Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
111
venv/Lib/site-packages/sklearn/__init__.py
Normal file
111
venv/Lib/site-packages/sklearn/__init__.py
Normal file
|
@ -0,0 +1,111 @@
|
|||
"""
|
||||
Machine learning module for Python
|
||||
==================================
|
||||
|
||||
sklearn is a Python module integrating classical machine
|
||||
learning algorithms in the tightly-knit world of scientific Python
|
||||
packages (numpy, scipy, matplotlib).
|
||||
|
||||
It aims to provide simple and efficient solutions to learning problems
|
||||
that are accessible to everybody and reusable in various contexts:
|
||||
machine-learning as a versatile tool for science and engineering.
|
||||
|
||||
See http://scikit-learn.org for complete documentation.
|
||||
"""
|
||||
import sys
|
||||
import logging
|
||||
import os
|
||||
|
||||
from ._config import get_config, set_config, config_context
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# PEP0440 compatible formatted version, see:
|
||||
# https://www.python.org/dev/peps/pep-0440/
|
||||
#
|
||||
# Generic release markers:
|
||||
# X.Y
|
||||
# X.Y.Z # For bugfix releases
|
||||
#
|
||||
# Admissible pre-release markers:
|
||||
# X.YaN # Alpha release
|
||||
# X.YbN # Beta release
|
||||
# X.YrcN # Release Candidate
|
||||
# X.Y # Final release
|
||||
#
|
||||
# Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer.
|
||||
# 'X.Y.dev0' is the canonical version of 'X.Y.dev'
|
||||
#
|
||||
__version__ = '0.23.2'
|
||||
|
||||
|
||||
# On OSX, we can get a runtime error due to multiple OpenMP libraries loaded
|
||||
# simultaneously. This can happen for instance when calling BLAS inside a
|
||||
# prange. Setting the following environment variable allows multiple OpenMP
|
||||
# libraries to be loaded. It should not degrade performances since we manually
|
||||
# take care of potential over-subcription performance issues, in sections of
|
||||
# the code where nested OpenMP loops can happen, by dynamically reconfiguring
|
||||
# the inner OpenMP runtime to temporarily disable it while under the scope of
|
||||
# the outer OpenMP parallel section.
|
||||
os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "True")
|
||||
|
||||
# Workaround issue discovered in intel-openmp 2019.5:
|
||||
# https://github.com/ContinuumIO/anaconda-issues/issues/11294
|
||||
os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE")
|
||||
|
||||
try:
|
||||
# This variable is injected in the __builtins__ by the build
|
||||
# process. It is used to enable importing subpackages of sklearn when
|
||||
# the binaries are not built
|
||||
# mypy error: Cannot determine type of '__SKLEARN_SETUP__'
|
||||
__SKLEARN_SETUP__ # type: ignore
|
||||
except NameError:
|
||||
__SKLEARN_SETUP__ = False
|
||||
|
||||
if __SKLEARN_SETUP__:
|
||||
sys.stderr.write('Partial import of sklearn during the build process.\n')
|
||||
# We are not importing the rest of scikit-learn during the build
|
||||
# process, as it may not be compiled yet
|
||||
else:
|
||||
# `_distributor_init` allows distributors to run custom init code.
|
||||
# For instance, for the Windows wheel, this is used to pre-load the
|
||||
# vcomp shared library runtime for OpenMP embedded in the sklearn/.libs
|
||||
# sub-folder.
|
||||
# It is necessary to do this prior to importing show_versions as the
|
||||
# later is linked to the OpenMP runtime to make it possible to introspect
|
||||
# it and importing it first would fail if the OpenMP dll cannot be found.
|
||||
from . import _distributor_init # noqa: F401
|
||||
from . import __check_build # noqa: F401
|
||||
from .base import clone
|
||||
from .utils._show_versions import show_versions
|
||||
|
||||
__all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition',
|
||||
'datasets', 'decomposition', 'dummy', 'ensemble', 'exceptions',
|
||||
'experimental', 'externals', 'feature_extraction',
|
||||
'feature_selection', 'gaussian_process', 'inspection',
|
||||
'isotonic', 'kernel_approximation', 'kernel_ridge',
|
||||
'linear_model', 'manifold', 'metrics', 'mixture',
|
||||
'model_selection', 'multiclass', 'multioutput',
|
||||
'naive_bayes', 'neighbors', 'neural_network', 'pipeline',
|
||||
'preprocessing', 'random_projection', 'semi_supervised',
|
||||
'svm', 'tree', 'discriminant_analysis', 'impute', 'compose',
|
||||
# Non-modules:
|
||||
'clone', 'get_config', 'set_config', 'config_context',
|
||||
'show_versions']
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
"""Fixture for the tests to assure globally controllable seeding of RNGs"""
|
||||
import os
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
# Check if a random seed exists in the environment, if not create one.
|
||||
_random_seed = os.environ.get('SKLEARN_SEED', None)
|
||||
if _random_seed is None:
|
||||
_random_seed = np.random.uniform() * np.iinfo(np.int32).max
|
||||
_random_seed = int(_random_seed)
|
||||
print("I: Seeding RNGs with %r" % _random_seed)
|
||||
np.random.seed(_random_seed)
|
||||
random.seed(_random_seed)
|
Loading…
Add table
Add a link
Reference in a new issue