusters), ConvergenceWarning)
|
||||
else:
|
||||
# The global clustering step that clusters the subclusters of
|
||||
# the leaves. It assumes the centroids of the subclusters as
|
||||
# samples and finds the final centroids.
|
||||
self.subcluster_labels_ = clusterer.fit_predict(
|
||||
self.subcluster_centers_)
|
||||
|
||||
if compute_labels:
|
||||
self.labels_ = self.predict(X)
|
392
venv/Lib/site-packages/sklearn/cluster/_dbscan.py
Normal file
392
venv/Lib/site-packages/sklearn/cluster/_dbscan.py
Normal file
|
@ -0,0 +1,392 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
DBSCAN: Density-Based Spatial Clustering of Applications with Noise
|
||||
"""
|
||||
|
||||
# Author: Robert Layton <robertlayton@gmail.com>
|
||||
# Joel Nothman <joel.nothman@gmail.com>
|
||||
# Lars Buitinck
|
||||
#
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
import warnings
|
||||
from scipy import sparse
|
||||
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..utils.validation import _check_sample_weight, _deprecate_positional_args
|
||||
from ..neighbors import NearestNeighbors
|
||||
|
||||
from ._dbscan_inner import dbscan_inner
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def dbscan(X, eps=0.5, *, min_samples=5, metric='minkowski',
|
||||
metric_params=None, algorithm='auto', leaf_size=30, p=2,
|
||||
sample_weight=None, n_jobs=None):
|
||||
"""Perform DBSCAN clustering from vector array or distance matrix.
|
||||
|
||||
Read more in the :ref:`User Guide <dbscan>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse (CSR) matrix} of shape (n_samples, n_features) or \
|
||||
(n_samples, n_samples)
|
||||
A feature array, or array of distances between samples if
|
||||
``metric='precomputed'``.
|
||||
|
||||
eps : float, default=0.5
|
||||
The maximum distance between two samples for one to be considered
|
||||
as in the neighborhood of the other. This is not a maximum bound
|
||||
on the distances of points within a cluster. This is the most
|
||||
important DBSCAN parameter to choose appropriately for your data set
|
||||
and distance function.
|
||||
|
||||
min_samples : int, default=5
|
||||
The number of samples (or total weight) in a neighborhood for a point
|
||||
to be considered as a core point. This includes the point itself.
|
||||
|
||||
metric : string, or callable
|
||||
The metric to use when calculating distance between instances in a
|
||||
feature array. If metric is a string or callable, it must be one of
|
||||
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
|
||||
its metric parameter.
|
||||
If metric is "precomputed", X is assumed to be a distance matrix and
|
||||
must be square during fit.
|
||||
X may be a :term:`sparse graph <sparse graph>`,
|
||||
in which case only "nonzero" elements may be considered neighbors.
|
||||
|
||||
metric_params : dict, default=None
|
||||
Additional keyword arguments for the metric function.
|
||||
|
||||
.. versionadded:: 0.19
|
||||
|
||||
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
||||
The algorithm to be used by the NearestNeighbors module
|
||||
to compute pointwise distances and find nearest neighbors.
|
||||
See NearestNeighbors module documentation for details.
|
||||
|
||||
leaf_size : int, default=30
|
||||
Leaf size passed to BallTree or cKDTree. This can affect the speed
|
||||
of the construction and query, as well as the memory required
|
||||
to store the tree. The optimal value depends
|
||||
on the nature of the problem.
|
||||
|
||||
p : float, default=2
|
||||
The power of the Minkowski metric to be used to calculate distance
|
||||
between points.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Weight of each sample, such that a sample with a weight of at least
|
||||
``min_samples`` is by itself a core sample; a sample with negative
|
||||
weight may inhibit its eps-neighbor from being core.
|
||||
Note that weights are absolute, and default to 1.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of parallel jobs to run for neighbors search. ``None`` means
|
||||
1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means
|
||||
using all processors. See :term:`Glossary <n_jobs>` for more details.
|
||||
If precomputed distance are used, parallel execution is not available
|
||||
and thus n_jobs will have no effect.
|
||||
|
||||
Returns
|
||||
-------
|
||||
core_samples : ndarray of shape (n_core_samples,)
|
||||
Indices of core samples.
|
||||
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels for each point. Noisy samples are given the label -1.
|
||||
|
||||
See also
|
||||
--------
|
||||
DBSCAN
|
||||
An estimator interface for this clustering algorithm.
|
||||
OPTICS
|
||||
A similar estimator interface clustering at multiple values of eps. Our
|
||||
implementation is optimized for memory usage.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_dbscan.py
|
||||
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
|
||||
|
||||
This implementation bulk-computes all neighborhood queries, which increases
|
||||
the memory complexity to O(n.d) where d is the average number of neighbors,
|
||||
while original DBSCAN had memory complexity O(n). It may attract a higher
|
||||
memory complexity when querying these nearest neighborhoods, depending
|
||||
on the ``algorithm``.
|
||||
|
||||
One way to avoid the query complexity is to pre-compute sparse
|
||||
neighborhoods in chunks using
|
||||
:func:`NearestNeighbors.radius_neighbors_graph
|
||||
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
|
||||
``mode='distance'``, then using ``metric='precomputed'`` here.
|
||||
|
||||
Another way to reduce memory and computation time is to remove
|
||||
(near-)duplicate points and use ``sample_weight`` instead.
|
||||
|
||||
:func:`cluster.optics <sklearn.cluster.optics>` provides a similar
|
||||
clustering with lower memory usage.
|
||||
|
||||
References
|
||||
----------
|
||||
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based
|
||||
Algorithm for Discovering Clusters in Large Spatial Databases with Noise".
|
||||
In: Proceedings of the 2nd International Conference on Knowledge Discovery
|
||||
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
|
||||
|
||||
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017).
|
||||
DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.
|
||||
ACM Transactions on Database Systems (TODS), 42(3), 19.
|
||||
"""
|
||||
|
||||
est = DBSCAN(eps=eps, min_samples=min_samples, metric=metric,
|
||||
metric_params=metric_params, algorithm=algorithm,
|
||||
leaf_size=leaf_size, p=p, n_jobs=n_jobs)
|
||||
est.fit(X, sample_weight=sample_weight)
|
||||
return est.core_sample_indices_, est.labels_
|
||||
|
||||
|
||||
class DBSCAN(ClusterMixin, BaseEstimator):
|
||||
"""Perform DBSCAN clustering from vector array or distance matrix.
|
||||
|
||||
DBSCAN - Density-Based Spatial Clustering of Applications with Noise.
|
||||
Finds core samples of high density and expands clusters from them.
|
||||
Good for data which contains clusters of similar density.
|
||||
|
||||
Read more in the :ref:`User Guide <dbscan>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
eps : float, default=0.5
|
||||
The maximum distance between two samples for one to be considered
|
||||
as in the neighborhood of the other. This is not a maximum bound
|
||||
on the distances of points within a cluster. This is the most
|
||||
important DBSCAN parameter to choose appropriately for your data set
|
||||
and distance function.
|
||||
|
||||
min_samples : int, default=5
|
||||
The number of samples (or total weight) in a neighborhood for a point
|
||||
to be considered as a core point. This includes the point itself.
|
||||
|
||||
metric : string, or callable, default='euclidean'
|
||||
The metric to use when calculating distance between instances in a
|
||||
feature array. If metric is a string or callable, it must be one of
|
||||
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
|
||||
its metric parameter.
|
||||
If metric is "precomputed", X is assumed to be a distance matrix and
|
||||
must be square. X may be a :term:`Glossary <sparse graph>`, in which
|
||||
case only "nonzero" elements may be considered neighbors for DBSCAN.
|
||||
|
||||
.. versionadded:: 0.17
|
||||
metric *precomputed* to accept precomputed sparse matrix.
|
||||
|
||||
metric_params : dict, default=None
|
||||
Additional keyword arguments for the metric function.
|
||||
|
||||
.. versionadded:: 0.19
|
||||
|
||||
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
||||
The algorithm to be used by the NearestNeighbors module
|
||||
to compute pointwise distances and find nearest neighbors.
|
||||
See NearestNeighbors module documentation for details.
|
||||
|
||||
leaf_size : int, default=30
|
||||
Leaf size passed to BallTree or cKDTree. This can affect the speed
|
||||
of the construction and query, as well as the memory required
|
||||
to store the tree. The optimal value depends
|
||||
on the nature of the problem.
|
||||
|
||||
p : float, default=None
|
||||
The power of the Minkowski metric to be used to calculate distance
|
||||
between points.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of parallel jobs to run.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
core_sample_indices_ : ndarray of shape (n_core_samples,)
|
||||
Indices of core samples.
|
||||
|
||||
components_ : ndarray of shape (n_core_samples, n_features)
|
||||
Copy of each core sample found by training.
|
||||
|
||||
labels_ : ndarray of shape (n_samples)
|
||||
Cluster labels for each point in the dataset given to fit().
|
||||
Noisy samples are given the label -1.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import DBSCAN
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 2], [2, 2], [2, 3],
|
||||
... [8, 7], [8, 8], [25, 80]])
|
||||
>>> clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
||||
>>> clustering.labels_
|
||||
array([ 0, 0, 0, 1, 1, -1])
|
||||
>>> clustering
|
||||
DBSCAN(eps=3, min_samples=2)
|
||||
|
||||
See also
|
||||
--------
|
||||
OPTICS
|
||||
A similar clustering at multiple values of eps. Our implementation
|
||||
is optimized for memory usage.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_dbscan.py
|
||||
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
|
||||
|
||||
This implementation bulk-computes all neighborhood queries, which increases
|
||||
the memory complexity to O(n.d) where d is the average number of neighbors,
|
||||
while original DBSCAN had memory complexity O(n). It may attract a higher
|
||||
memory complexity when querying these nearest neighborhoods, depending
|
||||
on the ``algorithm``.
|
||||
|
||||
One way to avoid the query complexity is to pre-compute sparse
|
||||
neighborhoods in chunks using
|
||||
:func:`NearestNeighbors.radius_neighbors_graph
|
||||
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
|
||||
``mode='distance'``, then using ``metric='precomputed'`` here.
|
||||
|
||||
Another way to reduce memory and computation time is to remove
|
||||
(near-)duplicate points and use ``sample_weight`` instead.
|
||||
|
||||
:class:`cluster.OPTICS` provides a similar clustering with lower memory
|
||||
usage.
|
||||
|
||||
References
|
||||
----------
|
||||
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based
|
||||
Algorithm for Discovering Clusters in Large Spatial Databases with Noise".
|
||||
In: Proceedings of the 2nd International Conference on Knowledge Discovery
|
||||
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
|
||||
|
||||
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017).
|
||||
DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.
|
||||
ACM Transactions on Database Systems (TODS), 42(3), 19.
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, eps=0.5, *, min_samples=5, metric='euclidean',
|
||||
metric_params=None, algorithm='auto', leaf_size=30, p=None,
|
||||
n_jobs=None):
|
||||
self.eps = eps
|
||||
self.min_samples = min_samples
|
||||
self.metric = metric
|
||||
self.metric_params = metric_params
|
||||
self.algorithm = algorithm
|
||||
self.leaf_size = leaf_size
|
||||
self.p = p
|
||||
self.n_jobs = n_jobs
|
||||
|
||||
def fit(self, X, y=None, sample_weight=None):
|
||||
"""Perform DBSCAN clustering from features, or distance matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
||||
(n_samples, n_samples)
|
||||
Training instances to cluster, or distances between instances if
|
||||
``metric='precomputed'``. If a sparse matrix is provided, it will
|
||||
be converted into a sparse ``csr_matrix``.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Weight of each sample, such that a sample with a weight of at least
|
||||
``min_samples`` is by itself a core sample; a sample with a
|
||||
negative weight may inhibit its eps-neighbor from being core.
|
||||
Note that weights are absolute, and default to 1.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse='csr')
|
||||
|
||||
if not self.eps > 0.0:
|
||||
raise ValueError("eps must be positive.")
|
||||
|
||||
if sample_weight is not None:
|
||||
sample_weight = _check_sample_weight(sample_weight, X)
|
||||
|
||||
# Calculate neighborhood for all samples. This leaves the original
|
||||
# point in, which needs to be considered later (i.e. point i is in the
|
||||
# neighborhood of point i. While True, its useless information)
|
||||
if self.metric == 'precomputed' and sparse.issparse(X):
|
||||
# set the diagonal to explicit values, as a point is its own
|
||||
# neighbor
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore', sparse.SparseEfficiencyWarning)
|
||||
X.setdiag(X.diagonal()) # XXX: modifies X's internals in-place
|
||||
|
||||
neighbors_model = NearestNeighbors(
|
||||
radius=self.eps, algorithm=self.algorithm,
|
||||
leaf_size=self.leaf_size, metric=self.metric,
|
||||
metric_params=self.metric_params, p=self.p, n_jobs=self.n_jobs)
|
||||
neighbors_model.fit(X)
|
||||
# This has worst case O(n^2) memory complexity
|
||||
neighborhoods = neighbors_model.radius_neighbors(X,
|
||||
return_distance=False)
|
||||
|
||||
if sample_weight is None:
|
||||
n_neighbors = np.array([len(neighbors)
|
||||
for neighbors in neighborhoods])
|
||||
else:
|
||||
n_neighbors = np.array([np.sum(sample_weight[neighbors])
|
||||
for neighbors in neighborhoods])
|
||||
|
||||
# Initially, all samples are noise.
|
||||
labels = np.full(X.shape[0], -1, dtype=np.intp)
|
||||
|
||||
# A list of all core samples found.
|
||||
core_samples = np.asarray(n_neighbors >= self.min_samples,
|
||||
dtype=np.uint8)
|
||||
dbscan_inner(core_samples, neighborhoods, labels)
|
||||
|
||||
self.core_sample_indices_ = np.where(core_samples)[0]
|
||||
self.labels_ = labels
|
||||
|
||||
if len(self.core_sample_indices_):
|
||||
# fix for scipy sparse indexing issue
|
||||
self.components_ = X[self.core_sample_indices_].copy()
|
||||
else:
|
||||
# no core samples
|
||||
self.components_ = np.empty((0, X.shape[1]))
|
||||
return self
|
||||
|
||||
def fit_predict(self, X, y=None, sample_weight=None):
|
||||
"""Perform DBSCAN clustering from features or distance matrix,
|
||||
and return cluster labels.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
||||
(n_samples, n_samples)
|
||||
Training instances to cluster, or distances between instances if
|
||||
``metric='precomputed'``. If a sparse matrix is provided, it will
|
||||
be converted into a sparse ``csr_matrix``.
|
||||
|
||||
sample_weight : array-like of shape (n_samples,), default=None
|
||||
Weight of each sample, such that a sample with a weight of at least
|
||||
``min_samples`` is by itself a core sample; a sample with a
|
||||
negative weight may inhibit its eps-neighbor from being core.
|
||||
Note that weights are absolute, and default to 1.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray of shape (n_samples,)
|
||||
Cluster labels. Noisy samples are given the label -1.
|
||||
"""
|
||||
self.fit(X, sample_weight=sample_weight)
|
||||
return self.labels_
|
Binary file not shown.
|
@ -0,0 +1,77 @@
|
|||
"""
|
||||
Feature agglomeration. Base classes and functions for performing feature
|
||||
agglomeration.
|
||||
"""
|
||||
# Author: V. Michel, A. Gramfort
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..base import TransformerMixin
|
||||
from ..utils import check_array
|
||||
from ..utils.validation import check_is_fitted
|
||||
from scipy.sparse import issparse
|
||||
|
||||
###############################################################################
|
||||
# Mixin class for feature agglomeration.
|
||||
|
||||
|
||||
class AgglomerationTransform(TransformerMixin):
|
||||
"""
|
||||
A class for feature agglomeration via the transform interface
|
||||
"""
|
||||
|
||||
def transform(self, X):
|
||||
"""
|
||||
Transform a new matrix using the built clustering
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features) or (n_samples,)
|
||||
A M by N array of M observations in N dimensions or a length
|
||||
M array of M one-dimensional observations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Y : array, shape = [n_samples, n_clusters] or [n_clusters]
|
||||
The pooled values for each feature cluster.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
X = check_array(X)
|
||||
if len(self.labels_) != X.shape[1]:
|
||||
raise ValueError("X has a different number of features than "
|
||||
"during fitting.")
|
||||
if self.pooling_func == np.mean and not issparse(X):
|
||||
size = np.bincount(self.labels_)
|
||||
n_samples = X.shape[0]
|
||||
# a fast way to compute the mean of grouped features
|
||||
nX = np.array([np.bincount(self.labels_, X[i, :]) / size
|
||||
for i in range(n_samples)])
|
||||
else:
|
||||
nX = [self.pooling_func(X[:, self.labels_ == l], axis=1)
|
||||
for l in np.unique(self.labels_)]
|
||||
nX = np.array(nX).T
|
||||
return nX
|
||||
|
||||
def inverse_transform(self, Xred):
|
||||
"""
|
||||
Inverse the transformation.
|
||||
Return a vector of size nb_features with the values of Xred assigned
|
||||
to each group of features
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Xred : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||||
The values to be assigned to each cluster of samples
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : array, shape=[n_samples, n_features] or [n_features]
|
||||
A vector of size n_samples with the values of Xred assigned to
|
||||
each of the cluster of samples.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
unil, inverse = np.unique(self.labels_, return_inverse=True)
|
||||
return Xred[..., inverse]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
23
venv/Lib/site-packages/sklearn/cluster/_k_means_fast.pxd
Normal file
23
venv/Lib/site-packages/sklearn/cluster/_k_means_fast.pxd
Normal file
|
@ -0,0 +1,23 @@
|
|||
# cython: language_level=3
|
||||
|
||||
|
||||
from cython cimport floating
|
||||
cimport numpy as np
|
||||
|
||||
|
||||
cdef floating _euclidean_dense_dense(floating*, floating*, int, bint) nogil
|
||||
|
||||
cdef floating _euclidean_sparse_dense(floating[::1], int[::1], floating[::1],
|
||||
floating, bint) nogil
|
||||
|
||||
cpdef void _relocate_empty_clusters_dense(
|
||||
np.ndarray[floating, ndim=2, mode='c'], floating[::1], floating[:, ::1],
|
||||
floating[:, ::1], floating[::1], int[::1])
|
||||
|
||||
cpdef void _relocate_empty_clusters_sparse(
|
||||
floating[::1], int[::1], int[::1], floating[::1], floating[:, ::1],
|
||||
floating[:, ::1], floating[::1], int[::1])
|
||||
|
||||
cdef void _average_centers(floating[:, ::1], floating[::1])
|
||||
|
||||
cdef void _center_shift(floating[:, ::1], floating[:, ::1], floating[::1])
|
Binary file not shown.
1916
venv/Lib/site-packages/sklearn/cluster/_kmeans.py
Normal file
1916
venv/Lib/site-packages/sklearn/cluster/_kmeans.py
Normal file
File diff suppressed because it is too large
Load diff
465
venv/Lib/site-packages/sklearn/cluster/_mean_shift.py
Normal file
465
venv/Lib/site-packages/sklearn/cluster/_mean_shift.py
Normal file
|
@ -0,0 +1,465 @@
|
|||
"""Mean shift clustering algorithm.
|
||||
|
||||
Mean shift clustering aims to discover *blobs* in a smooth density of
|
||||
samples. It is a centroid based algorithm, which works by updating candidates
|
||||
for centroids to be the mean of the points within a given region. These
|
||||
candidates are then filtered in a post-processing stage to eliminate
|
||||
near-duplicates to form the final set of centroids.
|
||||
|
||||
Seeding is performed using a binning technique for scalability.
|
||||
"""
|
||||
|
||||
# Authors: Conrad Lee <conradlee@gmail.com>
|
||||
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||||
# Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||||
# Martino Sorbaro <martino.sorbaro@ed.ac.uk>
|
||||
|
||||
import numpy as np
|
||||
import warnings
|
||||
from joblib import Parallel, delayed
|
||||
|
||||
from collections import defaultdict
|
||||
from ..utils.validation import check_is_fitted, _deprecate_positional_args
|
||||
from ..utils import check_random_state, gen_batches, check_array
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..neighbors import NearestNeighbors
|
||||
from ..metrics.pairwise import pairwise_distances_argmin
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0,
|
||||
n_jobs=None):
|
||||
"""Estimate the bandwidth to use with the mean-shift algorithm.
|
||||
|
||||
That this function takes time at least quadratic in n_samples. For large
|
||||
datasets, it's wise to set that parameter to a small value.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Input points.
|
||||
|
||||
quantile : float, default=0.3
|
||||
should be between [0, 1]
|
||||
0.5 means that the median of all pairwise distances is used.
|
||||
|
||||
n_samples : int, default=None
|
||||
The number of samples to use. If not given, all samples are used.
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
The generator used to randomly select the samples from input points
|
||||
for bandwidth estimation. Use an int to make the randomness
|
||||
deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of parallel jobs to run for neighbors search.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bandwidth : float
|
||||
The bandwidth parameter.
|
||||
"""
|
||||
X = check_array(X)
|
||||
|
||||
random_state = check_random_state(random_state)
|
||||
if n_samples is not None:
|
||||
idx = random_state.permutation(X.shape[0])[:n_samples]
|
||||
X = X[idx]
|
||||
n_neighbors = int(X.shape[0] * quantile)
|
||||
if n_neighbors < 1: # cannot fit NearestNeighbors with n_neighbors = 0
|
||||
n_neighbors = 1
|
||||
nbrs = NearestNeighbors(n_neighbors=n_neighbors,
|
||||
n_jobs=n_jobs)
|
||||
nbrs.fit(X)
|
||||
|
||||
bandwidth = 0.
|
||||
for batch in gen_batches(len(X), 500):
|
||||
d, _ = nbrs.kneighbors(X[batch, :], return_distance=True)
|
||||
bandwidth += np.max(d, axis=1).sum()
|
||||
|
||||
return bandwidth / X.shape[0]
|
||||
|
||||
|
||||
# separate function for each seed's iterative loop
|
||||
def _mean_shift_single_seed(my_mean, X, nbrs, max_iter):
|
||||
# For each seed, climb gradient until convergence or max_iter
|
||||
bandwidth = nbrs.get_params()['radius']
|
||||
stop_thresh = 1e-3 * bandwidth # when mean has converged
|
||||
completed_iterations = 0
|
||||
while True:
|
||||
# Find mean of points within bandwidth
|
||||
i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth,
|
||||
return_distance=False)[0]
|
||||
points_within = X[i_nbrs]
|
||||
if len(points_within) == 0:
|
||||
break # Depending on seeding strategy this condition may occur
|
||||
my_old_mean = my_mean # save the old mean
|
||||
my_mean = np.mean(points_within, axis=0)
|
||||
# If converged or at max_iter, adds the cluster
|
||||
if (np.linalg.norm(my_mean - my_old_mean) < stop_thresh or
|
||||
completed_iterations == max_iter):
|
||||
break
|
||||
completed_iterations += 1
|
||||
return tuple(my_mean), len(points_within), completed_iterations
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def mean_shift(X, *, bandwidth=None, seeds=None, bin_seeding=False,
|
||||
min_bin_freq=1, cluster_all=True, max_iter=300,
|
||||
n_jobs=None):
|
||||
"""Perform mean shift clustering of data using a flat kernel.
|
||||
|
||||
Read more in the :ref:`User Guide <mean_shift>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Input data.
|
||||
|
||||
bandwidth : float, default=None
|
||||
Kernel bandwidth.
|
||||
|
||||
If bandwidth is not given, it is determined using a heuristic based on
|
||||
the median of all pairwise distances. This will take quadratic time in
|
||||
the number of samples. The sklearn.cluster.estimate_bandwidth function
|
||||
can be used to do this more efficiently.
|
||||
|
||||
seeds : array-like of shape (n_seeds, n_features) or None
|
||||
Point used as initial kernel locations. If None and bin_seeding=False,
|
||||
each data point is used as a seed. If None and bin_seeding=True,
|
||||
see bin_seeding.
|
||||
|
||||
bin_seeding : boolean, default=False
|
||||
If true, initial kernel locations are not locations of all
|
||||
points, but rather the location of the discretized version of
|
||||
points, where points are binned onto a grid whose coarseness
|
||||
corresponds to the bandwidth. Setting this option to True will speed
|
||||
up the algorithm because fewer seeds will be initialized.
|
||||
Ignored if seeds argument is not None.
|
||||
|
||||
min_bin_freq : int, default=1
|
||||
To speed up the algorithm, accept only those bins with at least
|
||||
min_bin_freq points as seeds.
|
||||
|
||||
cluster_all : bool, default=True
|
||||
If true, then all points are clustered, even those orphans that are
|
||||
not within any kernel. Orphans are assigned to the nearest kernel.
|
||||
If false, then orphans are given cluster label -1.
|
||||
|
||||
max_iter : int, default=300
|
||||
Maximum number of iterations, per seed point before the clustering
|
||||
operation terminates (for that seed point), if has not converged yet.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of jobs to use for the computation. This works by computing
|
||||
each of the n_init runs in parallel.
|
||||
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
.. versionadded:: 0.17
|
||||
Parallel Execution using *n_jobs*.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
||||
cluster_centers : array, shape=[n_clusters, n_features]
|
||||
Coordinates of cluster centers.
|
||||
|
||||
labels : array, shape=[n_samples]
|
||||
Cluster labels for each point.
|
||||
|
||||
Notes
|
||||
-----
|
||||
For an example, see :ref:`examples/cluster/plot_mean_shift.py
|
||||
<sphx_glr_auto_examples_cluster_plot_mean_shift.py>`.
|
||||
|
||||
"""
|
||||
model = MeanShift(bandwidth=bandwidth, seeds=seeds,
|
||||
min_bin_freq=min_bin_freq,
|
||||
bin_seeding=bin_seeding,
|
||||
cluster_all=cluster_all, n_jobs=n_jobs,
|
||||
max_iter=max_iter).fit(X)
|
||||
return model.cluster_centers_, model.labels_
|
||||
|
||||
|
||||
def get_bin_seeds(X, bin_size, min_bin_freq=1):
|
||||
"""Finds seeds for mean_shift.
|
||||
|
||||
Finds seeds by first binning data onto a grid whose lines are
|
||||
spaced bin_size apart, and then choosing those bins with at least
|
||||
min_bin_freq points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Input points, the same points that will be used in mean_shift.
|
||||
|
||||
bin_size : float
|
||||
Controls the coarseness of the binning. Smaller values lead
|
||||
to more seeding (which is computationally more expensive). If you're
|
||||
not sure how to set this, set it to the value of the bandwidth used
|
||||
in clustering.mean_shift.
|
||||
|
||||
min_bin_freq : int, default=1
|
||||
Only bins with at least min_bin_freq will be selected as seeds.
|
||||
Raising this value decreases the number of seeds found, which
|
||||
makes mean_shift computationally cheaper.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bin_seeds : array-like of shape (n_samples, n_features)
|
||||
Points used as initial kernel positions in clustering.mean_shift.
|
||||
"""
|
||||
if bin_size == 0:
|
||||
return X
|
||||
|
||||
# Bin points
|
||||
bin_sizes = defaultdict(int)
|
||||
for point in X:
|
||||
binned_point = np.round(point / bin_size)
|
||||
bin_sizes[tuple(binned_point)] += 1
|
||||
|
||||
# Select only those bins as seeds which have enough members
|
||||
bin_seeds = np.array([point for point, freq in bin_sizes.items() if
|
||||
freq >= min_bin_freq], dtype=np.float32)
|
||||
if len(bin_seeds) == len(X):
|
||||
warnings.warn("Binning data failed with provided bin_size=%f,"
|
||||
" using data points as seeds." % bin_size)
|
||||
return X
|
||||
bin_seeds = bin_seeds * bin_size
|
||||
return bin_seeds
|
||||
|
||||
|
||||
class MeanShift(ClusterMixin, BaseEstimator):
|
||||
"""Mean shift clustering using a flat kernel.
|
||||
|
||||
Mean shift clustering aims to discover "blobs" in a smooth density of
|
||||
samples. It is a centroid-based algorithm, which works by updating
|
||||
candidates for centroids to be the mean of the points within a given
|
||||
region. These candidates are then filtered in a post-processing stage to
|
||||
eliminate near-duplicates to form the final set of centroids.
|
||||
|
||||
Seeding is performed using a binning technique for scalability.
|
||||
|
||||
Read more in the :ref:`User Guide <mean_shift>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bandwidth : float, default=None
|
||||
Bandwidth used in the RBF kernel.
|
||||
|
||||
If not given, the bandwidth is estimated using
|
||||
sklearn.cluster.estimate_bandwidth; see the documentation for that
|
||||
function for hints on scalability (see also the Notes, below).
|
||||
|
||||
seeds : array-like of shape (n_samples, n_features), default=None
|
||||
Seeds used to initialize kernels. If not set,
|
||||
the seeds are calculated by clustering.get_bin_seeds
|
||||
with bandwidth as the grid size and default values for
|
||||
other parameters.
|
||||
|
||||
bin_seeding : bool, default=False
|
||||
If true, initial kernel locations are not locations of all
|
||||
points, but rather the location of the discretized version of
|
||||
points, where points are binned onto a grid whose coarseness
|
||||
corresponds to the bandwidth. Setting this option to True will speed
|
||||
up the algorithm because fewer seeds will be initialized.
|
||||
The default value is False.
|
||||
Ignored if seeds argument is not None.
|
||||
|
||||
min_bin_freq : int, default=1
|
||||
To speed up the algorithm, accept only those bins with at least
|
||||
min_bin_freq points as seeds.
|
||||
|
||||
cluster_all : bool, default=True
|
||||
If true, then all points are clustered, even those orphans that are
|
||||
not within any kernel. Orphans are assigned to the nearest kernel.
|
||||
If false, then orphans are given cluster label -1.
|
||||
|
||||
n_jobs : int, default=None
|
||||
The number of jobs to use for the computation. This works by computing
|
||||
each of the n_init runs in parallel.
|
||||
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
max_iter : int, default=300
|
||||
Maximum number of iterations, per seed point before the clustering
|
||||
operation terminates (for that seed point), if has not converged yet.
|
||||
|
||||
.. versionadded:: 0.22
|
||||
|
||||
Attributes
|
||||
----------
|
||||
cluster_centers_ : array, [n_clusters, n_features]
|
||||
Coordinates of cluster centers.
|
||||
|
||||
labels_ : array of shape (n_samples,)
|
||||
Labels of each point.
|
||||
|
||||
n_iter_ : int
|
||||
Maximum number of iterations performed on each seed.
|
||||
|
||||
.. versionadded:: 0.22
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import MeanShift
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = MeanShift(bandwidth=2).fit(X)
|
||||
>>> clustering.labels_
|
||||
array([1, 1, 1, 0, 0, 0])
|
||||
>>> clustering.predict([[0, 0], [5, 5]])
|
||||
array([1, 0])
|
||||
>>> clustering
|
||||
MeanShift(bandwidth=2)
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
Scalability:
|
||||
|
||||
Because this implementation uses a flat kernel and
|
||||
a Ball Tree to look up members of each kernel, the complexity will tend
|
||||
towards O(T*n*log(n)) in lower dimensions, with n the number of samples
|
||||
and T the number of points. In higher dimensions the complexity will
|
||||
tend towards O(T*n^2).
|
||||
|
||||
Scalability can be boosted by using fewer seeds, for example by using
|
||||
a higher value of min_bin_freq in the get_bin_seeds function.
|
||||
|
||||
Note that the estimate_bandwidth function is much less scalable than the
|
||||
mean shift algorithm and will be the bottleneck if it is used.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward
|
||||
feature space analysis". IEEE Transactions on Pattern Analysis and
|
||||
Machine Intelligence. 2002. pp. 603-619.
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, bandwidth=None, seeds=None, bin_seeding=False,
|
||||
min_bin_freq=1, cluster_all=True, n_jobs=None, max_iter=300):
|
||||
self.bandwidth = bandwidth
|
||||
self.seeds = seeds
|
||||
self.bin_seeding = bin_seeding
|
||||
self.cluster_all = cluster_all
|
||||
self.min_bin_freq = min_bin_freq
|
||||
self.n_jobs = n_jobs
|
||||
self.max_iter = max_iter
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Perform clustering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Samples to cluster.
|
||||
|
||||
y : Ignored
|
||||
|
||||
"""
|
||||
X = self._validate_data(X)
|
||||
bandwidth = self.bandwidth
|
||||
if bandwidth is None:
|
||||
bandwidth = estimate_bandwidth(X, n_jobs=self.n_jobs)
|
||||
elif bandwidth <= 0:
|
||||
raise ValueError("bandwidth needs to be greater than zero or None,"
|
||||
" got %f" % bandwidth)
|
||||
|
||||
seeds = self.seeds
|
||||
if seeds is None:
|
||||
if self.bin_seeding:
|
||||
seeds = get_bin_seeds(X, bandwidth, self.min_bin_freq)
|
||||
else:
|
||||
seeds = X
|
||||
n_samples, n_features = X.shape
|
||||
center_intensity_dict = {}
|
||||
|
||||
# We use n_jobs=1 because this will be used in nested calls under
|
||||
# parallel calls to _mean_shift_single_seed so there is no need for
|
||||
# for further parallelism.
|
||||
nbrs = NearestNeighbors(radius=bandwidth, n_jobs=1).fit(X)
|
||||
|
||||
# execute iterations on all seeds in parallel
|
||||
all_res = Parallel(n_jobs=self.n_jobs)(
|
||||
delayed(_mean_shift_single_seed)
|
||||
(seed, X, nbrs, self.max_iter) for seed in seeds)
|
||||
# copy results in a dictionary
|
||||
for i in range(len(seeds)):
|
||||
if all_res[i][1]: # i.e. len(points_within) > 0
|
||||
center_intensity_dict[all_res[i][0]] = all_res[i][1]
|
||||
|
||||
self.n_iter_ = max([x[2] for x in all_res])
|
||||
|
||||
if not center_intensity_dict:
|
||||
# nothing near seeds
|
||||
raise ValueError("No point was within bandwidth=%f of any seed."
|
||||
" Try a different seeding strategy \
|
||||
or increase the bandwidth."
|
||||
% bandwidth)
|
||||
|
||||
# POST PROCESSING: remove near duplicate points
|
||||
# If the distance between two kernels is less than the bandwidth,
|
||||
# then we have to remove one because it is a duplicate. Remove the
|
||||
# one with fewer points.
|
||||
|
||||
sorted_by_intensity = sorted(center_intensity_dict.items(),
|
||||
key=lambda tup: (tup[1], tup[0]),
|
||||
reverse=True)
|
||||
sorted_centers = np.array([tup[0] for tup in sorted_by_intensity])
|
||||
unique = np.ones(len(sorted_centers), dtype=np.bool)
|
||||
nbrs = NearestNeighbors(radius=bandwidth,
|
||||
n_jobs=self.n_jobs).fit(sorted_centers)
|
||||
for i, center in enumerate(sorted_centers):
|
||||
if unique[i]:
|
||||
neighbor_idxs = nbrs.radius_neighbors([center],
|
||||
return_distance=False)[0]
|
||||
unique[neighbor_idxs] = 0
|
||||
unique[i] = 1 # leave the current point as unique
|
||||
cluster_centers = sorted_centers[unique]
|
||||
|
||||
# ASSIGN LABELS: a point belongs to the cluster that it is closest to
|
||||
nbrs = NearestNeighbors(n_neighbors=1,
|
||||
n_jobs=self.n_jobs).fit(cluster_centers)
|
||||
labels = np.zeros(n_samples, dtype=np.int)
|
||||
distances, idxs = nbrs.kneighbors(X)
|
||||
if self.cluster_all:
|
||||
labels = idxs.flatten()
|
||||
else:
|
||||
labels.fill(-1)
|
||||
bool_selector = distances.flatten() <= bandwidth
|
||||
labels[bool_selector] = idxs.flatten()[bool_selector]
|
||||
|
||||
self.cluster_centers_, self.labels_ = cluster_centers, labels
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
"""Predict the closest cluster each sample in X belongs to.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape=[n_samples, n_features]
|
||||
New data to predict.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array, shape [n_samples,]
|
||||
Index of the cluster each sample belongs to.
|
||||
"""
|
||||
check_is_fitted(self)
|
||||
|
||||
return pairwise_distances_argmin(X, self.cluster_centers_)
|
928
venv/Lib/site-packages/sklearn/cluster/_optics.py
Normal file
928
venv/Lib/site-packages/sklearn/cluster/_optics.py
Normal file
|
@ -0,0 +1,928 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""Ordering Points To Identify the Clustering Structure (OPTICS)
|
||||
|
||||
These routines execute the OPTICS algorithm, and implement various
|
||||
cluster extraction methods of the ordered list.
|
||||
|
||||
Authors: Shane Grigsby <refuge@rocktalus.com>
|
||||
Adrin Jalali <adrinjalali@gmail.com>
|
||||
Erich Schubert <erich@debian.org>
|
||||
Hanmin Qin <qinhanmin2005@sina.com>
|
||||
License: BSD 3 clause
|
||||
"""
|
||||
|
||||
import warnings
|
||||
import numpy as np
|
||||
|
||||
from ..utils import gen_batches, get_chunk_n_rows
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
from ..neighbors import NearestNeighbors
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..metrics import pairwise_distances
|
||||
|
||||
|
||||
class OPTICS(ClusterMixin, BaseEstimator):
|
||||
"""Estimate clustering structure from vector array.
|
||||
|
||||
OPTICS (Ordering Points To Identify the Clustering Structure), closely
|
||||
related to DBSCAN, finds core sample of high density and expands clusters
|
||||
from them [1]_. Unlike DBSCAN, keeps cluster hierarchy for a variable
|
||||
neighborhood radius. Better suited for usage on large datasets than the
|
||||
current sklearn implementation of DBSCAN.
|
||||
|
||||
Clusters are then extracted using a DBSCAN-like method
|
||||
(cluster_method = 'dbscan') or an automatic
|
||||
technique proposed in [1]_ (cluster_method = 'xi').
|
||||
|
||||
This implementation deviates from the original OPTICS by first performing
|
||||
k-nearest-neighborhood searches on all points to identify core sizes, then
|
||||
computing only the distances to unprocessed points when constructing the
|
||||
cluster order. Note that we do not employ a heap to manage the expansion
|
||||
candidates, so the time complexity will be O(n^2).
|
||||
|
||||
Read more in the :ref:`User Guide <optics>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
min_samples : int > 1 or float between 0 and 1 (default=5)
|
||||
The number of samples in a neighborhood for a point to be considered as
|
||||
a core point. Also, up and down steep regions can't have more then
|
||||
``min_samples`` consecutive non-steep points. Expressed as an absolute
|
||||
number or a fraction of the number of samples (rounded to be at least
|
||||
2).
|
||||
|
||||
max_eps : float, optional (default=np.inf)
|
||||
The maximum distance between two samples for one to be considered as
|
||||
in the neighborhood of the other. Default value of ``np.inf`` will
|
||||
identify clusters across all scales; reducing ``max_eps`` will result
|
||||
in shorter run times.
|
||||
|
||||
metric : str or callable, optional (default='minkowski')
|
||||
Metric to use for distance computation. Any metric from scikit-learn
|
||||
or scipy.spatial.distance can be used.
|
||||
|
||||
If metric is a callable function, it is called on each
|
||||
pair of instances (rows) and the resulting value recorded. The callable
|
||||
should take two arrays as input and return one value indicating the
|
||||
distance between them. This works for Scipy's metrics, but is less
|
||||
efficient than passing the metric name as a string. If metric is
|
||||
"precomputed", X is assumed to be a distance matrix and must be square.
|
||||
|
||||
Valid values for metric are:
|
||||
|
||||
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
|
||||
'manhattan']
|
||||
|
||||
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
|
||||
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
|
||||
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
|
||||
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
|
||||
'yule']
|
||||
|
||||
See the documentation for scipy.spatial.distance for details on these
|
||||
metrics.
|
||||
|
||||
p : int, optional (default=2)
|
||||
Parameter for the Minkowski metric from
|
||||
:class:`sklearn.metrics.pairwise_distances`. When p = 1, this is
|
||||
equivalent to using manhattan_distance (l1), and euclidean_distance
|
||||
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
|
||||
|
||||
metric_params : dict, optional (default=None)
|
||||
Additional keyword arguments for the metric function.
|
||||
|
||||
cluster_method : str, optional (default='xi')
|
||||
The extraction method used to extract clusters using the calculated
|
||||
reachability and ordering. Possible values are "xi" and "dbscan".
|
||||
|
||||
eps : float, optional (default=None)
|
||||
The maximum distance between two samples for one to be considered as
|
||||
in the neighborhood of the other. By default it assumes the same value
|
||||
as ``max_eps``.
|
||||
Used only when ``cluster_method='dbscan'``.
|
||||
|
||||
xi : float, between 0 and 1, optional (default=0.05)
|
||||
Determines the minimum steepness on the reachability plot that
|
||||
constitutes a cluster boundary. For example, an upwards point in the
|
||||
reachability plot is defined by the ratio from one point to its
|
||||
successor being at most 1-xi.
|
||||
Used only when ``cluster_method='xi'``.
|
||||
|
||||
predecessor_correction : bool, optional (default=True)
|
||||
Correct clusters according to the predecessors calculated by OPTICS
|
||||
[2]_. This parameter has minimal effect on most datasets.
|
||||
Used only when ``cluster_method='xi'``.
|
||||
|
||||
min_cluster_size : int > 1 or float between 0 and 1 (default=None)
|
||||
Minimum number of samples in an OPTICS cluster, expressed as an
|
||||
absolute number or a fraction of the number of samples (rounded to be
|
||||
at least 2). If ``None``, the value of ``min_samples`` is used instead.
|
||||
Used only when ``cluster_method='xi'``.
|
||||
|
||||
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
|
||||
Algorithm used to compute the nearest neighbors:
|
||||
|
||||
- 'ball_tree' will use :class:`BallTree`
|
||||
- 'kd_tree' will use :class:`KDTree`
|
||||
- 'brute' will use a brute-force search.
|
||||
- 'auto' will attempt to decide the most appropriate algorithm
|
||||
based on the values passed to :meth:`fit` method. (default)
|
||||
|
||||
Note: fitting on sparse input will override the setting of
|
||||
this parameter, using brute force.
|
||||
|
||||
leaf_size : int, optional (default=30)
|
||||
Leaf size passed to :class:`BallTree` or :class:`KDTree`. This can
|
||||
affect the speed of the construction and query, as well as the memory
|
||||
required to store the tree. The optimal value depends on the
|
||||
nature of the problem.
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
The number of parallel jobs to run for neighbors search.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
labels_ : array, shape (n_samples,)
|
||||
Cluster labels for each point in the dataset given to fit().
|
||||
Noisy samples and points which are not included in a leaf cluster
|
||||
of ``cluster_hierarchy_`` are labeled as -1.
|
||||
|
||||
reachability_ : array, shape (n_samples,)
|
||||
Reachability distances per sample, indexed by object order. Use
|
||||
``clust.reachability_[clust.ordering_]`` to access in cluster order.
|
||||
|
||||
ordering_ : array, shape (n_samples,)
|
||||
The cluster ordered list of sample indices.
|
||||
|
||||
core_distances_ : array, shape (n_samples,)
|
||||
Distance at which each sample becomes a core point, indexed by object
|
||||
order. Points which will never be core have a distance of inf. Use
|
||||
``clust.core_distances_[clust.ordering_]`` to access in cluster order.
|
||||
|
||||
predecessor_ : array, shape (n_samples,)
|
||||
Point that a sample was reached from, indexed by object order.
|
||||
Seed points have a predecessor of -1.
|
||||
|
||||
cluster_hierarchy_ : array, shape (n_clusters, 2)
|
||||
The list of clusters in the form of ``[start, end]`` in each row, with
|
||||
all indices inclusive. The clusters are ordered according to
|
||||
``(end, -start)`` (ascending) so that larger clusters encompassing
|
||||
smaller clusters come after those smaller ones. Since ``labels_`` does
|
||||
not reflect the hierarchy, usually
|
||||
``len(cluster_hierarchy_) > np.unique(optics.labels_)``. Please also
|
||||
note that these indices are of the ``ordering_``, i.e.
|
||||
``X[ordering_][start:end + 1]`` form a cluster.
|
||||
Only available when ``cluster_method='xi'``.
|
||||
|
||||
See Also
|
||||
--------
|
||||
DBSCAN
|
||||
A similar clustering for a specified neighborhood radius (eps).
|
||||
Our implementation is optimized for runtime.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
|
||||
and Jörg Sander. "OPTICS: ordering points to identify the clustering
|
||||
structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.
|
||||
|
||||
.. [2] Schubert, Erich, Michael Gertz.
|
||||
"Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
|
||||
the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import OPTICS
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 2], [2, 5], [3, 6],
|
||||
... [8, 7], [8, 8], [7, 3]])
|
||||
>>> clustering = OPTICS(min_samples=2).fit(X)
|
||||
>>> clustering.labels_
|
||||
array([0, 0, 0, 1, 1, 1])
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, min_samples=5, max_eps=np.inf, metric='minkowski',
|
||||
p=2, metric_params=None, cluster_method='xi', eps=None,
|
||||
xi=0.05, predecessor_correction=True, min_cluster_size=None,
|
||||
algorithm='auto', leaf_size=30, n_jobs=None):
|
||||
self.max_eps = max_eps
|
||||
self.min_samples = min_samples
|
||||
self.min_cluster_size = min_cluster_size
|
||||
self.algorithm = algorithm
|
||||
self.metric = metric
|
||||
self.metric_params = metric_params
|
||||
self.p = p
|
||||
self.leaf_size = leaf_size
|
||||
self.cluster_method = cluster_method
|
||||
self.eps = eps
|
||||
self.xi = xi
|
||||
self.predecessor_correction = predecessor_correction
|
||||
self.n_jobs = n_jobs
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Perform OPTICS clustering.
|
||||
|
||||
Extracts an ordered list of points and reachability distances, and
|
||||
performs initial clustering using ``max_eps`` distance specified at
|
||||
OPTICS object instantiation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array, shape (n_samples, n_features), or (n_samples, n_samples) \
|
||||
if metric=’precomputed’
|
||||
A feature array, or array of distances between samples if
|
||||
metric='precomputed'.
|
||||
|
||||
y : ignored
|
||||
Ignored.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : instance of OPTICS
|
||||
The instance.
|
||||
"""
|
||||
X = self._validate_data(X, dtype=np.float)
|
||||
|
||||
if self.cluster_method not in ['dbscan', 'xi']:
|
||||
raise ValueError("cluster_method should be one of"
|
||||
" 'dbscan' or 'xi' but is %s" %
|
||||
self.cluster_method)
|
||||
|
||||
(self.ordering_, self.core_distances_, self.reachability_,
|
||||
self.predecessor_) = compute_optics_graph(
|
||||
X=X, min_samples=self.min_samples, algorithm=self.algorithm,
|
||||
leaf_size=self.leaf_size, metric=self.metric,
|
||||
metric_params=self.metric_params, p=self.p, n_jobs=self.n_jobs,
|
||||
max_eps=self.max_eps)
|
||||
|
||||
# Extract clusters from the calculated orders and reachability
|
||||
if self.cluster_method == 'xi':
|
||||
labels_, clusters_ = cluster_optics_xi(
|
||||
reachability=self.reachability_,
|
||||
predecessor=self.predecessor_,
|
||||
ordering=self.ordering_,
|
||||
min_samples=self.min_samples,
|
||||
min_cluster_size=self.min_cluster_size,
|
||||
xi=self.xi,
|
||||
predecessor_correction=self.predecessor_correction)
|
||||
self.cluster_hierarchy_ = clusters_
|
||||
elif self.cluster_method == 'dbscan':
|
||||
if self.eps is None:
|
||||
eps = self.max_eps
|
||||
else:
|
||||
eps = self.eps
|
||||
|
||||
if eps > self.max_eps:
|
||||
raise ValueError('Specify an epsilon smaller than %s. Got %s.'
|
||||
% (self.max_eps, eps))
|
||||
|
||||
labels_ = cluster_optics_dbscan(
|
||||
reachability=self.reachability_,
|
||||
core_distances=self.core_distances_,
|
||||
ordering=self.ordering_, eps=eps)
|
||||
|
||||
self.labels_ = labels_
|
||||
return self
|
||||
|
||||
|
||||
def _validate_size(size, n_samples, param_name):
|
||||
if size <= 0 or (size !=
|
||||
int(size)
|
||||
and size > 1):
|
||||
raise ValueError('%s must be a positive integer '
|
||||
'or a float between 0 and 1. Got %r' %
|
||||
(param_name, size))
|
||||
elif size > n_samples:
|
||||
raise ValueError('%s must be no greater than the'
|
||||
' number of samples (%d). Got %d' %
|
||||
(param_name, n_samples, size))
|
||||
|
||||
|
||||
# OPTICS helper functions
|
||||
def _compute_core_distances_(X, neighbors, min_samples, working_memory):
|
||||
"""Compute the k-th nearest neighbor of each sample
|
||||
|
||||
Equivalent to neighbors.kneighbors(X, self.min_samples)[0][:, -1]
|
||||
but with more memory efficiency.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array, shape (n_samples, n_features)
|
||||
The data.
|
||||
neighbors : NearestNeighbors instance
|
||||
The fitted nearest neighbors estimator.
|
||||
working_memory : int, optional
|
||||
The sought maximum memory for temporary distance matrix chunks.
|
||||
When None (default), the value of
|
||||
``sklearn.get_config()['working_memory']`` is used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
core_distances : array, shape (n_samples,)
|
||||
Distance at which each sample becomes a core point.
|
||||
Points which will never be core have a distance of inf.
|
||||
"""
|
||||
n_samples = X.shape[0]
|
||||
core_distances = np.empty(n_samples)
|
||||
core_distances.fill(np.nan)
|
||||
|
||||
chunk_n_rows = get_chunk_n_rows(row_bytes=16 * min_samples,
|
||||
max_n_rows=n_samples,
|
||||
working_memory=working_memory)
|
||||
slices = gen_batches(n_samples, chunk_n_rows)
|
||||
for sl in slices:
|
||||
core_distances[sl] = neighbors.kneighbors(
|
||||
X[sl], min_samples)[0][:, -1]
|
||||
return core_distances
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def compute_optics_graph(X, *, min_samples, max_eps, metric, p, metric_params,
|
||||
algorithm, leaf_size, n_jobs):
|
||||
"""Computes the OPTICS reachability graph.
|
||||
|
||||
Read more in the :ref:`User Guide <optics>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array, shape (n_samples, n_features), or (n_samples, n_samples) \
|
||||
if metric=’precomputed’.
|
||||
A feature array, or array of distances between samples if
|
||||
metric='precomputed'
|
||||
|
||||
min_samples : int > 1 or float between 0 and 1
|
||||
The number of samples in a neighborhood for a point to be considered
|
||||
as a core point. Expressed as an absolute number or a fraction of the
|
||||
number of samples (rounded to be at least 2).
|
||||
|
||||
max_eps : float, optional (default=np.inf)
|
||||
The maximum distance between two samples for one to be considered as
|
||||
in the neighborhood of the other. Default value of ``np.inf`` will
|
||||
identify clusters across all scales; reducing ``max_eps`` will result
|
||||
in shorter run times.
|
||||
|
||||
metric : string or callable, optional (default='minkowski')
|
||||
Metric to use for distance computation. Any metric from scikit-learn
|
||||
or scipy.spatial.distance can be used.
|
||||
|
||||
If metric is a callable function, it is called on each
|
||||
pair of instances (rows) and the resulting value recorded. The callable
|
||||
should take two arrays as input and return one value indicating the
|
||||
distance between them. This works for Scipy's metrics, but is less
|
||||
efficient than passing the metric name as a string. If metric is
|
||||
"precomputed", X is assumed to be a distance matrix and must be square.
|
||||
|
||||
Valid values for metric are:
|
||||
|
||||
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
|
||||
'manhattan']
|
||||
|
||||
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
|
||||
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
|
||||
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
|
||||
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
|
||||
'yule']
|
||||
|
||||
See the documentation for scipy.spatial.distance for details on these
|
||||
metrics.
|
||||
|
||||
p : integer, optional (default=2)
|
||||
Parameter for the Minkowski metric from
|
||||
:class:`sklearn.metrics.pairwise_distances`. When p = 1, this is
|
||||
equivalent to using manhattan_distance (l1), and euclidean_distance
|
||||
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
|
||||
|
||||
metric_params : dict, optional (default=None)
|
||||
Additional keyword arguments for the metric function.
|
||||
|
||||
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
|
||||
Algorithm used to compute the nearest neighbors:
|
||||
|
||||
- 'ball_tree' will use :class:`BallTree`
|
||||
- 'kd_tree' will use :class:`KDTree`
|
||||
- 'brute' will use a brute-force search.
|
||||
- 'auto' will attempt to decide the most appropriate algorithm
|
||||
based on the values passed to :meth:`fit` method. (default)
|
||||
|
||||
Note: fitting on sparse input will override the setting of
|
||||
this parameter, using brute force.
|
||||
|
||||
leaf_size : int, optional (default=30)
|
||||
Leaf size passed to :class:`BallTree` or :class:`KDTree`. This can
|
||||
affect the speed of the construction and query, as well as the memory
|
||||
required to store the tree. The optimal value depends on the
|
||||
nature of the problem.
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
The number of parallel jobs to run for neighbors search.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ordering_ : array, shape (n_samples,)
|
||||
The cluster ordered list of sample indices.
|
||||
|
||||
core_distances_ : array, shape (n_samples,)
|
||||
Distance at which each sample becomes a core point, indexed by object
|
||||
order. Points which will never be core have a distance of inf. Use
|
||||
``clust.core_distances_[clust.ordering_]`` to access in cluster order.
|
||||
|
||||
reachability_ : array, shape (n_samples,)
|
||||
Reachability distances per sample, indexed by object order. Use
|
||||
``clust.reachability_[clust.ordering_]`` to access in cluster order.
|
||||
|
||||
predecessor_ : array, shape (n_samples,)
|
||||
Point that a sample was reached from, indexed by object order.
|
||||
Seed points have a predecessor of -1.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
|
||||
and Jörg Sander. "OPTICS: ordering points to identify the clustering
|
||||
structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.
|
||||
"""
|
||||
n_samples = X.shape[0]
|
||||
_validate_size(min_samples, n_samples, 'min_samples')
|
||||
if min_samples <= 1:
|
||||
min_samples = max(2, int(min_samples * n_samples))
|
||||
|
||||
# Start all points as 'unprocessed' ##
|
||||
reachability_ = np.empty(n_samples)
|
||||
reachability_.fill(np.inf)
|
||||
predecessor_ = np.empty(n_samples, dtype=int)
|
||||
predecessor_.fill(-1)
|
||||
|
||||
nbrs = NearestNeighbors(n_neighbors=min_samples,
|
||||
algorithm=algorithm,
|
||||
leaf_size=leaf_size,
|
||||
metric=metric,
|
||||
metric_params=metric_params,
|
||||
p=p,
|
||||
n_jobs=n_jobs)
|
||||
|
||||
nbrs.fit(X)
|
||||
# Here we first do a kNN query for each point, this differs from
|
||||
# the original OPTICS that only used epsilon range queries.
|
||||
# TODO: handle working_memory somehow?
|
||||
core_distances_ = _compute_core_distances_(X=X, neighbors=nbrs,
|
||||
min_samples=min_samples,
|
||||
working_memory=None)
|
||||
# OPTICS puts an upper limit on these, use inf for undefined.
|
||||
core_distances_[core_distances_ > max_eps] = np.inf
|
||||
|
||||
# Main OPTICS loop. Not parallelizable. The order that entries are
|
||||
# written to the 'ordering_' list is important!
|
||||
# Note that this implementation is O(n^2) theoretically, but
|
||||
# supposedly with very low constant factors.
|
||||
processed = np.zeros(X.shape[0], dtype=bool)
|
||||
ordering = np.zeros(X.shape[0], dtype=int)
|
||||
for ordering_idx in range(X.shape[0]):
|
||||
# Choose next based on smallest reachability distance
|
||||
# (And prefer smaller ids on ties, possibly np.inf!)
|
||||
index = np.where(processed == 0)[0]
|
||||
point = index[np.argmin(reachability_[index])]
|
||||
|
||||
processed[point] = True
|
||||
ordering[ordering_idx] = point
|
||||
if core_distances_[point] != np.inf:
|
||||
_set_reach_dist(core_distances_=core_distances_,
|
||||
reachability_=reachability_,
|
||||
predecessor_=predecessor_,
|
||||
point_index=point,
|
||||
processed=processed, X=X, nbrs=nbrs,
|
||||
metric=metric, metric_params=metric_params,
|
||||
p=p, max_eps=max_eps)
|
||||
if np.all(np.isinf(reachability_)):
|
||||
warnings.warn("All reachability values are inf. Set a larger"
|
||||
" max_eps or all data will be considered outliers.",
|
||||
UserWarning)
|
||||
return ordering, core_distances_, reachability_, predecessor_
|
||||
|
||||
|
||||
def _set_reach_dist(core_distances_, reachability_, predecessor_,
|
||||
point_index, processed, X, nbrs, metric, metric_params,
|
||||
p, max_eps):
|
||||
P = X[point_index:point_index + 1]
|
||||
# Assume that radius_neighbors is faster without distances
|
||||
# and we don't need all distances, nevertheless, this means
|
||||
# we may be doing some work twice.
|
||||
indices = nbrs.radius_neighbors(P, radius=max_eps,
|
||||
return_distance=False)[0]
|
||||
|
||||
# Getting indices of neighbors that have not been processed
|
||||
unproc = np.compress(~np.take(processed, indices), indices)
|
||||
# Neighbors of current point are already processed.
|
||||
if not unproc.size:
|
||||
return
|
||||
|
||||
# Only compute distances to unprocessed neighbors:
|
||||
if metric == 'precomputed':
|
||||
dists = X[point_index, unproc]
|
||||
else:
|
||||
_params = dict() if metric_params is None else metric_params.copy()
|
||||
if metric == 'minkowski' and 'p' not in _params:
|
||||
# the same logic as neighbors, p is ignored if explicitly set
|
||||
# in the dict params
|
||||
_params['p'] = p
|
||||
dists = pairwise_distances(P, np.take(X, unproc, axis=0),
|
||||
metric=metric, n_jobs=None,
|
||||
**_params).ravel()
|
||||
|
||||
rdists = np.maximum(dists, core_distances_[point_index])
|
||||
improved = np.where(rdists < np.take(reachability_, unproc))
|
||||
reachability_[unproc[improved]] = rdists[improved]
|
||||
predecessor_[unproc[improved]] = point_index
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps):
|
||||
"""Performs DBSCAN extraction for an arbitrary epsilon.
|
||||
|
||||
Extracting the clusters runs in linear time. Note that this results in
|
||||
``labels_`` which are close to a :class:`~sklearn.cluster.DBSCAN` with
|
||||
similar settings and ``eps``, only if ``eps`` is close to ``max_eps``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
reachability : array, shape (n_samples,)
|
||||
Reachability distances calculated by OPTICS (``reachability_``)
|
||||
|
||||
core_distances : array, shape (n_samples,)
|
||||
Distances at which points become core (``core_distances_``)
|
||||
|
||||
ordering : array, shape (n_samples,)
|
||||
OPTICS ordered point indices (``ordering_``)
|
||||
|
||||
eps : float
|
||||
DBSCAN ``eps`` parameter. Must be set to < ``max_eps``. Results
|
||||
will be close to DBSCAN algorithm if ``eps`` and ``max_eps`` are close
|
||||
to one another.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels_ : array, shape (n_samples,)
|
||||
The estimated labels.
|
||||
|
||||
"""
|
||||
n_samples = len(core_distances)
|
||||
labels = np.zeros(n_samples, dtype=int)
|
||||
|
||||
far_reach = reachability > eps
|
||||
near_core = core_distances <= eps
|
||||
labels[ordering] = np.cumsum(far_reach[ordering] & near_core[ordering]) - 1
|
||||
labels[far_reach & ~near_core] = -1
|
||||
return labels
|
||||
|
||||
|
||||
def cluster_optics_xi(*, reachability, predecessor, ordering, min_samples,
|
||||
min_cluster_size=None, xi=0.05,
|
||||
predecessor_correction=True):
|
||||
"""Automatically extract clusters according to the Xi-steep method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
reachability : array, shape (n_samples,)
|
||||
Reachability distances calculated by OPTICS (`reachability_`)
|
||||
|
||||
predecessor : array, shape (n_samples,)
|
||||
Predecessors calculated by OPTICS.
|
||||
|
||||
ordering : array, shape (n_samples,)
|
||||
OPTICS ordered point indices (`ordering_`)
|
||||
|
||||
min_samples : int > 1 or float between 0 and 1
|
||||
The same as the min_samples given to OPTICS. Up and down steep regions
|
||||
can't have more then ``min_samples`` consecutive non-steep points.
|
||||
Expressed as an absolute number or a fraction of the number of samples
|
||||
(rounded to be at least 2).
|
||||
|
||||
min_cluster_size : int > 1 or float between 0 and 1 (default=None)
|
||||
Minimum number of samples in an OPTICS cluster, expressed as an
|
||||
absolute number or a fraction of the number of samples (rounded to be
|
||||
at least 2). If ``None``, the value of ``min_samples`` is used instead.
|
||||
|
||||
xi : float, between 0 and 1, optional (default=0.05)
|
||||
Determines the minimum steepness on the reachability plot that
|
||||
constitutes a cluster boundary. For example, an upwards point in the
|
||||
reachability plot is defined by the ratio from one point to its
|
||||
successor being at most 1-xi.
|
||||
|
||||
predecessor_correction : bool, optional (default=True)
|
||||
Correct clusters based on the calculated predecessors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array, shape (n_samples)
|
||||
The labels assigned to samples. Points which are not included
|
||||
in any cluster are labeled as -1.
|
||||
|
||||
clusters : array, shape (n_clusters, 2)
|
||||
The list of clusters in the form of ``[start, end]`` in each row, with
|
||||
all indices inclusive. The clusters are ordered according to ``(end,
|
||||
-start)`` (ascending) so that larger clusters encompassing smaller
|
||||
clusters come after such nested smaller clusters. Since ``labels`` does
|
||||
not reflect the hierarchy, usually ``len(clusters) >
|
||||
np.unique(labels)``.
|
||||
"""
|
||||
n_samples = len(reachability)
|
||||
_validate_size(min_samples, n_samples, 'min_samples')
|
||||
if min_samples <= 1:
|
||||
min_samples = max(2, int(min_samples * n_samples))
|
||||
if min_cluster_size is None:
|
||||
min_cluster_size = min_samples
|
||||
_validate_size(min_cluster_size, n_samples, 'min_cluster_size')
|
||||
if min_cluster_size <= 1:
|
||||
min_cluster_size = max(2, int(min_cluster_size * n_samples))
|
||||
|
||||
clusters = _xi_cluster(reachability[ordering], predecessor[ordering],
|
||||
ordering, xi,
|
||||
min_samples, min_cluster_size,
|
||||
predecessor_correction)
|
||||
labels = _extract_xi_labels(ordering, clusters)
|
||||
return labels, clusters
|
||||
|
||||
|
||||
def _extend_region(steep_point, xward_point, start, min_samples):
|
||||
"""Extend the area until it's maximal.
|
||||
|
||||
It's the same function for both upward and downward reagions, depending on
|
||||
the given input parameters. Assuming:
|
||||
|
||||
- steep_{upward/downward}: bool array indicating whether a point is a
|
||||
steep {upward/downward};
|
||||
- upward/downward: bool array indicating whether a point is
|
||||
upward/downward;
|
||||
|
||||
To extend an upward reagion, ``steep_point=steep_upward`` and
|
||||
``xward_point=downward`` are expected, and to extend a downward region,
|
||||
``steep_point=steep_downward`` and ``xward_point=upward``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
steep_point : bool array, shape (n_samples)
|
||||
True if the point is steep downward (upward).
|
||||
|
||||
xward_point : bool array, shape (n_samples)
|
||||
True if the point is an upward (respectively downward) point.
|
||||
|
||||
start : integer
|
||||
The start of the xward region.
|
||||
|
||||
min_samples : integer
|
||||
The same as the min_samples given to OPTICS. Up and down steep
|
||||
regions can't have more then ``min_samples`` consecutive non-steep
|
||||
points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
index : integer
|
||||
The current index iterating over all the samples, i.e. where we are up
|
||||
to in our search.
|
||||
|
||||
end : integer
|
||||
The end of the region, which can be behind the index. The region
|
||||
includes the ``end`` index.
|
||||
"""
|
||||
n_samples = len(steep_point)
|
||||
non_xward_points = 0
|
||||
index = start
|
||||
end = start
|
||||
# find a maximal area
|
||||
while index < n_samples:
|
||||
if steep_point[index]:
|
||||
non_xward_points = 0
|
||||
end = index
|
||||
elif not xward_point[index]:
|
||||
# it's not a steep point, but still goes up.
|
||||
non_xward_points += 1
|
||||
# region should include no more than min_samples consecutive
|
||||
# non steep xward points.
|
||||
if non_xward_points > min_samples:
|
||||
break
|
||||
else:
|
||||
return end
|
||||
index += 1
|
||||
return end
|
||||
|
||||
|
||||
def _update_filter_sdas(sdas, mib, xi_complement, reachability_plot):
|
||||
"""Update steep down areas (SDAs) using the new maximum in between (mib)
|
||||
value, and the given complement of xi, i.e. ``1 - xi``.
|
||||
"""
|
||||
if np.isinf(mib):
|
||||
return []
|
||||
res = [sda for sda in sdas
|
||||
if mib <= reachability_plot[sda['start']] * xi_complement]
|
||||
for sda in res:
|
||||
sda['mib'] = max(sda['mib'], mib)
|
||||
return res
|
||||
|
||||
|
||||
def _correct_predecessor(reachability_plot, predecessor_plot, ordering, s, e):
|
||||
"""Correct for predecessors.
|
||||
|
||||
Applies Algorithm 2 of [1]_.
|
||||
|
||||
Input parameters are ordered by the computer OPTICS ordering.
|
||||
|
||||
.. [1] Schubert, Erich, Michael Gertz.
|
||||
"Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
|
||||
the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
|
||||
"""
|
||||
while s < e:
|
||||
if reachability_plot[s] > reachability_plot[e]:
|
||||
return s, e
|
||||
p_e = ordering[predecessor_plot[e]]
|
||||
for i in range(s, e):
|
||||
if p_e == ordering[i]:
|
||||
return s, e
|
||||
e -= 1
|
||||
return None, None
|
||||
|
||||
|
||||
def _xi_cluster(reachability_plot, predecessor_plot, ordering, xi, min_samples,
|
||||
min_cluster_size, predecessor_correction):
|
||||
"""Automatically extract clusters according to the Xi-steep method.
|
||||
|
||||
This is rouphly an implementation of Figure 19 of the OPTICS paper.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
reachability_plot : array, shape (n_samples)
|
||||
The reachability plot, i.e. reachability ordered according to
|
||||
the calculated ordering, all computed by OPTICS.
|
||||
|
||||
predecessor_plot : array, shape (n_samples)
|
||||
Predecessors ordered according to the calculated ordering.
|
||||
|
||||
xi : float, between 0 and 1
|
||||
Determines the minimum steepness on the reachability plot that
|
||||
constitutes a cluster boundary. For example, an upwards point in the
|
||||
reachability plot is defined by the ratio from one point to its
|
||||
successor being at most 1-xi.
|
||||
|
||||
min_samples : int > 1
|
||||
The same as the min_samples given to OPTICS. Up and down steep regions
|
||||
can't have more then ``min_samples`` consecutive non-steep points.
|
||||
|
||||
min_cluster_size : int > 1
|
||||
Minimum number of samples in an OPTICS cluster.
|
||||
|
||||
predecessor_correction : bool
|
||||
Correct clusters based on the calculated predecessors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clusters : array, shape (n_clusters, 2)
|
||||
The list of clusters in the form of [start, end] in each row, with all
|
||||
indices inclusive. The clusters are ordered in a way that larger
|
||||
clusters encompassing smaller clusters come after those smaller
|
||||
clusters.
|
||||
"""
|
||||
|
||||
# Our implementation adds an inf to the end of reachability plot
|
||||
# this helps to find potential clusters at the end of the
|
||||
# reachability plot even if there's no upward region at the end of it.
|
||||
reachability_plot = np.hstack((reachability_plot, np.inf))
|
||||
|
||||
xi_complement = 1 - xi
|
||||
sdas = [] # steep down areas, introduced in section 4.3.2 of the paper
|
||||
clusters = []
|
||||
index = 0
|
||||
mib = 0. # maximum in between, section 4.3.2
|
||||
|
||||
# Our implementation corrects a mistake in the original
|
||||
# paper, i.e., in Definition 9 steep downward point,
|
||||
# r(p) * (1 - x1) <= r(p + 1) should be
|
||||
# r(p) * (1 - x1) >= r(p + 1)
|
||||
with np.errstate(invalid='ignore'):
|
||||
ratio = reachability_plot[:-1] / reachability_plot[1:]
|
||||
steep_upward = ratio <= xi_complement
|
||||
steep_downward = ratio >= 1 / xi_complement
|
||||
downward = ratio > 1
|
||||
upward = ratio < 1
|
||||
|
||||
# the following loop is is almost exactly as Figure 19 of the paper.
|
||||
# it jumps over the areas which are not either steep down or up areas
|
||||
for steep_index in iter(np.flatnonzero(steep_upward | steep_downward)):
|
||||
# just continue if steep_index has been a part of a discovered xward
|
||||
# area.
|
||||
if steep_index < index:
|
||||
continue
|
||||
|
||||
mib = max(mib, np.max(reachability_plot[index:steep_index + 1]))
|
||||
|
||||
# steep downward areas
|
||||
if steep_downward[steep_index]:
|
||||
sdas = _update_filter_sdas(sdas, mib, xi_complement,
|
||||
reachability_plot)
|
||||
D_start = steep_index
|
||||
D_end = _extend_region(steep_downward, upward,
|
||||
D_start, min_samples)
|
||||
D = {'start': D_start, 'end': D_end, 'mib': 0.}
|
||||
sdas.append(D)
|
||||
index = D_end + 1
|
||||
mib = reachability_plot[index]
|
||||
|
||||
# steep upward areas
|
||||
else:
|
||||
sdas = _update_filter_sdas(sdas, mib, xi_complement,
|
||||
reachability_plot)
|
||||
U_start = steep_index
|
||||
U_end = _extend_region(steep_upward, downward, U_start,
|
||||
min_samples)
|
||||
index = U_end + 1
|
||||
mib = reachability_plot[index]
|
||||
|
||||
U_clusters = []
|
||||
for D in sdas:
|
||||
c_start = D['start']
|
||||
c_end = U_end
|
||||
|
||||
# line (**), sc2*
|
||||
if reachability_plot[c_end + 1] * xi_complement < D['mib']:
|
||||
continue
|
||||
|
||||
# Definition 11: criterion 4
|
||||
D_max = reachability_plot[D['start']]
|
||||
if D_max * xi_complement >= reachability_plot[c_end + 1]:
|
||||
# Find the first index from the left side which is almost
|
||||
# at the same level as the end of the detected cluster.
|
||||
while (reachability_plot[c_start + 1] >
|
||||
reachability_plot[c_end + 1]
|
||||
and c_start < D['end']):
|
||||
c_start += 1
|
||||
elif reachability_plot[c_end + 1] * xi_complement >= D_max:
|
||||
# Find the first index from the right side which is almost
|
||||
# at the same level as the beginning of the detected
|
||||
# cluster.
|
||||
# Our implementation corrects a mistake in the original
|
||||
# paper, i.e., in Definition 11 4c, r(x) < r(sD) should be
|
||||
# r(x) > r(sD).
|
||||
while (reachability_plot[c_end - 1] > D_max
|
||||
and c_end > U_start):
|
||||
c_end -= 1
|
||||
|
||||
# predecessor correction
|
||||
if predecessor_correction:
|
||||
c_start, c_end = _correct_predecessor(reachability_plot,
|
||||
predecessor_plot,
|
||||
ordering,
|
||||
c_start,
|
||||
c_end)
|
||||
if c_start is None:
|
||||
continue
|
||||
|
||||
# Definition 11: criterion 3.a
|
||||
if c_end - c_start + 1 < min_cluster_size:
|
||||
continue
|
||||
|
||||
# Definition 11: criterion 1
|
||||
if c_start > D['end']:
|
||||
continue
|
||||
|
||||
# Definition 11: criterion 2
|
||||
if c_end < U_start:
|
||||
continue
|
||||
|
||||
U_clusters.append((c_start, c_end))
|
||||
|
||||
# add smaller clusters first.
|
||||
U_clusters.reverse()
|
||||
clusters.extend(U_clusters)
|
||||
|
||||
return np.array(clusters)
|
||||
|
||||
|
||||
def _extract_xi_labels(ordering, clusters):
|
||||
"""Extracts the labels from the clusters returned by `_xi_cluster`.
|
||||
We rely on the fact that clusters are stored
|
||||
with the smaller clusters coming before the larger ones.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ordering : array, shape (n_samples)
|
||||
The ordering of points calculated by OPTICS
|
||||
|
||||
clusters : array, shape (n_clusters, 2)
|
||||
List of clusters i.e. (start, end) tuples,
|
||||
as returned by `_xi_cluster`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array, shape (n_samples)
|
||||
"""
|
||||
|
||||
labels = np.full(len(ordering), -1, dtype=int)
|
||||
label = 0
|
||||
for c in clusters:
|
||||
if not np.any(labels[c[0]:(c[1] + 1)] != -1):
|
||||
labels[c[0]:(c[1] + 1)] = label
|
||||
label += 1
|
||||
labels[ordering] = labels.copy()
|
||||
return labels
|
552
venv/Lib/site-packages/sklearn/cluster/_spectral.py
Normal file
552
venv/Lib/site-packages/sklearn/cluster/_spectral.py
Normal file
|
@ -0,0 +1,552 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""Algorithms for spectral clustering"""
|
||||
|
||||
# Author: Gael Varoquaux gael.varoquaux@normalesup.org
|
||||
# Brian Cheung
|
||||
# Wei LI <kuantkid@gmail.com>
|
||||
# License: BSD 3 clause
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..base import BaseEstimator, ClusterMixin
|
||||
from ..utils import check_random_state, as_float_array
|
||||
from ..utils.validation import _deprecate_positional_args
|
||||
from ..metrics.pairwise import pairwise_kernels
|
||||
from ..neighbors import kneighbors_graph, NearestNeighbors
|
||||
from ..manifold import spectral_embedding
|
||||
from ._kmeans import k_means
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def discretize(vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20,
|
||||
random_state=None):
|
||||
"""Search for a partition matrix (clustering) which is closest to the
|
||||
eigenvector embedding.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vectors : array-like, shape: (n_samples, n_clusters)
|
||||
The embedding space of the samples.
|
||||
|
||||
copy : boolean, optional, default: True
|
||||
Whether to copy vectors, or perform in-place normalization.
|
||||
|
||||
max_svd_restarts : int, optional, default: 30
|
||||
Maximum number of attempts to restart SVD if convergence fails
|
||||
|
||||
n_iter_max : int, optional, default: 30
|
||||
Maximum number of iterations to attempt in rotation and partition
|
||||
matrix search if machine precision convergence is not reached
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
Determines random number generation for rotation matrix initialization.
|
||||
Use an int to make the randomness deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array of integers, shape: n_samples
|
||||
The labels of the clusters.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
- Multiclass spectral clustering, 2003
|
||||
Stella X. Yu, Jianbo Shi
|
||||
https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The eigenvector embedding is used to iteratively search for the
|
||||
closest discrete partition. First, the eigenvector embedding is
|
||||
normalized to the space of partition matrices. An optimal discrete
|
||||
partition matrix closest to this normalized embedding multiplied by
|
||||
an initial rotation is calculated. Fixing this discrete partition
|
||||
matrix, an optimal rotation matrix is calculated. These two
|
||||
calculations are performed until convergence. The discrete partition
|
||||
matrix is returned as the clustering solution. Used in spectral
|
||||
clustering, this method tends to be faster and more robust to random
|
||||
initialization than k-means.
|
||||
|
||||
"""
|
||||
|
||||
from scipy.sparse import csc_matrix
|
||||
from scipy.linalg import LinAlgError
|
||||
|
||||
random_state = check_random_state(random_state)
|
||||
|
||||
vectors = as_float_array(vectors, copy=copy)
|
||||
|
||||
eps = np.finfo(float).eps
|
||||
n_samples, n_components = vectors.shape
|
||||
|
||||
# Normalize the eigenvectors to an equal length of a vector of ones.
|
||||
# Reorient the eigenvectors to point in the negative direction with respect
|
||||
# to the first element. This may have to do with constraining the
|
||||
# eigenvectors to lie in a specific quadrant to make the discretization
|
||||
# search easier.
|
||||
norm_ones = np.sqrt(n_samples)
|
||||
for i in range(vectors.shape[1]):
|
||||
vectors[:, i] = (vectors[:, i] / np.linalg.norm(vectors[:, i])) \
|
||||
* norm_ones
|
||||
if vectors[0, i] != 0:
|
||||
vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i])
|
||||
|
||||
# Normalize the rows of the eigenvectors. Samples should lie on the unit
|
||||
# hypersphere centered at the origin. This transforms the samples in the
|
||||
# embedding space to the space of partition matrices.
|
||||
vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis]
|
||||
|
||||
svd_restarts = 0
|
||||
has_converged = False
|
||||
|
||||
# If there is an exception we try to randomize and rerun SVD again
|
||||
# do this max_svd_restarts times.
|
||||
while (svd_restarts < max_svd_restarts) and not has_converged:
|
||||
|
||||
# Initialize first column of rotation matrix with a row of the
|
||||
# eigenvectors
|
||||
rotation = np.zeros((n_components, n_components))
|
||||
rotation[:, 0] = vectors[random_state.randint(n_samples), :].T
|
||||
|
||||
# To initialize the rest of the rotation matrix, find the rows
|
||||
# of the eigenvectors that are as orthogonal to each other as
|
||||
# possible
|
||||
c = np.zeros(n_samples)
|
||||
for j in range(1, n_components):
|
||||
# Accumulate c to ensure row is as orthogonal as possible to
|
||||
# previous picks as well as current one
|
||||
c += np.abs(np.dot(vectors, rotation[:, j - 1]))
|
||||
rotation[:, j] = vectors[c.argmin(), :].T
|
||||
|
||||
last_objective_value = 0.0
|
||||
n_iter = 0
|
||||
|
||||
while not has_converged:
|
||||
n_iter += 1
|
||||
|
||||
t_discrete = np.dot(vectors, rotation)
|
||||
|
||||
labels = t_discrete.argmax(axis=1)
|
||||
vectors_discrete = csc_matrix(
|
||||
(np.ones(len(labels)), (np.arange(0, n_samples), labels)),
|
||||
shape=(n_samples, n_components))
|
||||
|
||||
t_svd = vectors_discrete.T * vectors
|
||||
|
||||
try:
|
||||
U, S, Vh = np.linalg.svd(t_svd)
|
||||
svd_restarts += 1
|
||||
except LinAlgError:
|
||||
print("SVD did not converge, randomizing and trying again")
|
||||
break
|
||||
|
||||
ncut_value = 2.0 * (n_samples - S.sum())
|
||||
if ((abs(ncut_value - last_objective_value) < eps) or
|
||||
(n_iter > n_iter_max)):
|
||||
has_converged = True
|
||||
else:
|
||||
# otherwise calculate rotation and continue
|
||||
last_objective_value = ncut_value
|
||||
rotation = np.dot(Vh.T, U.T)
|
||||
|
||||
if not has_converged:
|
||||
raise LinAlgError('SVD did not converge')
|
||||
return labels
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def spectral_clustering(affinity, *, n_clusters=8, n_components=None,
|
||||
eigen_solver=None, random_state=None, n_init=10,
|
||||
eigen_tol=0.0, assign_labels='kmeans'):
|
||||
"""Apply clustering to a projection of the normalized Laplacian.
|
||||
|
||||
In practice Spectral Clustering is very useful when the structure of
|
||||
the individual clusters is highly non-convex or more generally when
|
||||
a measure of the center and spread of the cluster is not a suitable
|
||||
description of the complete cluster. For instance, when clusters are
|
||||
nested circles on the 2D plane.
|
||||
|
||||
If affinity is the adjacency matrix of a graph, this method can be
|
||||
used to find normalized graph cuts.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_clustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
affinity : array-like or sparse matrix, shape: (n_samples, n_samples)
|
||||
The affinity matrix describing the relationship of the samples to
|
||||
embed. **Must be symmetric**.
|
||||
|
||||
Possible examples:
|
||||
- adjacency matrix of a graph,
|
||||
- heat kernel of the pairwise distance matrix of the samples,
|
||||
- symmetric k-nearest neighbours connectivity matrix of the samples.
|
||||
|
||||
n_clusters : integer, optional
|
||||
Number of clusters to extract.
|
||||
|
||||
n_components : integer, optional, default is n_clusters
|
||||
Number of eigen vectors to use for the spectral embedding
|
||||
|
||||
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
|
||||
The eigenvalue decomposition strategy to use. AMG requires pyamg
|
||||
to be installed. It can be faster on very large, sparse problems,
|
||||
but may also lead to instabilities
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
A pseudo random number generator used for the initialization of the
|
||||
lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by
|
||||
the K-Means initialization. Use an int to make the randomness
|
||||
deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
n_init : int, optional, default: 10
|
||||
Number of time the k-means algorithm will be run with different
|
||||
centroid seeds. The final results will be the best output of
|
||||
n_init consecutive runs in terms of inertia.
|
||||
|
||||
eigen_tol : float, optional, default: 0.0
|
||||
Stopping criterion for eigendecomposition of the Laplacian matrix
|
||||
when using arpack eigen_solver.
|
||||
|
||||
assign_labels : {'kmeans', 'discretize'}, default: 'kmeans'
|
||||
The strategy to use to assign labels in the embedding
|
||||
space. There are two ways to assign labels after the laplacian
|
||||
embedding. k-means can be applied and is a popular choice. But it can
|
||||
also be sensitive to initialization. Discretization is another
|
||||
approach which is less sensitive to random initialization. See
|
||||
the 'Multiclass spectral clustering' paper referenced below for
|
||||
more details on the discretization approach.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : array of integers, shape: n_samples
|
||||
The labels of the clusters.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
- Normalized cuts and image segmentation, 2000
|
||||
Jianbo Shi, Jitendra Malik
|
||||
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
|
||||
|
||||
- A Tutorial on Spectral Clustering, 2007
|
||||
Ulrike von Luxburg
|
||||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
|
||||
|
||||
- Multiclass spectral clustering, 2003
|
||||
Stella X. Yu, Jianbo Shi
|
||||
https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf
|
||||
|
||||
Notes
|
||||
-----
|
||||
The graph should contain only one connect component, elsewhere
|
||||
the results make little sense.
|
||||
|
||||
This algorithm solves the normalized cut for k=2: it is a
|
||||
normalized spectral clustering.
|
||||
"""
|
||||
if assign_labels not in ('kmeans', 'discretize'):
|
||||
raise ValueError("The 'assign_labels' parameter should be "
|
||||
"'kmeans' or 'discretize', but '%s' was given"
|
||||
% assign_labels)
|
||||
|
||||
random_state = check_random_state(random_state)
|
||||
n_components = n_clusters if n_components is None else n_components
|
||||
|
||||
# The first eigen vector is constant only for fully connected graphs
|
||||
# and should be kept for spectral clustering (drop_first = False)
|
||||
# See spectral_embedding documentation.
|
||||
maps = spectral_embedding(affinity, n_components=n_components,
|
||||
eigen_solver=eigen_solver,
|
||||
random_state=random_state,
|
||||
eigen_tol=eigen_tol, drop_first=False)
|
||||
|
||||
if assign_labels == 'kmeans':
|
||||
_, labels, _ = k_means(maps, n_clusters, random_state=random_state,
|
||||
n_init=n_init)
|
||||
else:
|
||||
labels = discretize(maps, random_state=random_state)
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
class SpectralClustering(ClusterMixin, BaseEstimator):
|
||||
"""Apply clustering to a projection of the normalized Laplacian.
|
||||
|
||||
In practice Spectral Clustering is very useful when the structure of
|
||||
the individual clusters is highly non-convex or more generally when
|
||||
a measure of the center and spread of the cluster is not a suitable
|
||||
description of the complete cluster. For instance when clusters are
|
||||
nested circles on the 2D plane.
|
||||
|
||||
If affinity is the adjacency matrix of a graph, this method can be
|
||||
used to find normalized graph cuts.
|
||||
|
||||
When calling ``fit``, an affinity matrix is constructed using either
|
||||
kernel function such the Gaussian (aka RBF) kernel of the euclidean
|
||||
distanced ``d(X, X)``::
|
||||
|
||||
np.exp(-gamma * d(X,X) ** 2)
|
||||
|
||||
or a k-nearest neighbors connectivity matrix.
|
||||
|
||||
Alternatively, using ``precomputed``, a user-provided affinity
|
||||
matrix can be used.
|
||||
|
||||
Read more in the :ref:`User Guide <spectral_clustering>`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_clusters : integer, optional
|
||||
The dimension of the projection subspace.
|
||||
|
||||
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
|
||||
The eigenvalue decomposition strategy to use. AMG requires pyamg
|
||||
to be installed. It can be faster on very large, sparse problems,
|
||||
but may also lead to instabilities.
|
||||
|
||||
n_components : integer, optional, default=n_clusters
|
||||
Number of eigen vectors to use for the spectral embedding
|
||||
|
||||
random_state : int, RandomState instance, default=None
|
||||
A pseudo random number generator used for the initialization of the
|
||||
lobpcg eigen vectors decomposition when ``eigen_solver='amg'`` and by
|
||||
the K-Means initialization. Use an int to make the randomness
|
||||
deterministic.
|
||||
See :term:`Glossary <random_state>`.
|
||||
|
||||
n_init : int, optional, default: 10
|
||||
Number of time the k-means algorithm will be run with different
|
||||
centroid seeds. The final results will be the best output of
|
||||
n_init consecutive runs in terms of inertia.
|
||||
|
||||
gamma : float, default=1.0
|
||||
Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels.
|
||||
Ignored for ``affinity='nearest_neighbors'``.
|
||||
|
||||
affinity : string or callable, default 'rbf'
|
||||
How to construct the affinity matrix.
|
||||
- 'nearest_neighbors' : construct the affinity matrix by computing a
|
||||
graph of nearest neighbors.
|
||||
- 'rbf' : construct the affinity matrix using a radial basis function
|
||||
(RBF) kernel.
|
||||
- 'precomputed' : interpret ``X`` as a precomputed affinity matrix.
|
||||
- 'precomputed_nearest_neighbors' : interpret ``X`` as a sparse graph
|
||||
of precomputed nearest neighbors, and constructs the affinity matrix
|
||||
by selecting the ``n_neighbors`` nearest neighbors.
|
||||
- one of the kernels supported by
|
||||
:func:`~sklearn.metrics.pairwise_kernels`.
|
||||
|
||||
Only kernels that produce similarity scores (non-negative values that
|
||||
increase with similarity) should be used. This property is not checked
|
||||
by the clustering algorithm.
|
||||
|
||||
n_neighbors : integer
|
||||
Number of neighbors to use when constructing the affinity matrix using
|
||||
the nearest neighbors method. Ignored for ``affinity='rbf'``.
|
||||
|
||||
eigen_tol : float, optional, default: 0.0
|
||||
Stopping criterion for eigendecomposition of the Laplacian matrix
|
||||
when ``eigen_solver='arpack'``.
|
||||
|
||||
assign_labels : {'kmeans', 'discretize'}, default: 'kmeans'
|
||||
The strategy to use to assign labels in the embedding
|
||||
space. There are two ways to assign labels after the laplacian
|
||||
embedding. k-means can be applied and is a popular choice. But it can
|
||||
also be sensitive to initialization. Discretization is another approach
|
||||
which is less sensitive to random initialization.
|
||||
|
||||
degree : float, default=3
|
||||
Degree of the polynomial kernel. Ignored by other kernels.
|
||||
|
||||
coef0 : float, default=1
|
||||
Zero coefficient for polynomial and sigmoid kernels.
|
||||
Ignored by other kernels.
|
||||
|
||||
kernel_params : dictionary of string to any, optional
|
||||
Parameters (keyword arguments) and values for kernel passed as
|
||||
callable object. Ignored by other kernels.
|
||||
|
||||
n_jobs : int or None, optional (default=None)
|
||||
The number of parallel jobs to run.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
affinity_matrix_ : array-like, shape (n_samples, n_samples)
|
||||
Affinity matrix used for clustering. Available only if after calling
|
||||
``fit``.
|
||||
|
||||
labels_ : array, shape (n_samples,)
|
||||
Labels of each point
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn.cluster import SpectralClustering
|
||||
>>> import numpy as np
|
||||
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
... [4, 7], [3, 5], [3, 6]])
|
||||
>>> clustering = SpectralClustering(n_clusters=2,
|
||||
... assign_labels="discretize",
|
||||
... random_state=0).fit(X)
|
||||
>>> clustering.labels_
|
||||
array([1, 1, 1, 0, 0, 0])
|
||||
>>> clustering
|
||||
SpectralClustering(assign_labels='discretize', n_clusters=2,
|
||||
random_state=0)
|
||||
|
||||
Notes
|
||||
-----
|
||||
If you have an affinity matrix, such as a distance matrix,
|
||||
for which 0 means identical elements, and high values means
|
||||
very dissimilar elements, it can be transformed in a
|
||||
similarity matrix that is well suited for the algorithm by
|
||||
applying the Gaussian (RBF, heat) kernel::
|
||||
|
||||
np.exp(- dist_matrix ** 2 / (2. * delta ** 2))
|
||||
|
||||
Where ``delta`` is a free parameter representing the width of the Gaussian
|
||||
kernel.
|
||||
|
||||
Another alternative is to take a symmetric version of the k
|
||||
nearest neighbors connectivity matrix of the points.
|
||||
|
||||
If the pyamg package is installed, it is used: this greatly
|
||||
speeds up computation.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
- Normalized cuts and image segmentation, 2000
|
||||
Jianbo Shi, Jitendra Malik
|
||||
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
|
||||
|
||||
- A Tutorial on Spectral Clustering, 2007
|
||||
Ulrike von Luxburg
|
||||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
|
||||
|
||||
- Multiclass spectral clustering, 2003
|
||||
Stella X. Yu, Jianbo Shi
|
||||
https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, n_clusters=8, *, eigen_solver=None, n_components=None,
|
||||
random_state=None, n_init=10, gamma=1., affinity='rbf',
|
||||
n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans',
|
||||
degree=3, coef0=1, kernel_params=None, n_jobs=None):
|
||||
self.n_clusters = n_clusters
|
||||
self.eigen_solver = eigen_solver
|
||||
self.n_components = n_components
|
||||
self.random_state = random_state
|
||||
self.n_init = n_init
|
||||
self.gamma = gamma
|
||||
self.affinity = affinity
|
||||
self.n_neighbors = n_neighbors
|
||||
self.eigen_tol = eigen_tol
|
||||
self.assign_labels = assign_labels
|
||||
self.degree = degree
|
||||
self.coef0 = coef0
|
||||
self.kernel_params = kernel_params
|
||||
self.n_jobs = n_jobs
|
||||
|
||||
def fit(self, X, y=None):
|
||||
"""Perform spectral clustering from features, or affinity matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape (n_samples, n_features), or \
|
||||
array-like, shape (n_samples, n_samples)
|
||||
Training instances to cluster, or similarities / affinities between
|
||||
instances if ``affinity='precomputed'``. If a sparse matrix is
|
||||
provided in a format other than ``csr_matrix``, ``csc_matrix``,
|
||||
or ``coo_matrix``, it will be converted into a sparse
|
||||
``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self
|
||||
|
||||
"""
|
||||
X = self._validate_data(X, accept_sparse=['csr', 'csc', 'coo'],
|
||||
dtype=np.float64, ensure_min_samples=2)
|
||||
allow_squared = self.affinity in ["precomputed",
|
||||
"precomputed_nearest_neighbors"]
|
||||
if X.shape[0] == X.shape[1] and not allow_squared:
|
||||
warnings.warn("The spectral clustering API has changed. ``fit``"
|
||||
"now constructs an affinity matrix from data. To use"
|
||||
" a custom affinity matrix, "
|
||||
"set ``affinity=precomputed``.")
|
||||
|
||||
if self.affinity == 'nearest_neighbors':
|
||||
connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors,
|
||||
include_self=True,
|
||||
n_jobs=self.n_jobs)
|
||||
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
|
||||
elif self.affinity == 'precomputed_nearest_neighbors':
|
||||
estimator = NearestNeighbors(n_neighbors=self.n_neighbors,
|
||||
n_jobs=self.n_jobs,
|
||||
metric="precomputed").fit(X)
|
||||
connectivity = estimator.kneighbors_graph(X=X, mode='connectivity')
|
||||
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
|
||||
elif self.affinity == 'precomputed':
|
||||
self.affinity_matrix_ = X
|
||||
else:
|
||||
params = self.kernel_params
|
||||
if params is None:
|
||||
params = {}
|
||||
if not callable(self.affinity):
|
||||
params['gamma'] = self.gamma
|
||||
params['degree'] = self.degree
|
||||
params['coef0'] = self.coef0
|
||||
self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity,
|
||||
filter_params=True,
|
||||
**params)
|
||||
|
||||
random_state = check_random_state(self.random_state)
|
||||
self.labels_ = spectral_clustering(self.affinity_matrix_,
|
||||
n_clusters=self.n_clusters,
|
||||
n_components=self.n_components,
|
||||
eigen_solver=self.eigen_solver,
|
||||
random_state=random_state,
|
||||
n_init=self.n_init,
|
||||
eigen_tol=self.eigen_tol,
|
||||
assign_labels=self.assign_labels)
|
||||
return self
|
||||
|
||||
def fit_predict(self, X, y=None):
|
||||
"""Perform spectral clustering from features, or affinity matrix,
|
||||
and return cluster labels.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : array-like or sparse matrix, shape (n_samples, n_features), or \
|
||||
array-like, shape (n_samples, n_samples)
|
||||
Training instances to cluster, or similarities / affinities between
|
||||
instances if ``affinity='precomputed'``. If a sparse matrix is
|
||||
provided in a format other than ``csr_matrix``, ``csc_matrix``,
|
||||
or ``coo_matrix``, it will be converted into a sparse
|
||||
``csr_matrix``.
|
||||
|
||||
y : Ignored
|
||||
Not used, present here for API consistency by convention.
|
||||
|
||||
Returns
|
||||
-------
|
||||
labels : ndarray, shape (n_samples,)
|
||||
Cluster labels.
|
||||
"""
|
||||
return super().fit_predict(X, y)
|
||||
|
||||
@property
|
||||
def _pairwise(self):
|
||||
return self.affinity in ["precomputed",
|
||||
"precomputed_nearest_neighbors"]
|
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _affinity_propagation # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.affinity_propagation_'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_affinity_propagation, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/cluster/bicluster.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/bicluster.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _bicluster # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.bicluster'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_bicluster, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/cluster/birch.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/birch.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _birch # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.birch'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_birch, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/cluster/dbscan_.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/dbscan_.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _dbscan # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.dbscan_'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_dbscan, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/cluster/hierarchical.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/hierarchical.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _agglomerative # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.hierarchical'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_agglomerative, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/cluster/k_means_.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/k_means_.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _kmeans # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.k_means_'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_kmeans, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/cluster/mean_shift_.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/mean_shift_.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _mean_shift # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.mean_shift_'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_mean_shift, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
18
venv/Lib/site-packages/sklearn/cluster/optics_.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/optics_.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _optics # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.optics_'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_optics, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
50
venv/Lib/site-packages/sklearn/cluster/setup.py
Normal file
50
venv/Lib/site-packages/sklearn/cluster/setup.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||||
# License: BSD 3 clause
|
||||
import os
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
def configuration(parent_package='', top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
|
||||
libraries = []
|
||||
if os.name == 'posix':
|
||||
libraries.append('m')
|
||||
|
||||
config = Configuration('cluster', parent_package, top_path)
|
||||
|
||||
config.add_extension('_dbscan_inner',
|
||||
sources=['_dbscan_inner.pyx'],
|
||||
include_dirs=[numpy.get_include()],
|
||||
language="c++")
|
||||
|
||||
config.add_extension('_hierarchical_fast',
|
||||
sources=['_hierarchical_fast.pyx'],
|
||||
language="c++",
|
||||
include_dirs=[numpy.get_include()],
|
||||
libraries=libraries)
|
||||
|
||||
config.add_extension('_k_means_fast',
|
||||
sources=['_k_means_fast.pyx'],
|
||||
include_dirs=[numpy.get_include()],
|
||||
libraries=libraries)
|
||||
|
||||
config.add_extension('_k_means_lloyd',
|
||||
sources=['_k_means_lloyd.pyx'],
|
||||
include_dirs=[numpy.get_include()],
|
||||
libraries=libraries)
|
||||
|
||||
config.add_extension('_k_means_elkan',
|
||||
sources=['_k_means_elkan.pyx'],
|
||||
include_dirs=[numpy.get_include()],
|
||||
libraries=libraries)
|
||||
|
||||
config.add_subpackage('tests')
|
||||
|
||||
return config
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(**configuration(top_path='').todict())
|
18
venv/Lib/site-packages/sklearn/cluster/spectral.py
Normal file
18
venv/Lib/site-packages/sklearn/cluster/spectral.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
|
||||
# THIS FILE WAS AUTOMATICALLY GENERATED BY deprecated_modules.py
|
||||
import sys
|
||||
# mypy error: Module X has no attribute y (typically for C extensions)
|
||||
from . import _spectral # type: ignore
|
||||
from ..externals._pep562 import Pep562
|
||||
from ..utils.deprecation import _raise_dep_warning_if_not_pytest
|
||||
|
||||
deprecated_path = 'sklearn.cluster.spectral'
|
||||
correct_import_path = 'sklearn.cluster'
|
||||
|
||||
_raise_dep_warning_if_not_pytest(deprecated_path, correct_import_path)
|
||||
|
||||
def __getattr__(name):
|
||||
return getattr(_spectral, name)
|
||||
|
||||
if not sys.version_info >= (3, 7):
|
||||
Pep562(__name__)
|
0
venv/Lib/site-packages/sklearn/cluster/tests/__init__.py
Normal file
0
venv/Lib/site-packages/sklearn/cluster/tests/__init__.py
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
28
venv/Lib/site-packages/sklearn/cluster/tests/common.py
Normal file
28
venv/Lib/site-packages/sklearn/cluster/tests/common.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
"""
|
||||
Common utilities for testing clustering.
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Generate sample data
|
||||
|
||||
def generate_clustered_data(seed=0, n_clusters=3, n_features=2,
|
||||
n_samples_per_cluster=20, std=.4):
|
||||
prng = np.random.RandomState(seed)
|
||||
|
||||
# the data is voluntary shifted away from zero to check clustering
|
||||
# algorithm robustness with regards to non centered data
|
||||
means = np.array([[1, 1, 1, 0],
|
||||
[-1, -1, 0, 1],
|
||||
[1, -1, 1, 1],
|
||||
[-1, 1, 1, 0],
|
||||
]) + 10
|
||||
|
||||
X = np.empty((0, n_features))
|
||||
for i in range(n_clusters):
|
||||
X = np.r_[X, means[i][:n_features]
|
||||
+ std * prng.randn(n_samples_per_cluster, n_features)]
|
||||
return X
|
|
@ -0,0 +1,246 @@
|
|||
"""
|
||||
Testing for Clustering methods
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from scipy.sparse import csr_matrix
|
||||
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
from sklearn.utils._testing import (
|
||||
assert_array_equal, assert_warns,
|
||||
assert_warns_message, assert_no_warnings)
|
||||
|
||||
from sklearn.cluster import AffinityPropagation
|
||||
from sklearn.cluster._affinity_propagation import (
|
||||
_equal_similarities_and_preferences
|
||||
)
|
||||
from sklearn.cluster import affinity_propagation
|
||||
from sklearn.datasets import make_blobs
|
||||
from sklearn.metrics import euclidean_distances
|
||||
|
||||
n_clusters = 3
|
||||
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
|
||||
X, _ = make_blobs(n_samples=60, n_features=2, centers=centers,
|
||||
cluster_std=0.4, shuffle=True, random_state=0)
|
||||
|
||||
|
||||
def test_affinity_propagation():
|
||||
# Affinity Propagation algorithm
|
||||
# Compute similarities
|
||||
S = -euclidean_distances(X, squared=True)
|
||||
preference = np.median(S) * 10
|
||||
# Compute Affinity Propagation
|
||||
cluster_centers_indices, labels = affinity_propagation(
|
||||
S, preference=preference, random_state=39)
|
||||
|
||||
n_clusters_ = len(cluster_centers_indices)
|
||||
|
||||
assert n_clusters == n_clusters_
|
||||
|
||||
af = AffinityPropagation(preference=preference, affinity="precomputed",
|
||||
random_state=28)
|
||||
labels_precomputed = af.fit(S).labels_
|
||||
|
||||
af = AffinityPropagation(preference=preference, verbose=True,
|
||||
random_state=37)
|
||||
labels = af.fit(X).labels_
|
||||
|
||||
assert_array_equal(labels, labels_precomputed)
|
||||
|
||||
cluster_centers_indices = af.cluster_centers_indices_
|
||||
|
||||
n_clusters_ = len(cluster_centers_indices)
|
||||
assert np.unique(labels).size == n_clusters_
|
||||
assert n_clusters == n_clusters_
|
||||
|
||||
# Test also with no copy
|
||||
_, labels_no_copy = affinity_propagation(S, preference=preference,
|
||||
copy=False, random_state=74)
|
||||
assert_array_equal(labels, labels_no_copy)
|
||||
|
||||
# Test input validation
|
||||
with pytest.raises(ValueError):
|
||||
affinity_propagation(S[:, :-1])
|
||||
with pytest.raises(ValueError):
|
||||
affinity_propagation(S, damping=0)
|
||||
af = AffinityPropagation(affinity="unknown", random_state=78)
|
||||
with pytest.raises(ValueError):
|
||||
af.fit(X)
|
||||
af_2 = AffinityPropagation(affinity='precomputed', random_state=21)
|
||||
with pytest.raises(TypeError):
|
||||
af_2.fit(csr_matrix((3, 3)))
|
||||
|
||||
def test_affinity_propagation_predict():
|
||||
# Test AffinityPropagation.predict
|
||||
af = AffinityPropagation(affinity="euclidean", random_state=63)
|
||||
labels = af.fit_predict(X)
|
||||
labels2 = af.predict(X)
|
||||
assert_array_equal(labels, labels2)
|
||||
|
||||
|
||||
def test_affinity_propagation_predict_error():
|
||||
# Test exception in AffinityPropagation.predict
|
||||
# Not fitted.
|
||||
af = AffinityPropagation(affinity="euclidean")
|
||||
with pytest.raises(ValueError):
|
||||
af.predict(X)
|
||||
|
||||
# Predict not supported when affinity="precomputed".
|
||||
S = np.dot(X, X.T)
|
||||
af = AffinityPropagation(affinity="precomputed", random_state=57)
|
||||
af.fit(S)
|
||||
with pytest.raises(ValueError):
|
||||
af.predict(X)
|
||||
|
||||
|
||||
def test_affinity_propagation_fit_non_convergence():
|
||||
# In case of non-convergence of affinity_propagation(), the cluster
|
||||
# centers should be an empty array and training samples should be labelled
|
||||
# as noise (-1)
|
||||
X = np.array([[0, 0], [1, 1], [-2, -2]])
|
||||
|
||||
# Force non-convergence by allowing only a single iteration
|
||||
af = AffinityPropagation(preference=-10, max_iter=1, random_state=82)
|
||||
|
||||
assert_warns(ConvergenceWarning, af.fit, X)
|
||||
assert_array_equal(np.empty((0, 2)), af.cluster_centers_)
|
||||
assert_array_equal(np.array([-1, -1, -1]), af.labels_)
|
||||
|
||||
|
||||
def test_affinity_propagation_equal_mutual_similarities():
|
||||
X = np.array([[-1, 1], [1, -1]])
|
||||
S = -euclidean_distances(X, squared=True)
|
||||
|
||||
# setting preference > similarity
|
||||
cluster_center_indices, labels = assert_warns_message(
|
||||
UserWarning, "mutually equal", affinity_propagation, S, preference=0)
|
||||
|
||||
# expect every sample to become an exemplar
|
||||
assert_array_equal([0, 1], cluster_center_indices)
|
||||
assert_array_equal([0, 1], labels)
|
||||
|
||||
# setting preference < similarity
|
||||
cluster_center_indices, labels = assert_warns_message(
|
||||
UserWarning, "mutually equal", affinity_propagation, S, preference=-10)
|
||||
|
||||
# expect one cluster, with arbitrary (first) sample as exemplar
|
||||
assert_array_equal([0], cluster_center_indices)
|
||||
assert_array_equal([0, 0], labels)
|
||||
|
||||
# setting different preferences
|
||||
cluster_center_indices, labels = assert_no_warnings(
|
||||
affinity_propagation, S, preference=[-20, -10], random_state=37)
|
||||
|
||||
# expect one cluster, with highest-preference sample as exemplar
|
||||
assert_array_equal([1], cluster_center_indices)
|
||||
assert_array_equal([0, 0], labels)
|
||||
|
||||
|
||||
def test_affinity_propagation_predict_non_convergence():
|
||||
# In case of non-convergence of affinity_propagation(), the cluster
|
||||
# centers should be an empty array
|
||||
X = np.array([[0, 0], [1, 1], [-2, -2]])
|
||||
|
||||
# Force non-convergence by allowing only a single iteration
|
||||
af = assert_warns(ConvergenceWarning,
|
||||
AffinityPropagation(preference=-10,
|
||||
max_iter=1, random_state=75).fit, X)
|
||||
|
||||
# At prediction time, consider new samples as noise since there are no
|
||||
# clusters
|
||||
to_predict = np.array([[2, 2], [3, 3], [4, 4]])
|
||||
y = assert_warns(ConvergenceWarning, af.predict, to_predict)
|
||||
assert_array_equal(np.array([-1, -1, -1]), y)
|
||||
|
||||
|
||||
def test_affinity_propagation_non_convergence_regressiontest():
|
||||
X = np.array([[1, 0, 0, 0, 0, 0],
|
||||
[0, 1, 1, 1, 0, 0],
|
||||
[0, 0, 1, 0, 0, 1]])
|
||||
af = AffinityPropagation(affinity='euclidean',
|
||||
max_iter=2, random_state=34).fit(X)
|
||||
assert_array_equal(np.array([-1, -1, -1]), af.labels_)
|
||||
|
||||
|
||||
def test_equal_similarities_and_preferences():
|
||||
# Unequal distances
|
||||
X = np.array([[0, 0], [1, 1], [-2, -2]])
|
||||
S = -euclidean_distances(X, squared=True)
|
||||
|
||||
assert not _equal_similarities_and_preferences(S, np.array(0))
|
||||
assert not _equal_similarities_and_preferences(S, np.array([0, 0]))
|
||||
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
|
||||
|
||||
# Equal distances
|
||||
X = np.array([[0, 0], [1, 1]])
|
||||
S = -euclidean_distances(X, squared=True)
|
||||
|
||||
# Different preferences
|
||||
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
|
||||
|
||||
# Same preferences
|
||||
assert _equal_similarities_and_preferences(S, np.array([0, 0]))
|
||||
assert _equal_similarities_and_preferences(S, np.array(0))
|
||||
|
||||
|
||||
def test_affinity_propagation_random_state():
|
||||
# Significance of random_state parameter
|
||||
# Generate sample data
|
||||
centers = [[1, 1], [-1, -1], [1, -1]]
|
||||
X, labels_true = make_blobs(n_samples=300, centers=centers,
|
||||
cluster_std=0.5, random_state=0)
|
||||
# random_state = 0
|
||||
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=0)
|
||||
ap.fit(X)
|
||||
centers0 = ap.cluster_centers_
|
||||
|
||||
# random_state = 76
|
||||
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=76)
|
||||
ap.fit(X)
|
||||
centers76 = ap.cluster_centers_
|
||||
|
||||
assert np.mean((centers0 - centers76) ** 2) > 1
|
||||
|
||||
|
||||
# FIXME: to be removed in 0.25
|
||||
def test_affinity_propagation_random_state_warning():
|
||||
# test that a warning is raised when random_state is not defined.
|
||||
X = np.array([[0, 0], [1, 1], [-2, -2]])
|
||||
match = ("'random_state' has been introduced in 0.23. "
|
||||
"It will be set to None starting from 0.25 which "
|
||||
"means that results will differ at every function "
|
||||
"call. Set 'random_state' to None to silence this "
|
||||
"warning, or to 0 to keep the behavior of versions "
|
||||
"<0.23.")
|
||||
with pytest.warns(FutureWarning, match=match):
|
||||
AffinityPropagation().fit(X)
|
||||
|
||||
@pytest.mark.parametrize('centers', [csr_matrix(np.zeros((1, 10))),
|
||||
np.zeros((1, 10))])
|
||||
def test_affinity_propagation_convergence_warning_dense_sparse(centers):
|
||||
"""Non-regression, see #13334"""
|
||||
rng = np.random.RandomState(42)
|
||||
X = rng.rand(40, 10)
|
||||
y = (4 * rng.rand(40)).astype(np.int)
|
||||
ap = AffinityPropagation(random_state=46)
|
||||
ap.fit(X, y)
|
||||
ap.cluster_centers_ = centers
|
||||
with pytest.warns(None) as record:
|
||||
assert_array_equal(ap.predict(X),
|
||||
np.zeros(X.shape[0], dtype=int))
|
||||
assert len(record) == 0
|
||||
|
||||
|
||||
def test_affinity_propagation_float32():
|
||||
# Test to fix incorrect clusters due to dtype change
|
||||
# (non-regression test for issue #10832)
|
||||
X = np.array([[1, 0, 0, 0],
|
||||
[0, 1, 1, 0],
|
||||
[0, 1, 1, 0],
|
||||
[0, 0, 0, 1]], dtype='float32')
|
||||
afp = AffinityPropagation(preference=1, affinity='precomputed',
|
||||
random_state=0).fit(X)
|
||||
expected = np.array([0, 1, 1, 2])
|
||||
assert_array_equal(afp.labels_, expected)
|
277
venv/Lib/site-packages/sklearn/cluster/tests/test_bicluster.py
Normal file
277
venv/Lib/site-packages/sklearn/cluster/tests/test_bicluster.py
Normal file
|
@ -0,0 +1,277 @@
|
|||
"""Testing for Spectral Biclustering methods"""
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from scipy.sparse import csr_matrix, issparse
|
||||
|
||||
from sklearn.model_selection import ParameterGrid
|
||||
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
|
||||
from sklearn.base import BaseEstimator, BiclusterMixin
|
||||
|
||||
from sklearn.cluster import SpectralCoclustering
|
||||
from sklearn.cluster import SpectralBiclustering
|
||||
from sklearn.cluster._bicluster import _scale_normalize
|
||||
from sklearn.cluster._bicluster import _bistochastic_normalize
|
||||
from sklearn.cluster._bicluster import _log_normalize
|
||||
|
||||
from sklearn.metrics import (consensus_score, v_measure_score)
|
||||
|
||||
from sklearn.datasets import make_biclusters, make_checkerboard
|
||||
|
||||
|
||||
class MockBiclustering(BiclusterMixin, BaseEstimator):
|
||||
# Mock object for testing get_submatrix.
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def get_indices(self, i):
|
||||
# Overridden to reproduce old get_submatrix test.
|
||||
return (np.where([True, True, False, False, True])[0],
|
||||
np.where([False, False, True, True])[0])
|
||||
|
||||
|
||||
def test_get_submatrix():
|
||||
data = np.arange(20).reshape(5, 4)
|
||||
model = MockBiclustering()
|
||||
|
||||
for X in (data, csr_matrix(data), data.tolist()):
|
||||
submatrix = model.get_submatrix(0, X)
|
||||
if issparse(submatrix):
|
||||
submatrix = submatrix.toarray()
|
||||
assert_array_equal(submatrix, [[2, 3],
|
||||
[6, 7],
|
||||
[18, 19]])
|
||||
submatrix[:] = -1
|
||||
if issparse(X):
|
||||
X = X.toarray()
|
||||
assert np.all(X != -1)
|
||||
|
||||
|
||||
def _test_shape_indices(model):
|
||||
# Test get_shape and get_indices on fitted model.
|
||||
for i in range(model.n_clusters):
|
||||
m, n = model.get_shape(i)
|
||||
i_ind, j_ind = model.get_indices(i)
|
||||
assert len(i_ind) == m
|
||||
assert len(j_ind) == n
|
||||
|
||||
|
||||
def test_spectral_coclustering():
|
||||
# Test Dhillon's Spectral CoClustering on a simple problem.
|
||||
param_grid = {'svd_method': ['randomized', 'arpack'],
|
||||
'n_svd_vecs': [None, 20],
|
||||
'mini_batch': [False, True],
|
||||
'init': ['k-means++'],
|
||||
'n_init': [10]}
|
||||
random_state = 0
|
||||
S, rows, cols = make_biclusters((30, 30), 3, noise=0.5,
|
||||
random_state=random_state)
|
||||
S -= S.min() # needs to be nonnegative before making it sparse
|
||||
S = np.where(S < 1, 0, S) # threshold some values
|
||||
for mat in (S, csr_matrix(S)):
|
||||
for kwargs in ParameterGrid(param_grid):
|
||||
model = SpectralCoclustering(n_clusters=3,
|
||||
random_state=random_state,
|
||||
**kwargs)
|
||||
model.fit(mat)
|
||||
|
||||
assert model.rows_.shape == (3, 30)
|
||||
assert_array_equal(model.rows_.sum(axis=0), np.ones(30))
|
||||
assert_array_equal(model.columns_.sum(axis=0), np.ones(30))
|
||||
assert consensus_score(model.biclusters_,
|
||||
(rows, cols)) == 1
|
||||
|
||||
_test_shape_indices(model)
|
||||
|
||||
|
||||
def test_spectral_biclustering():
|
||||
# Test Kluger methods on a checkerboard dataset.
|
||||
S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5,
|
||||
random_state=0)
|
||||
|
||||
non_default_params = {'method': ['scale', 'log'],
|
||||
'svd_method': ['arpack'],
|
||||
'n_svd_vecs': [20],
|
||||
'mini_batch': [True]}
|
||||
|
||||
for mat in (S, csr_matrix(S)):
|
||||
for param_name, param_values in non_default_params.items():
|
||||
for param_value in param_values:
|
||||
|
||||
model = SpectralBiclustering(
|
||||
n_clusters=3,
|
||||
n_init=3,
|
||||
init='k-means++',
|
||||
random_state=0,
|
||||
)
|
||||
model.set_params(**dict([(param_name, param_value)]))
|
||||
|
||||
if issparse(mat) and model.get_params().get('method') == 'log':
|
||||
# cannot take log of sparse matrix
|
||||
with pytest.raises(ValueError):
|
||||
model.fit(mat)
|
||||
continue
|
||||
else:
|
||||
model.fit(mat)
|
||||
|
||||
assert model.rows_.shape == (9, 30)
|
||||
assert model.columns_.shape == (9, 30)
|
||||
assert_array_equal(model.rows_.sum(axis=0),
|
||||
np.repeat(3, 30))
|
||||
assert_array_equal(model.columns_.sum(axis=0),
|
||||
np.repeat(3, 30))
|
||||
assert consensus_score(model.biclusters_,
|
||||
(rows, cols)) == 1
|
||||
|
||||
_test_shape_indices(model)
|
||||
|
||||
|
||||
def _do_scale_test(scaled):
|
||||
"""Check that rows sum to one constant, and columns to another."""
|
||||
row_sum = scaled.sum(axis=1)
|
||||
col_sum = scaled.sum(axis=0)
|
||||
if issparse(scaled):
|
||||
row_sum = np.asarray(row_sum).squeeze()
|
||||
col_sum = np.asarray(col_sum).squeeze()
|
||||
assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100),
|
||||
decimal=1)
|
||||
assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100),
|
||||
decimal=1)
|
||||
|
||||
|
||||
def _do_bistochastic_test(scaled):
|
||||
"""Check that rows and columns sum to the same constant."""
|
||||
_do_scale_test(scaled)
|
||||
assert_almost_equal(scaled.sum(axis=0).mean(),
|
||||
scaled.sum(axis=1).mean(),
|
||||
decimal=1)
|
||||
|
||||
|
||||
def test_scale_normalize():
|
||||
generator = np.random.RandomState(0)
|
||||
X = generator.rand(100, 100)
|
||||
for mat in (X, csr_matrix(X)):
|
||||
scaled, _, _ = _scale_normalize(mat)
|
||||
_do_scale_test(scaled)
|
||||
if issparse(mat):
|
||||
assert issparse(scaled)
|
||||
|
||||
|
||||
def test_bistochastic_normalize():
|
||||
generator = np.random.RandomState(0)
|
||||
X = generator.rand(100, 100)
|
||||
for mat in (X, csr_matrix(X)):
|
||||
scaled = _bistochastic_normalize(mat)
|
||||
_do_bistochastic_test(scaled)
|
||||
if issparse(mat):
|
||||
assert issparse(scaled)
|
||||
|
||||
|
||||
def test_log_normalize():
|
||||
# adding any constant to a log-scaled matrix should make it
|
||||
# bistochastic
|
||||
generator = np.random.RandomState(0)
|
||||
mat = generator.rand(100, 100)
|
||||
scaled = _log_normalize(mat) + 1
|
||||
_do_bistochastic_test(scaled)
|
||||
|
||||
|
||||
def test_fit_best_piecewise():
|
||||
model = SpectralBiclustering(random_state=0)
|
||||
vectors = np.array([[0, 0, 0, 1, 1, 1],
|
||||
[2, 2, 2, 3, 3, 3],
|
||||
[0, 1, 2, 3, 4, 5]])
|
||||
best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2)
|
||||
assert_array_equal(best, vectors[:2])
|
||||
|
||||
|
||||
def test_project_and_cluster():
|
||||
model = SpectralBiclustering(random_state=0)
|
||||
data = np.array([[1, 1, 1],
|
||||
[1, 1, 1],
|
||||
[3, 6, 3],
|
||||
[3, 6, 3]])
|
||||
vectors = np.array([[1, 0],
|
||||
[0, 1],
|
||||
[0, 0]])
|
||||
for mat in (data, csr_matrix(data)):
|
||||
labels = model._project_and_cluster(mat, vectors,
|
||||
n_clusters=2)
|
||||
assert_almost_equal(v_measure_score(labels, [0, 0, 1, 1]), 1.0)
|
||||
|
||||
|
||||
def test_perfect_checkerboard():
|
||||
# XXX Previously failed on build bot (not reproducible)
|
||||
model = SpectralBiclustering(3, svd_method="arpack", random_state=0)
|
||||
|
||||
S, rows, cols = make_checkerboard((30, 30), 3, noise=0,
|
||||
random_state=0)
|
||||
model.fit(S)
|
||||
assert consensus_score(model.biclusters_,
|
||||
(rows, cols)) == 1
|
||||
|
||||
S, rows, cols = make_checkerboard((40, 30), 3, noise=0,
|
||||
random_state=0)
|
||||
model.fit(S)
|
||||
assert consensus_score(model.biclusters_,
|
||||
(rows, cols)) == 1
|
||||
|
||||
S, rows, cols = make_checkerboard((30, 40), 3, noise=0,
|
||||
random_state=0)
|
||||
model.fit(S)
|
||||
assert consensus_score(model.biclusters_,
|
||||
(rows, cols)) == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"args",
|
||||
[{'n_clusters': (3, 3, 3)},
|
||||
{'n_clusters': 'abc'},
|
||||
{'n_clusters': (3, 'abc')},
|
||||
{'method': 'unknown'},
|
||||
{'n_components': 0},
|
||||
{'n_best': 0},
|
||||
{'svd_method': 'unknown'},
|
||||
{'n_components': 3, 'n_best': 4}]
|
||||
)
|
||||
def test_errors(args):
|
||||
data = np.arange(25).reshape((5, 5))
|
||||
|
||||
model = SpectralBiclustering(**args)
|
||||
with pytest.raises(ValueError):
|
||||
model.fit(data)
|
||||
|
||||
|
||||
def test_wrong_shape():
|
||||
model = SpectralBiclustering()
|
||||
data = np.arange(27).reshape((3, 3, 3))
|
||||
with pytest.raises(ValueError):
|
||||
model.fit(data)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('est',
|
||||
(SpectralBiclustering(), SpectralCoclustering()))
|
||||
def test_n_features_in_(est):
|
||||
|
||||
X, _, _ = make_biclusters((3, 3), 3, random_state=0)
|
||||
|
||||
assert not hasattr(est, 'n_features_in_')
|
||||
est.fit(X)
|
||||
assert est.n_features_in_ == 3
|
||||
|
||||
|
||||
@pytest.mark.parametrize("klass", [SpectralBiclustering, SpectralCoclustering])
|
||||
@pytest.mark.parametrize("n_jobs", [None, 1])
|
||||
def test_n_jobs_deprecated(klass, n_jobs):
|
||||
# FIXME: remove in 0.25
|
||||
depr_msg = ("'n_jobs' was deprecated in version 0.23 and will be removed "
|
||||
"in 0.25.")
|
||||
S, _, _ = make_biclusters((30, 30), 3, noise=0.5, random_state=0)
|
||||
est = klass(random_state=0, n_jobs=n_jobs)
|
||||
|
||||
with pytest.warns(FutureWarning, match=depr_msg):
|
||||
est.fit(S)
|
169
venv/Lib/site-packages/sklearn/cluster/tests/test_birch.py
Normal file
169
venv/Lib/site-packages/sklearn/cluster/tests/test_birch.py
Normal file
|
@ -0,0 +1,169 @@
|
|||
"""
|
||||
Tests for the birch clustering algorithm.
|
||||
"""
|
||||
|
||||
from scipy import sparse
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from sklearn.cluster.tests.common import generate_clustered_data
|
||||
from sklearn.cluster import Birch
|
||||
from sklearn.cluster import AgglomerativeClustering
|
||||
from sklearn.datasets import make_blobs
|
||||
from sklearn.exceptions import ConvergenceWarning
|
||||
from sklearn.linear_model import ElasticNet
|
||||
from sklearn.metrics import pairwise_distances_argmin, v_measure_score
|
||||
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_warns
|
||||
|
||||
|
||||
def test_n_samples_leaves_roots():
|
||||
# Sanity check for the number of samples in leaves and roots
|
||||
X, y = make_blobs(n_samples=10)
|
||||
brc = Birch()
|
||||
brc.fit(X)
|
||||
n_samples_root = sum([sc.n_samples_ for sc in brc.root_.subclusters_])
|
||||
n_samples_leaves = sum([sc.n_samples_ for leaf in brc._get_leaves()
|
||||
for sc in leaf.subclusters_])
|
||||
assert n_samples_leaves == X.shape[0]
|
||||
assert n_samples_root == X.shape[0]
|
||||
|
||||
|
||||
def test_partial_fit():
|
||||
# Test that fit is equivalent to calling partial_fit multiple times
|
||||
X, y = make_blobs(n_samples=100)
|
||||
brc = Birch(n_clusters=3)
|
||||
brc.fit(X)
|
||||
brc_partial = Birch(n_clusters=None)
|
||||
brc_partial.partial_fit(X[:50])
|
||||
brc_partial.partial_fit(X[50:])
|
||||
assert_array_almost_equal(brc_partial.subcluster_centers_,
|
||||
brc.subcluster_centers_)
|
||||
|
||||
# Test that same global labels are obtained after calling partial_fit
|
||||
# with None
|
||||
brc_partial.set_params(n_clusters=3)
|
||||
brc_partial.partial_fit(None)
|
||||
assert_array_equal(brc_partial.subcluster_labels_, brc.subcluster_labels_)
|
||||
|
||||
|
||||
def test_birch_predict():
|
||||
# Test the predict method predicts the nearest centroid.
|
||||
rng = np.random.RandomState(0)
|
||||
X = generate_clustered_data(n_clusters=3, n_features=3,
|
||||
n_samples_per_cluster=10)
|
||||
|
||||
# n_samples * n_samples_per_cluster
|
||||
shuffle_indices = np.arange(30)
|
||||
rng.shuffle(shuffle_indices)
|
||||
X_shuffle = X[shuffle_indices, :]
|
||||
brc = Birch(n_clusters=4, threshold=1.)
|
||||
brc.fit(X_shuffle)
|
||||
centroids = brc.subcluster_centers_
|
||||
assert_array_equal(brc.labels_, brc.predict(X_shuffle))
|
||||
nearest_centroid = pairwise_distances_argmin(X_shuffle, centroids)
|
||||
assert_almost_equal(v_measure_score(nearest_centroid, brc.labels_), 1.0)
|
||||
|
||||
|
||||
def test_n_clusters():
|
||||
# Test that n_clusters param works properly
|
||||
X, y = make_blobs(n_samples=100, centers=10)
|
||||
brc1 = Birch(n_clusters=10)
|
||||
brc1.fit(X)
|
||||
assert len(brc1.subcluster_centers_) > 10
|
||||
assert len(np.unique(brc1.labels_)) == 10
|
||||
|
||||
# Test that n_clusters = Agglomerative Clustering gives
|
||||
# the same results.
|
||||
gc = AgglomerativeClustering(n_clusters=10)
|
||||
brc2 = Birch(n_clusters=gc)
|
||||
brc2.fit(X)
|
||||
assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_)
|
||||
assert_array_equal(brc1.labels_, brc2.labels_)
|
||||
|
||||
# Test that the wrong global clustering step raises an Error.
|
||||
clf = ElasticNet()
|
||||
brc3 = Birch(n_clusters=clf)
|
||||
with pytest.raises(ValueError):
|
||||
brc3.fit(X)
|
||||
|
||||
# Test that a small number of clusters raises a warning.
|
||||
brc4 = Birch(threshold=10000.)
|
||||
assert_warns(ConvergenceWarning, brc4.fit, X)
|
||||
|
||||
|
||||
def test_sparse_X():
|
||||
# Test that sparse and dense data give same results
|
||||
X, y = make_blobs(n_samples=100, centers=10)
|
||||
brc = Birch(n_clusters=10)
|
||||
brc.fit(X)
|
||||
|
||||
csr = sparse.csr_matrix(X)
|
||||
brc_sparse = Birch(n_clusters=10)
|
||||
brc_sparse.fit(csr)
|
||||
|
||||
assert_array_equal(brc.labels_, brc_sparse.labels_)
|
||||
assert_array_almost_equal(brc.subcluster_centers_,
|
||||
brc_sparse.subcluster_centers_)
|
||||
|
||||
|
||||
def check_branching_factor(node, branching_factor):
|
||||
subclusters = node.subclusters_
|
||||
assert branching_factor >= len(subclusters)
|
||||
for cluster in subclusters:
|
||||
if cluster.child_:
|
||||
check_branching_factor(cluster.child_, branching_factor)
|
||||
|
||||
|
||||
def test_branching_factor():
|
||||
# Test that nodes have at max branching_factor number of subclusters
|
||||
X, y = make_blobs()
|
||||
branching_factor = 9
|
||||
|
||||
# Purposefully set a low threshold to maximize the subclusters.
|
||||
brc = Birch(n_clusters=None, branching_factor=branching_factor,
|
||||
threshold=0.01)
|
||||
brc.fit(X)
|
||||
check_branching_factor(brc.root_, branching_factor)
|
||||
brc = Birch(n_clusters=3, branching_factor=branching_factor,
|
||||
threshold=0.01)
|
||||
brc.fit(X)
|
||||
check_branching_factor(brc.root_, branching_factor)
|
||||
|
||||
# Raises error when branching_factor is set to one.
|
||||
brc = Birch(n_clusters=None, branching_factor=1, threshold=0.01)
|
||||
with pytest.raises(ValueError):
|
||||
brc.fit(X)
|
||||
|
||||
|
||||
def check_threshold(birch_instance, threshold):
|
||||
"""Use the leaf linked list for traversal"""
|
||||
current_leaf = birch_instance.dummy_leaf_.next_leaf_
|
||||
while current_leaf:
|
||||
subclusters = current_leaf.subclusters_
|
||||
for sc in subclusters:
|
||||
assert threshold >= sc.radius
|
||||
current_leaf = current_leaf.next_leaf_
|
||||
|
||||
|
||||
def test_threshold():
|
||||
# Test that the leaf subclusters have a threshold lesser than radius
|
||||
X, y = make_blobs(n_samples=80, centers=4)
|
||||
brc = Birch(threshold=0.5, n_clusters=None)
|
||||
brc.fit(X)
|
||||
check_threshold(brc, 0.5)
|
||||
|
||||
brc = Birch(threshold=5.0, n_clusters=None)
|
||||
brc.fit(X)
|
||||
check_threshold(brc, 5.)
|
||||
|
||||
|
||||
def test_birch_n_clusters_long_int():
|
||||
# Check that birch supports n_clusters with np.int64 dtype, for instance
|
||||
# coming from np.arange. #16484
|
||||
X, _ = make_blobs(random_state=0)
|
||||
n_clusters = np.int64(5)
|
||||
Birch(n_clusters=n_clusters).fit(X)
|
395
venv/Lib/site-packages/sklearn/cluster/tests/test_dbscan.py
Normal file
395
venv/Lib/site-packages/sklearn/cluster/tests/test_dbscan.py
Normal file
|
@ -0,0 +1,395 @@
|
|||
"""
|
||||
Tests for DBSCAN clustering algorithm
|
||||
"""
|
||||
|
||||
import pickle
|
||||
|
||||
import numpy as np
|
||||
|
||||
from scipy.spatial import distance
|
||||
from scipy import sparse
|
||||
|
||||
import pytest
|
||||
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.cluster import dbscan
|
||||
from sklearn.cluster.tests.common import generate_clustered_data
|
||||
from sklearn.metrics.pairwise import pairwise_distances
|
||||
|
||||
|
||||
n_clusters = 3
|
||||
X = generate_clustered_data(n_clusters=n_clusters)
|
||||
|
||||
|
||||
def test_dbscan_similarity():
|
||||
# Tests the DBSCAN algorithm with a similarity array.
|
||||
# Parameters chosen specifically for this task.
|
||||
eps = 0.15
|
||||
min_samples = 10
|
||||
# Compute similarities
|
||||
D = distance.squareform(distance.pdist(X))
|
||||
D /= np.max(D)
|
||||
# Compute DBSCAN
|
||||
core_samples, labels = dbscan(D, metric="precomputed", eps=eps,
|
||||
min_samples=min_samples)
|
||||
# number of clusters, ignoring noise if present
|
||||
n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0)
|
||||
|
||||
assert n_clusters_1 == n_clusters
|
||||
|
||||
db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples)
|
||||
labels = db.fit(D).labels_
|
||||
|
||||
n_clusters_2 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_2 == n_clusters
|
||||
|
||||
|
||||
def test_dbscan_feature():
|
||||
# Tests the DBSCAN algorithm with a feature vector array.
|
||||
# Parameters chosen specifically for this task.
|
||||
# Different eps to other test, because distance is not normalised.
|
||||
eps = 0.8
|
||||
min_samples = 10
|
||||
metric = 'euclidean'
|
||||
# Compute DBSCAN
|
||||
# parameters chosen for task
|
||||
core_samples, labels = dbscan(X, metric=metric, eps=eps,
|
||||
min_samples=min_samples)
|
||||
|
||||
# number of clusters, ignoring noise if present
|
||||
n_clusters_1 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_1 == n_clusters
|
||||
|
||||
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples)
|
||||
labels = db.fit(X).labels_
|
||||
|
||||
n_clusters_2 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_2 == n_clusters
|
||||
|
||||
|
||||
def test_dbscan_sparse():
|
||||
core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8,
|
||||
min_samples=10)
|
||||
core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10)
|
||||
assert_array_equal(core_dense, core_sparse)
|
||||
assert_array_equal(labels_dense, labels_sparse)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('include_self', [False, True])
|
||||
def test_dbscan_sparse_precomputed(include_self):
|
||||
D = pairwise_distances(X)
|
||||
nn = NearestNeighbors(radius=.9).fit(X)
|
||||
X_ = X if include_self else None
|
||||
D_sparse = nn.radius_neighbors_graph(X=X_, mode='distance')
|
||||
# Ensure it is sparse not merely on diagonals:
|
||||
assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1)
|
||||
core_sparse, labels_sparse = dbscan(D_sparse,
|
||||
eps=.8,
|
||||
min_samples=10,
|
||||
metric='precomputed')
|
||||
core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10,
|
||||
metric='precomputed')
|
||||
assert_array_equal(core_dense, core_sparse)
|
||||
assert_array_equal(labels_dense, labels_sparse)
|
||||
|
||||
|
||||
def test_dbscan_sparse_precomputed_different_eps():
|
||||
# test that precomputed neighbors graph is filtered if computed with
|
||||
# a radius larger than DBSCAN's eps.
|
||||
lower_eps = 0.2
|
||||
nn = NearestNeighbors(radius=lower_eps).fit(X)
|
||||
D_sparse = nn.radius_neighbors_graph(X, mode='distance')
|
||||
dbscan_lower = dbscan(D_sparse, eps=lower_eps, metric='precomputed')
|
||||
|
||||
higher_eps = lower_eps + 0.7
|
||||
nn = NearestNeighbors(radius=higher_eps).fit(X)
|
||||
D_sparse = nn.radius_neighbors_graph(X, mode='distance')
|
||||
dbscan_higher = dbscan(D_sparse, eps=lower_eps, metric='precomputed')
|
||||
|
||||
assert_array_equal(dbscan_lower[0], dbscan_higher[0])
|
||||
assert_array_equal(dbscan_lower[1], dbscan_higher[1])
|
||||
|
||||
|
||||
@pytest.mark.parametrize('use_sparse', [True, False])
|
||||
@pytest.mark.parametrize('metric', ['precomputed', 'minkowski'])
|
||||
def test_dbscan_input_not_modified(use_sparse, metric):
|
||||
# test that the input is not modified by dbscan
|
||||
X = np.random.RandomState(0).rand(10, 10)
|
||||
X = sparse.csr_matrix(X) if use_sparse else X
|
||||
X_copy = X.copy()
|
||||
dbscan(X, metric=metric)
|
||||
|
||||
if use_sparse:
|
||||
assert_array_equal(X.toarray(), X_copy.toarray())
|
||||
else:
|
||||
assert_array_equal(X, X_copy)
|
||||
|
||||
|
||||
def test_dbscan_no_core_samples():
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(40, 10)
|
||||
X[X < .8] = 0
|
||||
|
||||
for X_ in [X, sparse.csr_matrix(X)]:
|
||||
db = DBSCAN(min_samples=6).fit(X_)
|
||||
assert_array_equal(db.components_, np.empty((0, X_.shape[1])))
|
||||
assert_array_equal(db.labels_, -1)
|
||||
assert db.core_sample_indices_.shape == (0,)
|
||||
|
||||
|
||||
def test_dbscan_callable():
|
||||
# Tests the DBSCAN algorithm with a callable metric.
|
||||
# Parameters chosen specifically for this task.
|
||||
# Different eps to other test, because distance is not normalised.
|
||||
eps = 0.8
|
||||
min_samples = 10
|
||||
# metric is the function reference, not the string key.
|
||||
metric = distance.euclidean
|
||||
# Compute DBSCAN
|
||||
# parameters chosen for task
|
||||
core_samples, labels = dbscan(X, metric=metric, eps=eps,
|
||||
min_samples=min_samples,
|
||||
algorithm='ball_tree')
|
||||
|
||||
# number of clusters, ignoring noise if present
|
||||
n_clusters_1 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_1 == n_clusters
|
||||
|
||||
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples,
|
||||
algorithm='ball_tree')
|
||||
labels = db.fit(X).labels_
|
||||
|
||||
n_clusters_2 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_2 == n_clusters
|
||||
|
||||
|
||||
def test_dbscan_metric_params():
|
||||
# Tests that DBSCAN works with the metrics_params argument.
|
||||
eps = 0.8
|
||||
min_samples = 10
|
||||
p = 1
|
||||
|
||||
# Compute DBSCAN with metric_params arg
|
||||
db = DBSCAN(metric='minkowski', metric_params={'p': p}, eps=eps,
|
||||
min_samples=min_samples, algorithm='ball_tree').fit(X)
|
||||
core_sample_1, labels_1 = db.core_sample_indices_, db.labels_
|
||||
|
||||
# Test that sample labels are the same as passing Minkowski 'p' directly
|
||||
db = DBSCAN(metric='minkowski', eps=eps, min_samples=min_samples,
|
||||
algorithm='ball_tree', p=p).fit(X)
|
||||
core_sample_2, labels_2 = db.core_sample_indices_, db.labels_
|
||||
|
||||
assert_array_equal(core_sample_1, core_sample_2)
|
||||
assert_array_equal(labels_1, labels_2)
|
||||
|
||||
# Minkowski with p=1 should be equivalent to Manhattan distance
|
||||
db = DBSCAN(metric='manhattan', eps=eps, min_samples=min_samples,
|
||||
algorithm='ball_tree').fit(X)
|
||||
core_sample_3, labels_3 = db.core_sample_indices_, db.labels_
|
||||
|
||||
assert_array_equal(core_sample_1, core_sample_3)
|
||||
assert_array_equal(labels_1, labels_3)
|
||||
|
||||
|
||||
def test_dbscan_balltree():
|
||||
# Tests the DBSCAN algorithm with balltree for neighbor calculation.
|
||||
eps = 0.8
|
||||
min_samples = 10
|
||||
|
||||
D = pairwise_distances(X)
|
||||
core_samples, labels = dbscan(D, metric="precomputed", eps=eps,
|
||||
min_samples=min_samples)
|
||||
|
||||
# number of clusters, ignoring noise if present
|
||||
n_clusters_1 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_1 == n_clusters
|
||||
|
||||
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree')
|
||||
labels = db.fit(X).labels_
|
||||
|
||||
n_clusters_2 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_2 == n_clusters
|
||||
|
||||
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree')
|
||||
labels = db.fit(X).labels_
|
||||
|
||||
n_clusters_3 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_3 == n_clusters
|
||||
|
||||
db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree')
|
||||
labels = db.fit(X).labels_
|
||||
|
||||
n_clusters_4 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_4 == n_clusters
|
||||
|
||||
db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples,
|
||||
algorithm='ball_tree')
|
||||
labels = db.fit(X).labels_
|
||||
|
||||
n_clusters_5 = len(set(labels)) - int(-1 in labels)
|
||||
assert n_clusters_5 == n_clusters
|
||||
|
||||
|
||||
def test_input_validation():
|
||||
# DBSCAN.fit should accept a list of lists.
|
||||
X = [[1., 2.], [3., 4.]]
|
||||
DBSCAN().fit(X) # must not raise exception
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"args",
|
||||
[{'eps': -1.0}, {'algorithm': 'blah'}, {'metric': 'blah'},
|
||||
{'leaf_size': -1}, {'p': -1}]
|
||||
)
|
||||
def test_dbscan_badargs(args):
|
||||
# Test bad argument values: these should all raise ValueErrors
|
||||
with pytest.raises(ValueError):
|
||||
dbscan(X, **args)
|
||||
|
||||
|
||||
def test_pickle():
|
||||
obj = DBSCAN()
|
||||
s = pickle.dumps(obj)
|
||||
assert type(pickle.loads(s)) == obj.__class__
|
||||
|
||||
|
||||
def test_boundaries():
|
||||
# ensure min_samples is inclusive of core point
|
||||
core, _ = dbscan([[0], [1]], eps=2, min_samples=2)
|
||||
assert 0 in core
|
||||
# ensure eps is inclusive of circumference
|
||||
core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2)
|
||||
assert 0 in core
|
||||
core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2)
|
||||
assert 0 not in core
|
||||
|
||||
|
||||
def test_weighted_dbscan():
|
||||
# ensure sample_weight is validated
|
||||
with pytest.raises(ValueError):
|
||||
dbscan([[0], [1]], sample_weight=[2])
|
||||
with pytest.raises(ValueError):
|
||||
dbscan([[0], [1]], sample_weight=[2, 3, 4])
|
||||
|
||||
# ensure sample_weight has an effect
|
||||
assert_array_equal([], dbscan([[0], [1]], sample_weight=None,
|
||||
min_samples=6)[0])
|
||||
assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5],
|
||||
min_samples=6)[0])
|
||||
assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5],
|
||||
min_samples=6)[0])
|
||||
assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6],
|
||||
min_samples=6)[0])
|
||||
|
||||
# points within eps of each other:
|
||||
assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5,
|
||||
sample_weight=[5, 1], min_samples=6)[0])
|
||||
# and effect of non-positive and non-integer sample_weight:
|
||||
assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0],
|
||||
eps=1.5, min_samples=6)[0])
|
||||
assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1],
|
||||
eps=1.5, min_samples=6)[0])
|
||||
assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0],
|
||||
eps=1.5, min_samples=6)[0])
|
||||
assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1],
|
||||
eps=1.5, min_samples=6)[0])
|
||||
|
||||
# for non-negative sample_weight, cores should be identical to repetition
|
||||
rng = np.random.RandomState(42)
|
||||
sample_weight = rng.randint(0, 5, X.shape[0])
|
||||
core1, label1 = dbscan(X, sample_weight=sample_weight)
|
||||
assert len(label1) == len(X)
|
||||
|
||||
X_repeated = np.repeat(X, sample_weight, axis=0)
|
||||
core_repeated, label_repeated = dbscan(X_repeated)
|
||||
core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
|
||||
core_repeated_mask[core_repeated] = True
|
||||
core_mask = np.zeros(X.shape[0], dtype=bool)
|
||||
core_mask[core1] = True
|
||||
assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)
|
||||
|
||||
# sample_weight should work with precomputed distance matrix
|
||||
D = pairwise_distances(X)
|
||||
core3, label3 = dbscan(D, sample_weight=sample_weight,
|
||||
metric='precomputed')
|
||||
assert_array_equal(core1, core3)
|
||||
assert_array_equal(label1, label3)
|
||||
|
||||
# sample_weight should work with estimator
|
||||
est = DBSCAN().fit(X, sample_weight=sample_weight)
|
||||
core4 = est.core_sample_indices_
|
||||
label4 = est.labels_
|
||||
assert_array_equal(core1, core4)
|
||||
assert_array_equal(label1, label4)
|
||||
|
||||
est = DBSCAN()
|
||||
label5 = est.fit_predict(X, sample_weight=sample_weight)
|
||||
core5 = est.core_sample_indices_
|
||||
assert_array_equal(core1, core5)
|
||||
assert_array_equal(label1, label5)
|
||||
assert_array_equal(label1, est.labels_)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('algorithm', ['brute', 'kd_tree', 'ball_tree'])
|
||||
def test_dbscan_core_samples_toy(algorithm):
|
||||
X = [[0], [2], [3], [4], [6], [8], [10]]
|
||||
n_samples = len(X)
|
||||
|
||||
# Degenerate case: every sample is a core sample, either with its own
|
||||
# cluster or including other close core samples.
|
||||
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
|
||||
min_samples=1)
|
||||
assert_array_equal(core_samples, np.arange(n_samples))
|
||||
assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4])
|
||||
|
||||
# With eps=1 and min_samples=2 only the 3 samples from the denser area
|
||||
# are core samples. All other points are isolated and considered noise.
|
||||
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
|
||||
min_samples=2)
|
||||
assert_array_equal(core_samples, [1, 2, 3])
|
||||
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
|
||||
|
||||
# Only the sample in the middle of the dense area is core. Its two
|
||||
# neighbors are edge samples. Remaining samples are noise.
|
||||
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
|
||||
min_samples=3)
|
||||
assert_array_equal(core_samples, [2])
|
||||
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
|
||||
|
||||
# It's no longer possible to extract core samples with eps=1:
|
||||
# everything is noise.
|
||||
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
|
||||
min_samples=4)
|
||||
assert_array_equal(core_samples, [])
|
||||
assert_array_equal(labels, np.full(n_samples, -1.))
|
||||
|
||||
|
||||
def test_dbscan_precomputed_metric_with_degenerate_input_arrays():
|
||||
# see https://github.com/scikit-learn/scikit-learn/issues/4641 for
|
||||
# more details
|
||||
X = np.eye(10)
|
||||
labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_
|
||||
assert len(set(labels)) == 1
|
||||
|
||||
X = np.zeros((10, 10))
|
||||
labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_
|
||||
assert len(set(labels)) == 1
|
||||
|
||||
|
||||
def test_dbscan_precomputed_metric_with_initial_rows_zero():
|
||||
# sample matrix with initial two row all zero
|
||||
ar = np.array([
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 0.3],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.3, 0.1, 0.0]
|
||||
])
|
||||
matrix = sparse.csr_matrix(ar)
|
||||
labels = DBSCAN(eps=0.2, metric='precomputed',
|
||||
min_samples=2).fit(matrix).labels_
|
||||
assert_array_equal(labels, [-1, -1, 0, 0, 0, 1, 1])
|
|
@ -0,0 +1,43 @@
|
|||
"""
|
||||
Tests for sklearn.cluster._feature_agglomeration
|
||||
"""
|
||||
# Authors: Sergul Aydore 2017
|
||||
import numpy as np
|
||||
from sklearn.cluster import FeatureAgglomeration
|
||||
from sklearn.utils._testing import assert_no_warnings
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
|
||||
|
||||
def test_feature_agglomeration():
|
||||
n_clusters = 1
|
||||
X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features)
|
||||
|
||||
agglo_mean = FeatureAgglomeration(n_clusters=n_clusters,
|
||||
pooling_func=np.mean)
|
||||
agglo_median = FeatureAgglomeration(n_clusters=n_clusters,
|
||||
pooling_func=np.median)
|
||||
assert_no_warnings(agglo_mean.fit, X)
|
||||
assert_no_warnings(agglo_median.fit, X)
|
||||
assert np.size(np.unique(agglo_mean.labels_)) == n_clusters
|
||||
assert np.size(np.unique(agglo_median.labels_)) == n_clusters
|
||||
assert np.size(agglo_mean.labels_) == X.shape[1]
|
||||
assert np.size(agglo_median.labels_) == X.shape[1]
|
||||
|
||||
# Test transform
|
||||
Xt_mean = agglo_mean.transform(X)
|
||||
Xt_median = agglo_median.transform(X)
|
||||
assert Xt_mean.shape[1] == n_clusters
|
||||
assert Xt_median.shape[1] == n_clusters
|
||||
assert Xt_mean == np.array([1 / 3.])
|
||||
assert Xt_median == np.array([0.])
|
||||
|
||||
# Test inverse transform
|
||||
X_full_mean = agglo_mean.inverse_transform(Xt_mean)
|
||||
X_full_median = agglo_median.inverse_transform(Xt_median)
|
||||
assert np.unique(X_full_mean[0]).size == n_clusters
|
||||
assert np.unique(X_full_median[0]).size == n_clusters
|
||||
|
||||
assert_array_almost_equal(agglo_mean.transform(X_full_mean),
|
||||
Xt_mean)
|
||||
assert_array_almost_equal(agglo_median.transform(X_full_median),
|
||||
Xt_median)
|
|
@ -0,0 +1,765 @@
|
|||
"""
|
||||
Several basic tests for hierarchical clustering procedures
|
||||
|
||||
"""
|
||||
# Authors: Vincent Michel, 2010, Gael Varoquaux 2012,
|
||||
# Matteo Visconti di Oleggio Castello 2014
|
||||
# License: BSD 3 clause
|
||||
from tempfile import mkdtemp
|
||||
import shutil
|
||||
import pytest
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
from scipy import sparse
|
||||
from scipy.cluster import hierarchy
|
||||
|
||||
from sklearn.metrics.cluster import adjusted_rand_score
|
||||
from sklearn.utils._testing import assert_almost_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_raise_message
|
||||
from sklearn.utils._testing import ignore_warnings
|
||||
|
||||
from sklearn.cluster import ward_tree
|
||||
from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration
|
||||
from sklearn.cluster._agglomerative import (_hc_cut, _TREE_BUILDERS,
|
||||
linkage_tree,
|
||||
_fix_connectivity)
|
||||
from sklearn.feature_extraction.image import grid_to_graph
|
||||
from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\
|
||||
manhattan_distances, pairwise_distances
|
||||
from sklearn.metrics.cluster import normalized_mutual_info_score
|
||||
from sklearn.neighbors import kneighbors_graph
|
||||
from sklearn.cluster._hierarchical_fast import average_merge, max_merge
|
||||
from sklearn.utils._fast_dict import IntFloatDict
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import assert_warns
|
||||
from sklearn.datasets import make_moons, make_circles
|
||||
|
||||
|
||||
def test_linkage_misc():
|
||||
# Misc tests on linkage
|
||||
rng = np.random.RandomState(42)
|
||||
X = rng.normal(size=(5, 5))
|
||||
with pytest.raises(ValueError):
|
||||
AgglomerativeClustering(linkage='foo').fit(X)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
linkage_tree(X, linkage='foo')
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
linkage_tree(X, connectivity=np.ones((4, 4)))
|
||||
|
||||
# Smoke test FeatureAgglomeration
|
||||
FeatureAgglomeration().fit(X)
|
||||
|
||||
# test hierarchical clustering on a precomputed distances matrix
|
||||
dis = cosine_distances(X)
|
||||
|
||||
res = linkage_tree(dis, affinity="precomputed")
|
||||
assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0])
|
||||
|
||||
# test hierarchical clustering on a precomputed distances matrix
|
||||
res = linkage_tree(X, affinity=manhattan_distances)
|
||||
assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0])
|
||||
|
||||
|
||||
def test_structured_linkage_tree():
|
||||
# Check that we obtain the correct solution for structured linkage trees.
|
||||
rng = np.random.RandomState(0)
|
||||
mask = np.ones([10, 10], dtype=np.bool)
|
||||
# Avoiding a mask with only 'True' entries
|
||||
mask[4:7, 4:7] = 0
|
||||
X = rng.randn(50, 100)
|
||||
connectivity = grid_to_graph(*mask.shape)
|
||||
for tree_builder in _TREE_BUILDERS.values():
|
||||
children, n_components, n_leaves, parent = \
|
||||
tree_builder(X.T, connectivity=connectivity)
|
||||
n_nodes = 2 * X.shape[1] - 1
|
||||
assert len(children) + n_leaves == n_nodes
|
||||
# Check that ward_tree raises a ValueError with a connectivity matrix
|
||||
# of the wrong shape
|
||||
with pytest.raises(ValueError):
|
||||
tree_builder(X.T, connectivity=np.ones((4, 4)))
|
||||
# Check that fitting with no samples raises an error
|
||||
with pytest.raises(ValueError):
|
||||
tree_builder(X.T[:0], connectivity=connectivity)
|
||||
|
||||
|
||||
def test_unstructured_linkage_tree():
|
||||
# Check that we obtain the correct solution for unstructured linkage trees.
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(50, 100)
|
||||
for this_X in (X, X[0]):
|
||||
# With specified a number of clusters just for the sake of
|
||||
# raising a warning and testing the warning code
|
||||
with ignore_warnings():
|
||||
children, n_nodes, n_leaves, parent = assert_warns(
|
||||
UserWarning, ward_tree, this_X.T, n_clusters=10)
|
||||
n_nodes = 2 * X.shape[1] - 1
|
||||
assert len(children) + n_leaves == n_nodes
|
||||
|
||||
for tree_builder in _TREE_BUILDERS.values():
|
||||
for this_X in (X, X[0]):
|
||||
with ignore_warnings():
|
||||
children, n_nodes, n_leaves, parent = assert_warns(
|
||||
UserWarning, tree_builder, this_X.T, n_clusters=10)
|
||||
|
||||
n_nodes = 2 * X.shape[1] - 1
|
||||
assert len(children) + n_leaves == n_nodes
|
||||
|
||||
|
||||
def test_height_linkage_tree():
|
||||
# Check that the height of the results of linkage tree is sorted.
|
||||
rng = np.random.RandomState(0)
|
||||
mask = np.ones([10, 10], dtype=np.bool)
|
||||
X = rng.randn(50, 100)
|
||||
connectivity = grid_to_graph(*mask.shape)
|
||||
for linkage_func in _TREE_BUILDERS.values():
|
||||
children, n_nodes, n_leaves, parent = linkage_func(
|
||||
X.T, connectivity=connectivity)
|
||||
n_nodes = 2 * X.shape[1] - 1
|
||||
assert len(children) + n_leaves == n_nodes
|
||||
|
||||
|
||||
def test_agglomerative_clustering_wrong_arg_memory():
|
||||
# Test either if an error is raised when memory is not
|
||||
# either a str or a joblib.Memory instance
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples = 100
|
||||
X = rng.randn(n_samples, 50)
|
||||
memory = 5
|
||||
clustering = AgglomerativeClustering(memory=memory)
|
||||
with pytest.raises(ValueError):
|
||||
clustering.fit(X)
|
||||
|
||||
|
||||
def test_zero_cosine_linkage_tree():
|
||||
# Check that zero vectors in X produce an error when
|
||||
# 'cosine' affinity is used
|
||||
X = np.array([[0, 1],
|
||||
[0, 0]])
|
||||
msg = 'Cosine affinity cannot be used when X contains zero vectors'
|
||||
assert_raise_message(ValueError, msg, linkage_tree, X, affinity='cosine')
|
||||
|
||||
|
||||
def test_agglomerative_clustering():
|
||||
# Check that we obtain the correct number of clusters with
|
||||
# agglomerative clustering.
|
||||
rng = np.random.RandomState(0)
|
||||
mask = np.ones([10, 10], dtype=np.bool)
|
||||
n_samples = 100
|
||||
X = rng.randn(n_samples, 50)
|
||||
connectivity = grid_to_graph(*mask.shape)
|
||||
for linkage in ("ward", "complete", "average", "single"):
|
||||
clustering = AgglomerativeClustering(n_clusters=10,
|
||||
connectivity=connectivity,
|
||||
linkage=linkage)
|
||||
clustering.fit(X)
|
||||
# test caching
|
||||
try:
|
||||
tempdir = mkdtemp()
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=10, connectivity=connectivity,
|
||||
memory=tempdir,
|
||||
linkage=linkage)
|
||||
clustering.fit(X)
|
||||
labels = clustering.labels_
|
||||
assert np.size(np.unique(labels)) == 10
|
||||
finally:
|
||||
shutil.rmtree(tempdir)
|
||||
# Turn caching off now
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=10, connectivity=connectivity, linkage=linkage)
|
||||
# Check that we obtain the same solution with early-stopping of the
|
||||
# tree building
|
||||
clustering.compute_full_tree = False
|
||||
clustering.fit(X)
|
||||
assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
|
||||
labels), 1)
|
||||
clustering.connectivity = None
|
||||
clustering.fit(X)
|
||||
assert np.size(np.unique(clustering.labels_)) == 10
|
||||
# Check that we raise a TypeError on dense matrices
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=10,
|
||||
connectivity=sparse.lil_matrix(
|
||||
connectivity.toarray()[:10, :10]),
|
||||
linkage=linkage)
|
||||
with pytest.raises(ValueError):
|
||||
clustering.fit(X)
|
||||
|
||||
# Test that using ward with another metric than euclidean raises an
|
||||
# exception
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=10,
|
||||
connectivity=connectivity.toarray(),
|
||||
affinity="manhattan",
|
||||
linkage="ward")
|
||||
with pytest.raises(ValueError):
|
||||
clustering.fit(X)
|
||||
|
||||
# Test using another metric than euclidean works with linkage complete
|
||||
for affinity in PAIRED_DISTANCES.keys():
|
||||
# Compare our (structured) implementation to scipy
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=10,
|
||||
connectivity=np.ones((n_samples, n_samples)),
|
||||
affinity=affinity,
|
||||
linkage="complete")
|
||||
clustering.fit(X)
|
||||
clustering2 = AgglomerativeClustering(
|
||||
n_clusters=10,
|
||||
connectivity=None,
|
||||
affinity=affinity,
|
||||
linkage="complete")
|
||||
clustering2.fit(X)
|
||||
assert_almost_equal(normalized_mutual_info_score(clustering2.labels_,
|
||||
clustering.labels_),
|
||||
1)
|
||||
|
||||
# Test that using a distance matrix (affinity = 'precomputed') has same
|
||||
# results (with connectivity constraints)
|
||||
clustering = AgglomerativeClustering(n_clusters=10,
|
||||
connectivity=connectivity,
|
||||
linkage="complete")
|
||||
clustering.fit(X)
|
||||
X_dist = pairwise_distances(X)
|
||||
clustering2 = AgglomerativeClustering(n_clusters=10,
|
||||
connectivity=connectivity,
|
||||
affinity='precomputed',
|
||||
linkage="complete")
|
||||
clustering2.fit(X_dist)
|
||||
assert_array_equal(clustering.labels_, clustering2.labels_)
|
||||
|
||||
|
||||
def test_ward_agglomeration():
|
||||
# Check that we obtain the correct solution in a simplistic case
|
||||
rng = np.random.RandomState(0)
|
||||
mask = np.ones([10, 10], dtype=np.bool)
|
||||
X = rng.randn(50, 100)
|
||||
connectivity = grid_to_graph(*mask.shape)
|
||||
agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity)
|
||||
agglo.fit(X)
|
||||
assert np.size(np.unique(agglo.labels_)) == 5
|
||||
|
||||
X_red = agglo.transform(X)
|
||||
assert X_red.shape[1] == 5
|
||||
X_full = agglo.inverse_transform(X_red)
|
||||
assert np.unique(X_full[0]).size == 5
|
||||
assert_array_almost_equal(agglo.transform(X_full), X_red)
|
||||
|
||||
# Check that fitting with no samples raises a ValueError
|
||||
with pytest.raises(ValueError):
|
||||
agglo.fit(X[:0])
|
||||
|
||||
|
||||
def test_single_linkage_clustering():
|
||||
# Check that we get the correct result in two emblematic cases
|
||||
moons, moon_labels = make_moons(noise=0.05, random_state=42)
|
||||
clustering = AgglomerativeClustering(n_clusters=2, linkage='single')
|
||||
clustering.fit(moons)
|
||||
assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
|
||||
moon_labels), 1)
|
||||
|
||||
circles, circle_labels = make_circles(factor=0.5, noise=0.025,
|
||||
random_state=42)
|
||||
clustering = AgglomerativeClustering(n_clusters=2, linkage='single')
|
||||
clustering.fit(circles)
|
||||
assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
|
||||
circle_labels), 1)
|
||||
|
||||
|
||||
def assess_same_labelling(cut1, cut2):
|
||||
"""Util for comparison with scipy"""
|
||||
co_clust = []
|
||||
for cut in [cut1, cut2]:
|
||||
n = len(cut)
|
||||
k = cut.max() + 1
|
||||
ecut = np.zeros((n, k))
|
||||
ecut[np.arange(n), cut] = 1
|
||||
co_clust.append(np.dot(ecut, ecut.T))
|
||||
assert (co_clust[0] == co_clust[1]).all()
|
||||
|
||||
|
||||
def test_sparse_scikit_vs_scipy():
|
||||
# Test scikit linkage with full connectivity (i.e. unstructured) vs scipy
|
||||
n, p, k = 10, 5, 3
|
||||
rng = np.random.RandomState(0)
|
||||
|
||||
# Not using a lil_matrix here, just to check that non sparse
|
||||
# matrices are well handled
|
||||
connectivity = np.ones((n, n))
|
||||
for linkage in _TREE_BUILDERS.keys():
|
||||
for i in range(5):
|
||||
X = .1 * rng.normal(size=(n, p))
|
||||
X -= 4. * np.arange(n)[:, np.newaxis]
|
||||
X -= X.mean(axis=1)[:, np.newaxis]
|
||||
|
||||
out = hierarchy.linkage(X, method=linkage)
|
||||
|
||||
children_ = out[:, :2].astype(np.int, copy=False)
|
||||
children, _, n_leaves, _ = _TREE_BUILDERS[linkage](
|
||||
X, connectivity=connectivity)
|
||||
|
||||
# Sort the order of child nodes per row for consistency
|
||||
children.sort(axis=1)
|
||||
assert_array_equal(children, children_, 'linkage tree differs'
|
||||
' from scipy impl for'
|
||||
' linkage: ' + linkage)
|
||||
|
||||
cut = _hc_cut(k, children, n_leaves)
|
||||
cut_ = _hc_cut(k, children_, n_leaves)
|
||||
assess_same_labelling(cut, cut_)
|
||||
|
||||
# Test error management in _hc_cut
|
||||
with pytest.raises(ValueError):
|
||||
_hc_cut(n_leaves + 1, children, n_leaves)
|
||||
|
||||
|
||||
# Make sure our custom mst_linkage_core gives
|
||||
# the same results as scipy's builtin
|
||||
@pytest.mark.parametrize('seed', range(5))
|
||||
def test_vector_scikit_single_vs_scipy_single(seed):
|
||||
n_samples, n_features, n_clusters = 10, 5, 3
|
||||
rng = np.random.RandomState(seed)
|
||||
X = .1 * rng.normal(size=(n_samples, n_features))
|
||||
X -= 4. * np.arange(n_samples)[:, np.newaxis]
|
||||
X -= X.mean(axis=1)[:, np.newaxis]
|
||||
|
||||
out = hierarchy.linkage(X, method='single')
|
||||
children_scipy = out[:, :2].astype(np.int)
|
||||
|
||||
children, _, n_leaves, _ = _TREE_BUILDERS['single'](X)
|
||||
|
||||
# Sort the order of child nodes per row for consistency
|
||||
children.sort(axis=1)
|
||||
assert_array_equal(children, children_scipy,
|
||||
'linkage tree differs'
|
||||
' from scipy impl for'
|
||||
' single linkage.')
|
||||
|
||||
cut = _hc_cut(n_clusters, children, n_leaves)
|
||||
cut_scipy = _hc_cut(n_clusters, children_scipy, n_leaves)
|
||||
assess_same_labelling(cut, cut_scipy)
|
||||
|
||||
|
||||
def test_identical_points():
|
||||
# Ensure identical points are handled correctly when using mst with
|
||||
# a sparse connectivity matrix
|
||||
X = np.array([[0, 0, 0], [0, 0, 0],
|
||||
[1, 1, 1], [1, 1, 1],
|
||||
[2, 2, 2], [2, 2, 2]])
|
||||
true_labels = np.array([0, 0, 1, 1, 2, 2])
|
||||
connectivity = kneighbors_graph(X, n_neighbors=3, include_self=False)
|
||||
connectivity = 0.5 * (connectivity + connectivity.T)
|
||||
connectivity, n_components = _fix_connectivity(X,
|
||||
connectivity,
|
||||
'euclidean')
|
||||
|
||||
for linkage in ('single', 'average', 'average', 'ward'):
|
||||
clustering = AgglomerativeClustering(n_clusters=3,
|
||||
linkage=linkage,
|
||||
connectivity=connectivity)
|
||||
clustering.fit(X)
|
||||
|
||||
assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
|
||||
true_labels), 1)
|
||||
|
||||
|
||||
def test_connectivity_propagation():
|
||||
# Check that connectivity in the ward tree is propagated correctly during
|
||||
# merging.
|
||||
X = np.array([(.014, .120), (.014, .099), (.014, .097),
|
||||
(.017, .153), (.017, .153), (.018, .153),
|
||||
(.018, .153), (.018, .153), (.018, .153),
|
||||
(.018, .153), (.018, .153), (.018, .153),
|
||||
(.018, .152), (.018, .149), (.018, .144)])
|
||||
connectivity = kneighbors_graph(X, 10, include_self=False)
|
||||
ward = AgglomerativeClustering(
|
||||
n_clusters=4, connectivity=connectivity, linkage='ward')
|
||||
# If changes are not propagated correctly, fit crashes with an
|
||||
# IndexError
|
||||
ward.fit(X)
|
||||
|
||||
|
||||
def test_ward_tree_children_order():
|
||||
# Check that children are ordered in the same way for both structured and
|
||||
# unstructured versions of ward_tree.
|
||||
|
||||
# test on five random datasets
|
||||
n, p = 10, 5
|
||||
rng = np.random.RandomState(0)
|
||||
|
||||
connectivity = np.ones((n, n))
|
||||
for i in range(5):
|
||||
X = .1 * rng.normal(size=(n, p))
|
||||
X -= 4. * np.arange(n)[:, np.newaxis]
|
||||
X -= X.mean(axis=1)[:, np.newaxis]
|
||||
|
||||
out_unstructured = ward_tree(X)
|
||||
out_structured = ward_tree(X, connectivity=connectivity)
|
||||
|
||||
assert_array_equal(out_unstructured[0], out_structured[0])
|
||||
|
||||
|
||||
def test_ward_linkage_tree_return_distance():
|
||||
# Test return_distance option on linkage and ward trees
|
||||
|
||||
# test that return_distance when set true, gives same
|
||||
# output on both structured and unstructured clustering.
|
||||
n, p = 10, 5
|
||||
rng = np.random.RandomState(0)
|
||||
|
||||
connectivity = np.ones((n, n))
|
||||
for i in range(5):
|
||||
X = .1 * rng.normal(size=(n, p))
|
||||
X -= 4. * np.arange(n)[:, np.newaxis]
|
||||
X -= X.mean(axis=1)[:, np.newaxis]
|
||||
|
||||
out_unstructured = ward_tree(X, return_distance=True)
|
||||
out_structured = ward_tree(X, connectivity=connectivity,
|
||||
return_distance=True)
|
||||
|
||||
# get children
|
||||
children_unstructured = out_unstructured[0]
|
||||
children_structured = out_structured[0]
|
||||
|
||||
# check if we got the same clusters
|
||||
assert_array_equal(children_unstructured, children_structured)
|
||||
|
||||
# check if the distances are the same
|
||||
dist_unstructured = out_unstructured[-1]
|
||||
dist_structured = out_structured[-1]
|
||||
|
||||
assert_array_almost_equal(dist_unstructured, dist_structured)
|
||||
|
||||
for linkage in ['average', 'complete', 'single']:
|
||||
structured_items = linkage_tree(
|
||||
X, connectivity=connectivity, linkage=linkage,
|
||||
return_distance=True)[-1]
|
||||
unstructured_items = linkage_tree(
|
||||
X, linkage=linkage, return_distance=True)[-1]
|
||||
structured_dist = structured_items[-1]
|
||||
unstructured_dist = unstructured_items[-1]
|
||||
structured_children = structured_items[0]
|
||||
unstructured_children = unstructured_items[0]
|
||||
assert_array_almost_equal(structured_dist, unstructured_dist)
|
||||
assert_array_almost_equal(
|
||||
structured_children, unstructured_children)
|
||||
|
||||
# test on the following dataset where we know the truth
|
||||
# taken from scipy/cluster/tests/hierarchy_test_data.py
|
||||
X = np.array([[1.43054825, -7.5693489],
|
||||
[6.95887839, 6.82293382],
|
||||
[2.87137846, -9.68248579],
|
||||
[7.87974764, -6.05485803],
|
||||
[8.24018364, -6.09495602],
|
||||
[7.39020262, 8.54004355]])
|
||||
# truth
|
||||
linkage_X_ward = np.array([[3., 4., 0.36265956, 2.],
|
||||
[1., 5., 1.77045373, 2.],
|
||||
[0., 2., 2.55760419, 2.],
|
||||
[6., 8., 9.10208346, 4.],
|
||||
[7., 9., 24.7784379, 6.]])
|
||||
|
||||
linkage_X_complete = np.array(
|
||||
[[3., 4., 0.36265956, 2.],
|
||||
[1., 5., 1.77045373, 2.],
|
||||
[0., 2., 2.55760419, 2.],
|
||||
[6., 8., 6.96742194, 4.],
|
||||
[7., 9., 18.77445997, 6.]])
|
||||
|
||||
linkage_X_average = np.array(
|
||||
[[3., 4., 0.36265956, 2.],
|
||||
[1., 5., 1.77045373, 2.],
|
||||
[0., 2., 2.55760419, 2.],
|
||||
[6., 8., 6.55832839, 4.],
|
||||
[7., 9., 15.44089605, 6.]])
|
||||
|
||||
n_samples, n_features = np.shape(X)
|
||||
connectivity_X = np.ones((n_samples, n_samples))
|
||||
|
||||
out_X_unstructured = ward_tree(X, return_distance=True)
|
||||
out_X_structured = ward_tree(X, connectivity=connectivity_X,
|
||||
return_distance=True)
|
||||
|
||||
# check that the labels are the same
|
||||
assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0])
|
||||
assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0])
|
||||
|
||||
# check that the distances are correct
|
||||
assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4])
|
||||
assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4])
|
||||
|
||||
linkage_options = ['complete', 'average', 'single']
|
||||
X_linkage_truth = [linkage_X_complete, linkage_X_average]
|
||||
for (linkage, X_truth) in zip(linkage_options, X_linkage_truth):
|
||||
out_X_unstructured = linkage_tree(
|
||||
X, return_distance=True, linkage=linkage)
|
||||
out_X_structured = linkage_tree(
|
||||
X, connectivity=connectivity_X, linkage=linkage,
|
||||
return_distance=True)
|
||||
|
||||
# check that the labels are the same
|
||||
assert_array_equal(X_truth[:, :2], out_X_unstructured[0])
|
||||
assert_array_equal(X_truth[:, :2], out_X_structured[0])
|
||||
|
||||
# check that the distances are correct
|
||||
assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4])
|
||||
assert_array_almost_equal(X_truth[:, 2], out_X_structured[4])
|
||||
|
||||
|
||||
def test_connectivity_fixing_non_lil():
|
||||
# Check non regression of a bug if a non item assignable connectivity is
|
||||
# provided with more than one component.
|
||||
# create dummy data
|
||||
x = np.array([[0, 0], [1, 1]])
|
||||
# create a mask with several components to force connectivity fixing
|
||||
m = np.array([[True, False], [False, True]])
|
||||
c = grid_to_graph(n_x=2, n_y=2, mask=m)
|
||||
w = AgglomerativeClustering(connectivity=c, linkage='ward')
|
||||
assert_warns(UserWarning, w.fit, x)
|
||||
|
||||
|
||||
def test_int_float_dict():
|
||||
rng = np.random.RandomState(0)
|
||||
keys = np.unique(rng.randint(100, size=10).astype(np.intp, copy=False))
|
||||
values = rng.rand(len(keys))
|
||||
|
||||
d = IntFloatDict(keys, values)
|
||||
for key, value in zip(keys, values):
|
||||
assert d[key] == value
|
||||
|
||||
other_keys = np.arange(50, dtype=np.intp)[::2]
|
||||
other_values = np.full(50, 0.5)[::2]
|
||||
other = IntFloatDict(other_keys, other_values)
|
||||
# Complete smoke test
|
||||
max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1)
|
||||
average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1)
|
||||
|
||||
|
||||
def test_connectivity_callable():
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(20, 5)
|
||||
connectivity = kneighbors_graph(X, 3, include_self=False)
|
||||
aglc1 = AgglomerativeClustering(connectivity=connectivity)
|
||||
aglc2 = AgglomerativeClustering(
|
||||
connectivity=partial(kneighbors_graph, n_neighbors=3,
|
||||
include_self=False))
|
||||
aglc1.fit(X)
|
||||
aglc2.fit(X)
|
||||
assert_array_equal(aglc1.labels_, aglc2.labels_)
|
||||
|
||||
|
||||
def test_connectivity_ignores_diagonal():
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(20, 5)
|
||||
connectivity = kneighbors_graph(X, 3, include_self=False)
|
||||
connectivity_include_self = kneighbors_graph(X, 3, include_self=True)
|
||||
aglc1 = AgglomerativeClustering(connectivity=connectivity)
|
||||
aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self)
|
||||
aglc1.fit(X)
|
||||
aglc2.fit(X)
|
||||
assert_array_equal(aglc1.labels_, aglc2.labels_)
|
||||
|
||||
|
||||
def test_compute_full_tree():
|
||||
# Test that the full tree is computed if n_clusters is small
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(10, 2)
|
||||
connectivity = kneighbors_graph(X, 5, include_self=False)
|
||||
|
||||
# When n_clusters is less, the full tree should be built
|
||||
# that is the number of merges should be n_samples - 1
|
||||
agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity)
|
||||
agc.fit(X)
|
||||
n_samples = X.shape[0]
|
||||
n_nodes = agc.children_.shape[0]
|
||||
assert n_nodes == n_samples - 1
|
||||
|
||||
# When n_clusters is large, greater than max of 100 and 0.02 * n_samples.
|
||||
# we should stop when there are n_clusters.
|
||||
n_clusters = 101
|
||||
X = rng.randn(200, 2)
|
||||
connectivity = kneighbors_graph(X, 10, include_self=False)
|
||||
agc = AgglomerativeClustering(n_clusters=n_clusters,
|
||||
connectivity=connectivity)
|
||||
agc.fit(X)
|
||||
n_samples = X.shape[0]
|
||||
n_nodes = agc.children_.shape[0]
|
||||
assert n_nodes == n_samples - n_clusters
|
||||
|
||||
|
||||
def test_n_components():
|
||||
# Test n_components returned by linkage, average and ward tree
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(5, 5)
|
||||
|
||||
# Connectivity matrix having five components.
|
||||
connectivity = np.eye(5)
|
||||
|
||||
for linkage_func in _TREE_BUILDERS.values():
|
||||
assert ignore_warnings(linkage_func)(X, connectivity)[1] == 5
|
||||
|
||||
|
||||
def test_agg_n_clusters():
|
||||
# Test that an error is raised when n_clusters <= 0
|
||||
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(20, 10)
|
||||
for n_clus in [-1, 0]:
|
||||
agc = AgglomerativeClustering(n_clusters=n_clus)
|
||||
msg = ("n_clusters should be an integer greater than 0."
|
||||
" %s was provided." % str(agc.n_clusters))
|
||||
assert_raise_message(ValueError, msg, agc.fit, X)
|
||||
|
||||
|
||||
def test_affinity_passed_to_fix_connectivity():
|
||||
# Test that the affinity parameter is actually passed to the pairwise
|
||||
# function
|
||||
|
||||
size = 2
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.randn(size, size)
|
||||
mask = np.array([True, False, False, True])
|
||||
|
||||
connectivity = grid_to_graph(n_x=size, n_y=size,
|
||||
mask=mask, return_as=np.ndarray)
|
||||
|
||||
class FakeAffinity:
|
||||
def __init__(self):
|
||||
self.counter = 0
|
||||
|
||||
def increment(self, *args, **kwargs):
|
||||
self.counter += 1
|
||||
return self.counter
|
||||
|
||||
fa = FakeAffinity()
|
||||
|
||||
linkage_tree(X, connectivity=connectivity, affinity=fa.increment)
|
||||
|
||||
assert fa.counter == 3
|
||||
|
||||
|
||||
@pytest.mark.parametrize('linkage', ['ward', 'complete', 'average'])
|
||||
def test_agglomerative_clustering_with_distance_threshold(linkage):
|
||||
# Check that we obtain the correct number of clusters with
|
||||
# agglomerative clustering with distance_threshold.
|
||||
rng = np.random.RandomState(0)
|
||||
mask = np.ones([10, 10], dtype=np.bool)
|
||||
n_samples = 100
|
||||
X = rng.randn(n_samples, 50)
|
||||
connectivity = grid_to_graph(*mask.shape)
|
||||
# test when distance threshold is set to 10
|
||||
distance_threshold = 10
|
||||
for conn in [None, connectivity]:
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=None,
|
||||
distance_threshold=distance_threshold,
|
||||
connectivity=conn, linkage=linkage)
|
||||
clustering.fit(X)
|
||||
clusters_produced = clustering.labels_
|
||||
num_clusters_produced = len(np.unique(clustering.labels_))
|
||||
# test if the clusters produced match the point in the linkage tree
|
||||
# where the distance exceeds the threshold
|
||||
tree_builder = _TREE_BUILDERS[linkage]
|
||||
children, n_components, n_leaves, parent, distances = \
|
||||
tree_builder(X, connectivity=conn, n_clusters=None,
|
||||
return_distance=True)
|
||||
num_clusters_at_threshold = np.count_nonzero(
|
||||
distances >= distance_threshold) + 1
|
||||
# test number of clusters produced
|
||||
assert num_clusters_at_threshold == num_clusters_produced
|
||||
# test clusters produced
|
||||
clusters_at_threshold = _hc_cut(n_clusters=num_clusters_produced,
|
||||
children=children,
|
||||
n_leaves=n_leaves)
|
||||
assert np.array_equiv(clusters_produced,
|
||||
clusters_at_threshold)
|
||||
|
||||
|
||||
def test_small_distance_threshold():
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples = 10
|
||||
X = rng.randint(-300, 300, size=(n_samples, 3))
|
||||
# this should result in all data in their own clusters, given that
|
||||
# their pairwise distances are bigger than .1 (which may not be the case
|
||||
# with a different random seed).
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=None,
|
||||
distance_threshold=1.,
|
||||
linkage="single").fit(X)
|
||||
# check that the pairwise distances are indeed all larger than .1
|
||||
all_distances = pairwise_distances(X, metric='minkowski', p=2)
|
||||
np.fill_diagonal(all_distances, np.inf)
|
||||
assert np.all(all_distances > .1)
|
||||
assert clustering.n_clusters_ == n_samples
|
||||
|
||||
|
||||
def test_cluster_distances_with_distance_threshold():
|
||||
rng = np.random.RandomState(0)
|
||||
n_samples = 100
|
||||
X = rng.randint(-10, 10, size=(n_samples, 3))
|
||||
# check the distances within the clusters and with other clusters
|
||||
distance_threshold = 4
|
||||
clustering = AgglomerativeClustering(
|
||||
n_clusters=None,
|
||||
distance_threshold=distance_threshold,
|
||||
linkage="single").fit(X)
|
||||
labels = clustering.labels_
|
||||
D = pairwise_distances(X, metric="minkowski", p=2)
|
||||
# to avoid taking the 0 diagonal in min()
|
||||
np.fill_diagonal(D, np.inf)
|
||||
for label in np.unique(labels):
|
||||
in_cluster_mask = labels == label
|
||||
max_in_cluster_distance = (D[in_cluster_mask][:, in_cluster_mask]
|
||||
.min(axis=0).max())
|
||||
min_out_cluster_distance = (D[in_cluster_mask][:, ~in_cluster_mask]
|
||||
.min(axis=0).min())
|
||||
# single data point clusters only have that inf diagonal here
|
||||
if in_cluster_mask.sum() > 1:
|
||||
assert max_in_cluster_distance < distance_threshold
|
||||
assert min_out_cluster_distance >= distance_threshold
|
||||
|
||||
|
||||
@pytest.mark.parametrize('linkage', ['ward', 'complete', 'average'])
|
||||
@pytest.mark.parametrize(('threshold', 'y_true'),
|
||||
[(0.5, [1, 0]), (1.0, [1, 0]), (1.5, [0, 0])])
|
||||
def test_agglomerative_clustering_with_distance_threshold_edge_case(
|
||||
linkage, threshold, y_true):
|
||||
# test boundary case of distance_threshold matching the distance
|
||||
X = [[0], [1]]
|
||||
clusterer = AgglomerativeClustering(
|
||||
n_clusters=None,
|
||||
distance_threshold=threshold,
|
||||
linkage=linkage)
|
||||
y_pred = clusterer.fit_predict(X)
|
||||
assert adjusted_rand_score(y_true, y_pred) == 1
|
||||
|
||||
|
||||
def test_dist_threshold_invalid_parameters():
|
||||
X = [[0], [1]]
|
||||
with pytest.raises(ValueError, match="Exactly one of "):
|
||||
AgglomerativeClustering(n_clusters=None,
|
||||
distance_threshold=None).fit(X)
|
||||
|
||||
with pytest.raises(ValueError, match="Exactly one of "):
|
||||
AgglomerativeClustering(n_clusters=2,
|
||||
distance_threshold=1).fit(X)
|
||||
|
||||
X = [[0], [1]]
|
||||
with pytest.raises(ValueError, match="compute_full_tree must be True if"):
|
||||
AgglomerativeClustering(n_clusters=None,
|
||||
distance_threshold=1,
|
||||
compute_full_tree=False).fit(X)
|
||||
|
||||
|
||||
def test_invalid_shape_precomputed_dist_matrix():
|
||||
# Check that an error is raised when affinity='precomputed'
|
||||
# and a non square matrix is passed (PR #16257).
|
||||
rng = np.random.RandomState(0)
|
||||
X = rng.rand(5, 3)
|
||||
with pytest.raises(ValueError, match="Distance matrix should be square, "):
|
||||
AgglomerativeClustering(affinity='precomputed',
|
||||
linkage='complete').fit(X)
|
1170
venv/Lib/site-packages/sklearn/cluster/tests/test_k_means.py
Normal file
1170
venv/Lib/site-packages/sklearn/cluster/tests/test_k_means.py
Normal file
File diff suppressed because it is too large
Load diff
194
venv/Lib/site-packages/sklearn/cluster/tests/test_mean_shift.py
Normal file
194
venv/Lib/site-packages/sklearn/cluster/tests/test_mean_shift.py
Normal file
|
@ -0,0 +1,194 @@
|
|||
"""
|
||||
Testing for mean shift clustering methods
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import warnings
|
||||
import pytest
|
||||
|
||||
from scipy import sparse
|
||||
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import assert_array_almost_equal
|
||||
from sklearn.utils._testing import assert_raise_message
|
||||
from sklearn.utils._testing import assert_allclose
|
||||
|
||||
from sklearn.cluster import MeanShift
|
||||
from sklearn.cluster import mean_shift
|
||||
from sklearn.cluster import estimate_bandwidth
|
||||
from sklearn.cluster import get_bin_seeds
|
||||
from sklearn.datasets import make_blobs
|
||||
from sklearn.metrics import v_measure_score
|
||||
|
||||
|
||||
n_clusters = 3
|
||||
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
|
||||
X, _ = make_blobs(n_samples=300, n_features=2, centers=centers,
|
||||
cluster_std=0.4, shuffle=True, random_state=11)
|
||||
|
||||
|
||||
def test_estimate_bandwidth():
|
||||
# Test estimate_bandwidth
|
||||
bandwidth = estimate_bandwidth(X, n_samples=200)
|
||||
assert 0.9 <= bandwidth <= 1.5
|
||||
|
||||
|
||||
def test_estimate_bandwidth_1sample():
|
||||
# Test estimate_bandwidth when n_samples=1 and quantile<1, so that
|
||||
# n_neighbors is set to 1.
|
||||
bandwidth = estimate_bandwidth(X, n_samples=1, quantile=0.3)
|
||||
assert bandwidth == pytest.approx(0., abs=1e-5)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("bandwidth, cluster_all, expected, "
|
||||
"first_cluster_label",
|
||||
[(1.2, True, 3, 0), (1.2, False, 4, -1)])
|
||||
def test_mean_shift(bandwidth, cluster_all, expected, first_cluster_label):
|
||||
# Test MeanShift algorithm
|
||||
ms = MeanShift(bandwidth=bandwidth, cluster_all=cluster_all)
|
||||
labels = ms.fit(X).labels_
|
||||
labels_unique = np.unique(labels)
|
||||
n_clusters_ = len(labels_unique)
|
||||
assert n_clusters_ == expected
|
||||
assert labels_unique[0] == first_cluster_label
|
||||
|
||||
cluster_centers, labels_mean_shift = mean_shift(X, cluster_all=cluster_all)
|
||||
labels_mean_shift_unique = np.unique(labels_mean_shift)
|
||||
n_clusters_mean_shift = len(labels_mean_shift_unique)
|
||||
assert n_clusters_mean_shift == expected
|
||||
assert labels_mean_shift_unique[0] == first_cluster_label
|
||||
|
||||
|
||||
def test_mean_shift_negative_bandwidth():
|
||||
bandwidth = -1
|
||||
ms = MeanShift(bandwidth=bandwidth)
|
||||
msg = (r"bandwidth needs to be greater than zero or None,"
|
||||
r" got -1\.000000")
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
ms.fit(X)
|
||||
|
||||
|
||||
def test_estimate_bandwidth_with_sparse_matrix():
|
||||
# Test estimate_bandwidth with sparse matrix
|
||||
X = sparse.lil_matrix((1000, 1000))
|
||||
msg = "A sparse matrix was passed, but dense data is required."
|
||||
assert_raise_message(TypeError, msg, estimate_bandwidth, X)
|
||||
|
||||
|
||||
def test_parallel():
|
||||
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
|
||||
X, _ = make_blobs(n_samples=50, n_features=2, centers=centers,
|
||||
cluster_std=0.4, shuffle=True, random_state=11)
|
||||
|
||||
ms1 = MeanShift(n_jobs=2)
|
||||
ms1.fit(X)
|
||||
|
||||
ms2 = MeanShift()
|
||||
ms2.fit(X)
|
||||
|
||||
assert_array_almost_equal(ms1.cluster_centers_, ms2.cluster_centers_)
|
||||
assert_array_equal(ms1.labels_, ms2.labels_)
|
||||
|
||||
|
||||
def test_meanshift_predict():
|
||||
# Test MeanShift.predict
|
||||
ms = MeanShift(bandwidth=1.2)
|
||||
labels = ms.fit_predict(X)
|
||||
labels2 = ms.predict(X)
|
||||
assert_array_equal(labels, labels2)
|
||||
|
||||
|
||||
def test_meanshift_all_orphans():
|
||||
# init away from the data, crash with a sensible warning
|
||||
ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]])
|
||||
msg = "No point was within bandwidth=0.1"
|
||||
assert_raise_message(ValueError, msg, ms.fit, X,)
|
||||
|
||||
|
||||
def test_unfitted():
|
||||
# Non-regression: before fit, there should be not fitted attributes.
|
||||
ms = MeanShift()
|
||||
assert not hasattr(ms, "cluster_centers_")
|
||||
assert not hasattr(ms, "labels_")
|
||||
|
||||
|
||||
def test_cluster_intensity_tie():
|
||||
X = np.array([[1, 1], [2, 1], [1, 0],
|
||||
[4, 7], [3, 5], [3, 6]])
|
||||
c1 = MeanShift(bandwidth=2).fit(X)
|
||||
|
||||
X = np.array([[4, 7], [3, 5], [3, 6],
|
||||
[1, 1], [2, 1], [1, 0]])
|
||||
c2 = MeanShift(bandwidth=2).fit(X)
|
||||
assert_array_equal(c1.labels_, [1, 1, 1, 0, 0, 0])
|
||||
assert_array_equal(c2.labels_, [0, 0, 0, 1, 1, 1])
|
||||
|
||||
|
||||
def test_bin_seeds():
|
||||
# Test the bin seeding technique which can be used in the mean shift
|
||||
# algorithm
|
||||
# Data is just 6 points in the plane
|
||||
X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2],
|
||||
[2., 1.], [2.1, 1.1], [0., 0.]])
|
||||
|
||||
# With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be
|
||||
# found
|
||||
ground_truth = {(1., 1.), (2., 1.), (0., 0.)}
|
||||
test_bins = get_bin_seeds(X, 1, 1)
|
||||
test_result = set(tuple(p) for p in test_bins)
|
||||
assert len(ground_truth.symmetric_difference(test_result)) == 0
|
||||
|
||||
# With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be
|
||||
# found
|
||||
ground_truth = {(1., 1.), (2., 1.)}
|
||||
test_bins = get_bin_seeds(X, 1, 2)
|
||||
test_result = set(tuple(p) for p in test_bins)
|
||||
assert len(ground_truth.symmetric_difference(test_result)) == 0
|
||||
|
||||
# With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found
|
||||
# we bail and use the whole data here.
|
||||
with warnings.catch_warnings(record=True):
|
||||
test_bins = get_bin_seeds(X, 0.01, 1)
|
||||
assert_array_almost_equal(test_bins, X)
|
||||
|
||||
# tight clusters around [0, 0] and [1, 1], only get two bins
|
||||
X, _ = make_blobs(n_samples=100, n_features=2, centers=[[0, 0], [1, 1]],
|
||||
cluster_std=0.1, random_state=0)
|
||||
test_bins = get_bin_seeds(X, 1)
|
||||
assert_array_equal(test_bins, [[0, 0], [1, 1]])
|
||||
|
||||
|
||||
@pytest.mark.parametrize('max_iter', [1, 100])
|
||||
def test_max_iter(max_iter):
|
||||
clusters1, _ = mean_shift(X, max_iter=max_iter)
|
||||
ms = MeanShift(max_iter=max_iter).fit(X)
|
||||
clusters2 = ms.cluster_centers_
|
||||
|
||||
assert ms.n_iter_ <= ms.max_iter
|
||||
assert len(clusters1) == len(clusters2)
|
||||
|
||||
for c1, c2 in zip(clusters1, clusters2):
|
||||
assert np.allclose(c1, c2)
|
||||
|
||||
|
||||
def test_mean_shift_zero_bandwidth():
|
||||
# Check that mean shift works when the estimated bandwidth is 0.
|
||||
X = np.array([1, 1, 1, 2, 2, 2, 3, 3]).reshape(-1, 1)
|
||||
|
||||
# estimate_bandwidth with default args returns 0 on this dataset
|
||||
bandwidth = estimate_bandwidth(X)
|
||||
assert bandwidth == 0
|
||||
|
||||
# get_bin_seeds with a 0 bin_size should return the dataset itself
|
||||
assert get_bin_seeds(X, bin_size=bandwidth) is X
|
||||
|
||||
# MeanShift with binning and a 0 estimated bandwidth should be equivalent
|
||||
# to no binning.
|
||||
ms_binning = MeanShift(bin_seeding=True, bandwidth=None).fit(X)
|
||||
ms_nobinning = MeanShift(bin_seeding=False).fit(X)
|
||||
expected_labels = np.array([0, 0, 0, 1, 1, 1, 2, 2])
|
||||
|
||||
assert v_measure_score(ms_binning.labels_, expected_labels) == 1
|
||||
assert v_measure_score(ms_nobinning.labels_, expected_labels) == 1
|
||||
assert_allclose(ms_binning.cluster_centers_, ms_nobinning.cluster_centers_)
|
429
venv/Lib/site-packages/sklearn/cluster/tests/test_optics.py
Normal file
429
venv/Lib/site-packages/sklearn/cluster/tests/test_optics.py
Normal file
|
@ -0,0 +1,429 @@
|
|||
# Authors: Shane Grigsby <refuge@rocktalus.com>
|
||||
# Adrin Jalali <adrin.jalali@gmail.com>
|
||||
# License: BSD 3 clause
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from sklearn.datasets import make_blobs
|
||||
from sklearn.cluster import OPTICS
|
||||
from sklearn.cluster._optics import _extend_region, _extract_xi_labels
|
||||
from sklearn.metrics.cluster import contingency_matrix
|
||||
from sklearn.metrics.pairwise import pairwise_distances
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.utils import shuffle
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import assert_raise_message
|
||||
from sklearn.utils._testing import assert_allclose
|
||||
|
||||
from sklearn.cluster.tests.common import generate_clustered_data
|
||||
|
||||
|
||||
rng = np.random.RandomState(0)
|
||||
n_points_per_cluster = 10
|
||||
C1 = [-5, -2] + .8 * rng.randn(n_points_per_cluster, 2)
|
||||
C2 = [4, -1] + .1 * rng.randn(n_points_per_cluster, 2)
|
||||
C3 = [1, -2] + .2 * rng.randn(n_points_per_cluster, 2)
|
||||
C4 = [-2, 3] + .3 * rng.randn(n_points_per_cluster, 2)
|
||||
C5 = [3, -2] + 1.6 * rng.randn(n_points_per_cluster, 2)
|
||||
C6 = [5, 6] + 2 * rng.randn(n_points_per_cluster, 2)
|
||||
X = np.vstack((C1, C2, C3, C4, C5, C6))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
('r_plot', 'end'),
|
||||
[[[10, 8.9, 8.8, 8.7, 7, 10], 3],
|
||||
[[10, 8.9, 8.8, 8.7, 8.6, 7, 10], 0],
|
||||
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
|
||||
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
|
||||
])
|
||||
def test_extend_downward(r_plot, end):
|
||||
r_plot = np.array(r_plot)
|
||||
ratio = r_plot[:-1] / r_plot[1:]
|
||||
steep_downward = ratio >= 1 / .9
|
||||
upward = ratio < 1
|
||||
|
||||
e = _extend_region(steep_downward, upward, 0, 2)
|
||||
assert e == end
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
('r_plot', 'end'),
|
||||
[[[1, 2, 2.1, 2.2, 4, 8, 8, np.inf], 6],
|
||||
[[1, 2, 2.1, 2.2, 2.3, 4, 8, 8, np.inf], 0],
|
||||
[[1, 2, 2.1, 2, np.inf], 0],
|
||||
[[1, 2, 2.1, np.inf], 2],
|
||||
])
|
||||
def test_extend_upward(r_plot, end):
|
||||
r_plot = np.array(r_plot)
|
||||
ratio = r_plot[:-1] / r_plot[1:]
|
||||
steep_upward = ratio <= .9
|
||||
downward = ratio > 1
|
||||
|
||||
e = _extend_region(steep_upward, downward, 0, 2)
|
||||
assert e == end
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
('ordering', 'clusters', 'expected'),
|
||||
[[[0, 1, 2, 3], [[0, 1], [2, 3]], [0, 0, 1, 1]],
|
||||
[[0, 1, 2, 3], [[0, 1], [3, 3]], [0, 0, -1, 1]],
|
||||
[[0, 1, 2, 3], [[0, 1], [3, 3], [0, 3]], [0, 0, -1, 1]],
|
||||
[[3, 1, 2, 0], [[0, 1], [3, 3], [0, 3]], [1, 0, -1, 0]],
|
||||
])
|
||||
def test_the_extract_xi_labels(ordering, clusters, expected):
|
||||
labels = _extract_xi_labels(ordering, clusters)
|
||||
|
||||
assert_array_equal(labels, expected)
|
||||
|
||||
|
||||
def test_extract_xi():
|
||||
# small and easy test (no clusters around other clusters)
|
||||
# but with a clear noise data.
|
||||
rng = np.random.RandomState(0)
|
||||
n_points_per_cluster = 5
|
||||
|
||||
C1 = [-5, -2] + .8 * rng.randn(n_points_per_cluster, 2)
|
||||
C2 = [4, -1] + .1 * rng.randn(n_points_per_cluster, 2)
|
||||
C3 = [1, -2] + .2 * rng.randn(n_points_per_cluster, 2)
|
||||
C4 = [-2, 3] + .3 * rng.randn(n_points_per_cluster, 2)
|
||||
C5 = [3, -2] + .6 * rng.randn(n_points_per_cluster, 2)
|
||||
C6 = [5, 6] + .2 * rng.randn(n_points_per_cluster, 2)
|
||||
|
||||
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6))
|
||||
expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5,
|
||||
-1, [4] * 5]
|
||||
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
||||
|
||||
clust = OPTICS(min_samples=3, min_cluster_size=2,
|
||||
max_eps=20, cluster_method='xi',
|
||||
xi=0.4).fit(X)
|
||||
assert_array_equal(clust.labels_, expected_labels)
|
||||
|
||||
# check float min_samples and min_cluster_size
|
||||
clust = OPTICS(min_samples=0.1, min_cluster_size=0.08,
|
||||
max_eps=20, cluster_method='xi',
|
||||
xi=0.4).fit(X)
|
||||
assert_array_equal(clust.labels_, expected_labels)
|
||||
|
||||
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6))
|
||||
expected_labels = np.r_[[1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5,
|
||||
-1, -1, [4] * 5]
|
||||
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
||||
|
||||
clust = OPTICS(min_samples=3, min_cluster_size=3,
|
||||
max_eps=20, cluster_method='xi',
|
||||
xi=0.3).fit(X)
|
||||
# this may fail if the predecessor correction is not at work!
|
||||
assert_array_equal(clust.labels_, expected_labels)
|
||||
|
||||
C1 = [[0, 0], [0, 0.1], [0, -.1], [0.1, 0]]
|
||||
C2 = [[10, 10], [10, 9], [10, 11], [9, 10]]
|
||||
C3 = [[100, 100], [100, 90], [100, 110], [90, 100]]
|
||||
X = np.vstack((C1, C2, C3))
|
||||
expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4]
|
||||
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
||||
|
||||
clust = OPTICS(min_samples=2, min_cluster_size=2,
|
||||
max_eps=np.inf, cluster_method='xi',
|
||||
xi=0.04).fit(X)
|
||||
assert_array_equal(clust.labels_, expected_labels)
|
||||
|
||||
|
||||
def test_cluster_hierarchy_():
|
||||
rng = np.random.RandomState(0)
|
||||
n_points_per_cluster = 100
|
||||
C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2)
|
||||
C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2)
|
||||
X = np.vstack((C1, C2))
|
||||
X = shuffle(X, random_state=0)
|
||||
|
||||
clusters = OPTICS(min_samples=20, xi=.1).fit(X).cluster_hierarchy_
|
||||
assert clusters.shape == (2, 2)
|
||||
diff = np.sum(clusters - np.array([[0, 99], [0, 199]]))
|
||||
assert diff / len(X) < 0.05
|
||||
|
||||
|
||||
def test_correct_number_of_clusters():
|
||||
# in 'auto' mode
|
||||
|
||||
n_clusters = 3
|
||||
X = generate_clustered_data(n_clusters=n_clusters)
|
||||
# Parameters chosen specifically for this task.
|
||||
# Compute OPTICS
|
||||
clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=.1)
|
||||
clust.fit(X)
|
||||
# number of clusters, ignoring noise if present
|
||||
n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_)
|
||||
assert n_clusters_1 == n_clusters
|
||||
|
||||
# check attribute types and sizes
|
||||
assert clust.labels_.shape == (len(X),)
|
||||
assert clust.labels_.dtype.kind == 'i'
|
||||
|
||||
assert clust.reachability_.shape == (len(X),)
|
||||
assert clust.reachability_.dtype.kind == 'f'
|
||||
|
||||
assert clust.core_distances_.shape == (len(X),)
|
||||
assert clust.core_distances_.dtype.kind == 'f'
|
||||
|
||||
assert clust.ordering_.shape == (len(X),)
|
||||
assert clust.ordering_.dtype.kind == 'i'
|
||||
assert set(clust.ordering_) == set(range(len(X)))
|
||||
|
||||
|
||||
def test_minimum_number_of_sample_check():
|
||||
# test that we check a minimum number of samples
|
||||
msg = "min_samples must be no greater than"
|
||||
|
||||
# Compute OPTICS
|
||||
X = [[1, 1]]
|
||||
clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1)
|
||||
|
||||
# Run the fit
|
||||
assert_raise_message(ValueError, msg, clust.fit, X)
|
||||
|
||||
|
||||
def test_bad_extract():
|
||||
# Test an extraction of eps too close to original eps
|
||||
msg = "Specify an epsilon smaller than 0.15. Got 0.3."
|
||||
centers = [[1, 1], [-1, -1], [1, -1]]
|
||||
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
||||
cluster_std=0.4, random_state=0)
|
||||
|
||||
# Compute OPTICS
|
||||
clust = OPTICS(max_eps=5.0 * 0.03,
|
||||
cluster_method='dbscan',
|
||||
eps=0.3, min_samples=10)
|
||||
assert_raise_message(ValueError, msg, clust.fit, X)
|
||||
|
||||
|
||||
def test_bad_reachability():
|
||||
msg = "All reachability values are inf. Set a larger max_eps."
|
||||
centers = [[1, 1], [-1, -1], [1, -1]]
|
||||
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
||||
cluster_std=0.4, random_state=0)
|
||||
|
||||
with pytest.warns(UserWarning, match=msg):
|
||||
clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015)
|
||||
clust.fit(X)
|
||||
|
||||
|
||||
def test_close_extract():
|
||||
# Test extract where extraction eps is close to scaled max_eps
|
||||
|
||||
centers = [[1, 1], [-1, -1], [1, -1]]
|
||||
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
||||
cluster_std=0.4, random_state=0)
|
||||
|
||||
# Compute OPTICS
|
||||
clust = OPTICS(max_eps=1.0, cluster_method='dbscan',
|
||||
eps=0.3, min_samples=10).fit(X)
|
||||
# Cluster ordering starts at 0; max cluster label = 2 is 3 clusters
|
||||
assert max(clust.labels_) == 2
|
||||
|
||||
|
||||
@pytest.mark.parametrize('eps', [0.1, .3, .5])
|
||||
@pytest.mark.parametrize('min_samples', [3, 10, 20])
|
||||
def test_dbscan_optics_parity(eps, min_samples):
|
||||
# Test that OPTICS clustering labels are <= 5% difference of DBSCAN
|
||||
|
||||
centers = [[1, 1], [-1, -1], [1, -1]]
|
||||
X, labels_true = make_blobs(n_samples=750, centers=centers,
|
||||
cluster_std=0.4, random_state=0)
|
||||
|
||||
# calculate optics with dbscan extract at 0.3 epsilon
|
||||
op = OPTICS(min_samples=min_samples, cluster_method='dbscan',
|
||||
eps=eps).fit(X)
|
||||
|
||||
# calculate dbscan labels
|
||||
db = DBSCAN(eps=eps, min_samples=min_samples).fit(X)
|
||||
|
||||
contingency = contingency_matrix(db.labels_, op.labels_)
|
||||
agree = min(np.sum(np.max(contingency, axis=0)),
|
||||
np.sum(np.max(contingency, axis=1)))
|
||||
disagree = X.shape[0] - agree
|
||||
|
||||
percent_mismatch = np.round((disagree - 1) / X.shape[0], 2)
|
||||
|
||||
# verify label mismatch is <= 5% labels
|
||||
assert percent_mismatch <= 0.05
|
||||
|
||||
|
||||
def test_min_samples_edge_case():
|
||||
C1 = [[0, 0], [0, 0.1], [0, -.1]]
|
||||
C2 = [[10, 10], [10, 9], [10, 11]]
|
||||
C3 = [[100, 100], [100, 96], [100, 106]]
|
||||
X = np.vstack((C1, C2, C3))
|
||||
|
||||
expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3]
|
||||
clust = OPTICS(min_samples=3,
|
||||
max_eps=7, cluster_method='xi',
|
||||
xi=0.04).fit(X)
|
||||
assert_array_equal(clust.labels_, expected_labels)
|
||||
|
||||
expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3]
|
||||
clust = OPTICS(min_samples=3,
|
||||
max_eps=3, cluster_method='xi',
|
||||
xi=0.04).fit(X)
|
||||
assert_array_equal(clust.labels_, expected_labels)
|
||||
|
||||
expected_labels = np.r_[[-1] * 9]
|
||||
with pytest.warns(UserWarning, match="All reachability values"):
|
||||
clust = OPTICS(min_samples=4,
|
||||
max_eps=3, cluster_method='xi',
|
||||
xi=0.04).fit(X)
|
||||
assert_array_equal(clust.labels_, expected_labels)
|
||||
|
||||
|
||||
# try arbitrary minimum sizes
|
||||
@pytest.mark.parametrize('min_cluster_size', range(2, X.shape[0] // 10, 23))
|
||||
def test_min_cluster_size(min_cluster_size):
|
||||
redX = X[::2] # reduce for speed
|
||||
clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX)
|
||||
cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1])
|
||||
if cluster_sizes.size:
|
||||
assert min(cluster_sizes) >= min_cluster_size
|
||||
# check behaviour is the same when min_cluster_size is a fraction
|
||||
clust_frac = OPTICS(min_samples=9,
|
||||
min_cluster_size=min_cluster_size / redX.shape[0])
|
||||
clust_frac.fit(redX)
|
||||
assert_array_equal(clust.labels_, clust_frac.labels_)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('min_cluster_size', [0, -1, 1.1, 2.2])
|
||||
def test_min_cluster_size_invalid(min_cluster_size):
|
||||
clust = OPTICS(min_cluster_size=min_cluster_size)
|
||||
with pytest.raises(ValueError, match="must be a positive integer or a "):
|
||||
clust.fit(X)
|
||||
|
||||
|
||||
def test_min_cluster_size_invalid2():
|
||||
clust = OPTICS(min_cluster_size=len(X) + 1)
|
||||
with pytest.raises(ValueError, match="must be no greater than the "):
|
||||
clust.fit(X)
|
||||
|
||||
|
||||
def test_processing_order():
|
||||
# Ensure that we consider all unprocessed points,
|
||||
# not only direct neighbors. when picking the next point.
|
||||
Y = [[0], [10], [-10], [25]]
|
||||
clust = OPTICS(min_samples=3, max_eps=15).fit(Y)
|
||||
assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15])
|
||||
assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf])
|
||||
assert_array_equal(clust.ordering_, [0, 1, 2, 3])
|
||||
|
||||
|
||||
def test_compare_to_ELKI():
|
||||
# Expected values, computed with (future) ELKI 0.7.5 using:
|
||||
# java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter
|
||||
# -algorithm clustering.optics.OPTICSHeap -optics.minpts 5
|
||||
# where the FixedDBIDsFilter gives 0-indexed ids.
|
||||
r1 = [np.inf, 1.0574896366427478, 0.7587934993548423, 0.7290174038973836,
|
||||
0.7290174038973836, 0.7290174038973836, 0.6861627576116127,
|
||||
0.7587934993548423, 0.9280118450166668, 1.1748022534146194,
|
||||
3.3355455741292257, 0.49618389254482587, 0.2552805046961355,
|
||||
0.2552805046961355, 0.24944622248445714, 0.24944622248445714,
|
||||
0.24944622248445714, 0.2552805046961355, 0.2552805046961355,
|
||||
0.3086779122185853, 4.163024452756142, 1.623152630340929,
|
||||
0.45315840475822655, 0.25468325192031926, 0.2254004358159971,
|
||||
0.18765711877083036, 0.1821471333893275, 0.1821471333893275,
|
||||
0.18765711877083036, 0.18765711877083036, 0.2240202988740153,
|
||||
1.154337614548715, 1.342604473837069, 1.323308536402633,
|
||||
0.8607514948648837, 0.27219111215810565, 0.13260875220533205,
|
||||
0.13260875220533205, 0.09890587675958984, 0.09890587675958984,
|
||||
0.13548790801634494, 0.1575483940837384, 0.17515137170530226,
|
||||
0.17575920159442388, 0.27219111215810565, 0.6101447895405373,
|
||||
1.3189208094864302, 1.323308536402633, 2.2509184159764577,
|
||||
2.4517810628594527, 3.675977064404973, 3.8264795626020365,
|
||||
2.9130735341510614, 2.9130735341510614, 2.9130735341510614,
|
||||
2.9130735341510614, 2.8459300127258036, 2.8459300127258036,
|
||||
2.8459300127258036, 3.0321982337972537]
|
||||
o1 = [0, 3, 6, 4, 7, 8, 2, 9, 5, 1, 31, 30, 32, 34, 33, 38, 39, 35, 37, 36,
|
||||
44, 21, 23, 24, 22, 25, 27, 29, 26, 28, 20, 40, 45, 46, 10, 15, 11,
|
||||
13, 17, 19, 18, 12, 16, 14, 47, 49, 43, 48, 42, 41, 53, 57, 51, 52,
|
||||
56, 59, 54, 55, 58, 50]
|
||||
p1 = [-1, 0, 3, 6, 6, 6, 8, 3, 7, 5, 1, 31, 30, 30, 34, 34, 34, 32, 32, 37,
|
||||
36, 44, 21, 23, 24, 22, 25, 25, 22, 22, 22, 21, 40, 45, 46, 10, 15,
|
||||
15, 13, 13, 15, 11, 19, 15, 10, 47, 12, 45, 14, 43, 42, 53, 57, 57,
|
||||
57, 57, 59, 59, 59, 58]
|
||||
|
||||
# Tests against known extraction array
|
||||
# Does NOT work with metric='euclidean', because sklearn euclidean has
|
||||
# worse numeric precision. 'minkowski' is slower but more accurate.
|
||||
clust1 = OPTICS(min_samples=5).fit(X)
|
||||
|
||||
assert_array_equal(clust1.ordering_, np.array(o1))
|
||||
assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1))
|
||||
assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1))
|
||||
# ELKI currently does not print the core distances (which are not used much
|
||||
# in literature, but we can at least ensure to have this consistency:
|
||||
for i in clust1.ordering_[1:]:
|
||||
assert (clust1.reachability_[i] >=
|
||||
clust1.core_distances_[clust1.predecessor_[i]])
|
||||
|
||||
# Expected values, computed with (future) ELKI 0.7.5 using
|
||||
r2 = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
||||
np.inf, np.inf, np.inf, 0.27219111215810565, 0.13260875220533205,
|
||||
0.13260875220533205, 0.09890587675958984, 0.09890587675958984,
|
||||
0.13548790801634494, 0.1575483940837384, 0.17515137170530226,
|
||||
0.17575920159442388, 0.27219111215810565, 0.4928068613197889,
|
||||
np.inf, 0.2666183922512113, 0.18765711877083036, 0.1821471333893275,
|
||||
0.1821471333893275, 0.1821471333893275, 0.18715928772277457,
|
||||
0.18765711877083036, 0.18765711877083036, 0.25468325192031926,
|
||||
np.inf, 0.2552805046961355, 0.2552805046961355, 0.24944622248445714,
|
||||
0.24944622248445714, 0.24944622248445714, 0.2552805046961355,
|
||||
0.2552805046961355, 0.3086779122185853, 0.34466409325984865,
|
||||
np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
||||
np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
||||
np.inf, np.inf]
|
||||
o2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 11, 13, 17, 19, 18, 12, 16, 14,
|
||||
47, 46, 20, 22, 25, 23, 27, 29, 24, 26, 28, 21, 30, 32, 34, 33, 38,
|
||||
39, 35, 37, 36, 31, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53,
|
||||
54, 55, 56, 57, 58, 59]
|
||||
p2 = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 15, 15, 13, 13, 15,
|
||||
11, 19, 15, 10, 47, -1, 20, 22, 25, 25, 25, 25, 22, 22, 23, -1, 30,
|
||||
30, 34, 34, 34, 32, 32, 37, 38, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1]
|
||||
clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X)
|
||||
|
||||
assert_array_equal(clust2.ordering_, np.array(o2))
|
||||
assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2))
|
||||
assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2))
|
||||
|
||||
index = np.where(clust1.core_distances_ <= 0.5)[0]
|
||||
assert_allclose(clust1.core_distances_[index],
|
||||
clust2.core_distances_[index])
|
||||
|
||||
|
||||
def test_wrong_cluster_method():
|
||||
clust = OPTICS(cluster_method='superfancy')
|
||||
with pytest.raises(ValueError, match="cluster_method should be one of "):
|
||||
clust.fit(X)
|
||||
|
||||
|
||||
def test_extract_dbscan():
|
||||
# testing an easy dbscan case. Not including clusters with different
|
||||
# densities.
|
||||
rng = np.random.RandomState(0)
|
||||
n_points_per_cluster = 20
|
||||
C1 = [-5, -2] + .2 * rng.randn(n_points_per_cluster, 2)
|
||||
C2 = [4, -1] + .2 * rng.randn(n_points_per_cluster, 2)
|
||||
C3 = [1, 2] + .2 * rng.randn(n_points_per_cluster, 2)
|
||||
C4 = [-2, 3] + .2 * rng.randn(n_points_per_cluster, 2)
|
||||
X = np.vstack((C1, C2, C3, C4))
|
||||
|
||||
clust = OPTICS(cluster_method='dbscan', eps=.5).fit(X)
|
||||
assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3])
|
||||
|
||||
|
||||
def test_precomputed_dists():
|
||||
redX = X[::2]
|
||||
dists = pairwise_distances(redX, metric='euclidean')
|
||||
clust1 = OPTICS(min_samples=10, algorithm='brute',
|
||||
metric='precomputed').fit(dists)
|
||||
clust2 = OPTICS(min_samples=10, algorithm='brute',
|
||||
metric='euclidean').fit(redX)
|
||||
|
||||
assert_allclose(clust1.reachability_, clust2.reachability_)
|
||||
assert_array_equal(clust1.labels_, clust2.labels_)
|
250
venv/Lib/site-packages/sklearn/cluster/tests/test_spectral.py
Normal file
250
venv/Lib/site-packages/sklearn/cluster/tests/test_spectral.py
Normal file
|
@ -0,0 +1,250 @@
|
|||
"""Testing for Spectral Clustering methods"""
|
||||
|
||||
import numpy as np
|
||||
from scipy import sparse
|
||||
|
||||
import pytest
|
||||
|
||||
import pickle
|
||||
|
||||
from sklearn.utils import check_random_state
|
||||
from sklearn.utils._testing import assert_array_equal
|
||||
from sklearn.utils._testing import assert_warns_message
|
||||
|
||||
from sklearn.cluster import SpectralClustering, spectral_clustering
|
||||
from sklearn.cluster._spectral import discretize
|
||||
from sklearn.feature_extraction import img_to_graph
|
||||
from sklearn.metrics import pairwise_distances
|
||||
from sklearn.metrics import adjusted_rand_score
|
||||
from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
from sklearn.datasets import make_blobs
|
||||
|
||||
try:
|
||||
from pyamg import smoothed_aggregation_solver # noqa
|
||||
amg_loaded = True
|
||||
except ImportError:
|
||||
amg_loaded = False
|
||||
|
||||
|
||||
@pytest.mark.parametrize('eigen_solver', ('arpack', 'lobpcg'))
|
||||
@pytest.mark.parametrize('assign_labels', ('kmeans', 'discretize'))
|
||||
def test_spectral_clustering(eigen_solver, assign_labels):
|
||||
S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
|
||||
[0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0],
|
||||
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
|
||||
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
|
||||
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]])
|
||||
|
||||
for mat in (S, sparse.csr_matrix(S)):
|
||||
model = SpectralClustering(random_state=0, n_clusters=2,
|
||||
affinity='precomputed',
|
||||
eigen_solver=eigen_solver,
|
||||
assign_labels=assign_labels
|
||||
).fit(mat)
|
||||
labels = model.labels_
|
||||
if labels[0] == 0:
|
||||
labels = 1 - labels
|
||||
|
||||
assert adjusted_rand_score(labels, [1, 1, 1, 0, 0, 0, 0]) == 1
|
||||
|
||||
model_copy = pickle.loads(pickle.dumps(model))
|
||||
assert model_copy.n_clusters == model.n_clusters
|
||||
assert model_copy.eigen_solver == model.eigen_solver
|
||||
assert_array_equal(model_copy.labels_, model.labels_)
|
||||
|
||||
|
||||
def test_spectral_unknown_mode():
|
||||
# Test that SpectralClustering fails with an unknown mode set.
|
||||
centers = np.array([
|
||||
[0., 0., 0.],
|
||||
[10., 10., 10.],
|
||||
[20., 20., 20.],
|
||||
])
|
||||
X, true_labels = make_blobs(n_samples=100, centers=centers,
|
||||
cluster_std=1., random_state=42)
|
||||
D = pairwise_distances(X) # Distance matrix
|
||||
S = np.max(D) - D # Similarity matrix
|
||||
S = sparse.coo_matrix(S)
|
||||
with pytest.raises(ValueError):
|
||||
spectral_clustering(S, n_clusters=2, random_state=0,
|
||||
eigen_solver="<unknown>")
|
||||
|
||||
|
||||
def test_spectral_unknown_assign_labels():
|
||||
# Test that SpectralClustering fails with an unknown assign_labels set.
|
||||
centers = np.array([
|
||||
[0., 0., 0.],
|
||||
[10., 10., 10.],
|
||||
[20., 20., 20.],
|
||||
])
|
||||
X, true_labels = make_blobs(n_samples=100, centers=centers,
|
||||
cluster_std=1., random_state=42)
|
||||
D = pairwise_distances(X) # Distance matrix
|
||||
S = np.max(D) - D # Similarity matrix
|
||||
S = sparse.coo_matrix(S)
|
||||
with pytest.raises(ValueError):
|
||||
spectral_clustering(S, n_clusters=2, random_state=0,
|
||||
assign_labels="<unknown>")
|
||||
|
||||
|
||||
def test_spectral_clustering_sparse():
|
||||
X, y = make_blobs(n_samples=20, random_state=0,
|
||||
centers=[[1, 1], [-1, -1]], cluster_std=0.01)
|
||||
|
||||
S = rbf_kernel(X, gamma=1)
|
||||
S = np.maximum(S - 1e-4, 0)
|
||||
S = sparse.coo_matrix(S)
|
||||
|
||||
labels = SpectralClustering(random_state=0, n_clusters=2,
|
||||
affinity='precomputed').fit(S).labels_
|
||||
assert adjusted_rand_score(y, labels) == 1
|
||||
|
||||
|
||||
def test_precomputed_nearest_neighbors_filtering():
|
||||
# Test precomputed graph filtering when containing too many neighbors
|
||||
X, y = make_blobs(n_samples=200, random_state=0,
|
||||
centers=[[1, 1], [-1, -1]], cluster_std=0.01)
|
||||
|
||||
n_neighbors = 2
|
||||
results = []
|
||||
for additional_neighbors in [0, 10]:
|
||||
nn = NearestNeighbors(
|
||||
n_neighbors=n_neighbors + additional_neighbors).fit(X)
|
||||
graph = nn.kneighbors_graph(X, mode='connectivity')
|
||||
labels = SpectralClustering(random_state=0, n_clusters=2,
|
||||
affinity='precomputed_nearest_neighbors',
|
||||
n_neighbors=n_neighbors).fit(graph).labels_
|
||||
results.append(labels)
|
||||
|
||||
assert_array_equal(results[0], results[1])
|
||||
|
||||
|
||||
def test_affinities():
|
||||
# Note: in the following, random_state has been selected to have
|
||||
# a dataset that yields a stable eigen decomposition both when built
|
||||
# on OSX and Linux
|
||||
X, y = make_blobs(n_samples=20, random_state=0,
|
||||
centers=[[1, 1], [-1, -1]], cluster_std=0.01)
|
||||
# nearest neighbors affinity
|
||||
sp = SpectralClustering(n_clusters=2, affinity='nearest_neighbors',
|
||||
random_state=0)
|
||||
assert_warns_message(UserWarning, 'not fully connected', sp.fit, X)
|
||||
assert adjusted_rand_score(y, sp.labels_) == 1
|
||||
|
||||
sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0)
|
||||
labels = sp.fit(X).labels_
|
||||
assert adjusted_rand_score(y, labels) == 1
|
||||
|
||||
X = check_random_state(10).rand(10, 5) * 10
|
||||
|
||||
kernels_available = kernel_metrics()
|
||||
for kern in kernels_available:
|
||||
# Additive chi^2 gives a negative similarity matrix which
|
||||
# doesn't make sense for spectral clustering
|
||||
if kern != 'additive_chi2':
|
||||
sp = SpectralClustering(n_clusters=2, affinity=kern,
|
||||
random_state=0)
|
||||
labels = sp.fit(X).labels_
|
||||
assert (X.shape[0],) == labels.shape
|
||||
|
||||
sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1,
|
||||
random_state=0)
|
||||
labels = sp.fit(X).labels_
|
||||
assert (X.shape[0],) == labels.shape
|
||||
|
||||
def histogram(x, y, **kwargs):
|
||||
# Histogram kernel implemented as a callable.
|
||||
assert kwargs == {} # no kernel_params that we didn't ask for
|
||||
return np.minimum(x, y).sum()
|
||||
|
||||
sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0)
|
||||
labels = sp.fit(X).labels_
|
||||
assert (X.shape[0],) == labels.shape
|
||||
|
||||
# raise error on unknown affinity
|
||||
sp = SpectralClustering(n_clusters=2, affinity='<unknown>')
|
||||
with pytest.raises(ValueError):
|
||||
sp.fit(X)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('n_samples', [50, 100, 150, 500])
|
||||
def test_discretize(n_samples):
|
||||
# Test the discretize using a noise assignment matrix
|
||||
random_state = np.random.RandomState(seed=8)
|
||||
for n_class in range(2, 10):
|
||||
# random class labels
|
||||
y_true = random_state.randint(0, n_class + 1, n_samples)
|
||||
y_true = np.array(y_true, np.float)
|
||||
# noise class assignment matrix
|
||||
y_indicator = sparse.coo_matrix((np.ones(n_samples),
|
||||
(np.arange(n_samples),
|
||||
y_true)),
|
||||
shape=(n_samples,
|
||||
n_class + 1))
|
||||
y_true_noisy = (y_indicator.toarray()
|
||||
+ 0.1 * random_state.randn(n_samples,
|
||||
n_class + 1))
|
||||
y_pred = discretize(y_true_noisy, random_state=random_state)
|
||||
assert adjusted_rand_score(y_true, y_pred) > 0.8
|
||||
|
||||
|
||||
# TODO: Remove when pyamg does replaces sp.rand call with np.random.rand
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/15913
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*")
|
||||
def test_spectral_clustering_with_arpack_amg_solvers():
|
||||
# Test that spectral_clustering is the same for arpack and amg solver
|
||||
# Based on toy example from plot_segmentation_toy.py
|
||||
|
||||
# a small two coin image
|
||||
x, y = np.indices((40, 40))
|
||||
|
||||
center1, center2 = (14, 12), (20, 25)
|
||||
radius1, radius2 = 8, 7
|
||||
|
||||
circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
|
||||
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2
|
||||
|
||||
circles = circle1 | circle2
|
||||
mask = circles.copy()
|
||||
img = circles.astype(float)
|
||||
|
||||
graph = img_to_graph(img, mask=mask)
|
||||
graph.data = np.exp(-graph.data / graph.data.std())
|
||||
|
||||
labels_arpack = spectral_clustering(
|
||||
graph, n_clusters=2, eigen_solver='arpack', random_state=0)
|
||||
|
||||
assert len(np.unique(labels_arpack)) == 2
|
||||
|
||||
if amg_loaded:
|
||||
labels_amg = spectral_clustering(
|
||||
graph, n_clusters=2, eigen_solver='amg', random_state=0)
|
||||
assert adjusted_rand_score(labels_arpack, labels_amg) == 1
|
||||
else:
|
||||
with pytest.raises(ValueError):
|
||||
spectral_clustering(graph, n_clusters=2, eigen_solver='amg',
|
||||
random_state=0)
|
||||
|
||||
|
||||
def test_n_components():
|
||||
# Test that after adding n_components, result is different and
|
||||
# n_components = n_clusters by default
|
||||
X, y = make_blobs(n_samples=20, random_state=0,
|
||||
centers=[[1, 1], [-1, -1]], cluster_std=0.01)
|
||||
sp = SpectralClustering(n_clusters=2, random_state=0)
|
||||
labels = sp.fit(X).labels_
|
||||
# set n_components = n_cluster and test if result is the same
|
||||
labels_same_ncomp = SpectralClustering(n_clusters=2, n_components=2,
|
||||
random_state=0).fit(X).labels_
|
||||
# test that n_components=n_clusters by default
|
||||
assert_array_equal(labels, labels_same_ncomp)
|
||||
|
||||
# test that n_components affect result
|
||||
# n_clusters=8 by default, and set n_components=2
|
||||
labels_diff_ncomp = SpectralClustering(n_components=2,
|
||||
random_state=0).fit(X).labels_
|
||||
assert not np.array_equal(labels, labels_diff_ncomp)
|
Loading…
Add table
Add a link
Reference in a new issue