Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
232
venv/Lib/site-packages/joblib/externals/loky/reusable_executor.py
vendored
Normal file
232
venv/Lib/site-packages/joblib/externals/loky/reusable_executor.py
vendored
Normal file
|
@ -0,0 +1,232 @@
|
|||
###############################################################################
|
||||
# Reusable ProcessPoolExecutor
|
||||
#
|
||||
# author: Thomas Moreau and Olivier Grisel
|
||||
#
|
||||
import time
|
||||
import warnings
|
||||
import threading
|
||||
import multiprocessing as mp
|
||||
|
||||
from .process_executor import ProcessPoolExecutor, EXTRA_QUEUED_CALLS
|
||||
from .backend.context import cpu_count
|
||||
from .backend import get_context
|
||||
|
||||
__all__ = ['get_reusable_executor']
|
||||
|
||||
# Python 2 compat helper
|
||||
STRING_TYPE = type("")
|
||||
|
||||
# Singleton executor and id management
|
||||
_executor_lock = threading.RLock()
|
||||
_next_executor_id = 0
|
||||
_executor = None
|
||||
_executor_kwargs = None
|
||||
|
||||
|
||||
def _get_next_executor_id():
|
||||
"""Ensure that each successive executor instance has a unique, monotonic id.
|
||||
|
||||
The purpose of this monotonic id is to help debug and test automated
|
||||
instance creation.
|
||||
"""
|
||||
global _next_executor_id
|
||||
with _executor_lock:
|
||||
executor_id = _next_executor_id
|
||||
_next_executor_id += 1
|
||||
return executor_id
|
||||
|
||||
|
||||
def get_reusable_executor(max_workers=None, context=None, timeout=10,
|
||||
kill_workers=False, reuse="auto",
|
||||
job_reducers=None, result_reducers=None,
|
||||
initializer=None, initargs=(), env=None):
|
||||
"""Return the current ReusableExectutor instance.
|
||||
|
||||
Start a new instance if it has not been started already or if the previous
|
||||
instance was left in a broken state.
|
||||
|
||||
If the previous instance does not have the requested number of workers, the
|
||||
executor is dynamically resized to adjust the number of workers prior to
|
||||
returning.
|
||||
|
||||
Reusing a singleton instance spares the overhead of starting new worker
|
||||
processes and importing common python packages each time.
|
||||
|
||||
``max_workers`` controls the maximum number of tasks that can be running in
|
||||
parallel in worker processes. By default this is set to the number of
|
||||
CPUs on the host.
|
||||
|
||||
Setting ``timeout`` (in seconds) makes idle workers automatically shutdown
|
||||
so as to release system resources. New workers are respawn upon submission
|
||||
of new tasks so that ``max_workers`` are available to accept the newly
|
||||
submitted tasks. Setting ``timeout`` to around 100 times the time required
|
||||
to spawn new processes and import packages in them (on the order of 100ms)
|
||||
ensures that the overhead of spawning workers is negligible.
|
||||
|
||||
Setting ``kill_workers=True`` makes it possible to forcibly interrupt
|
||||
previously spawned jobs to get a new instance of the reusable executor
|
||||
with new constructor argument values.
|
||||
|
||||
The ``job_reducers`` and ``result_reducers`` are used to customize the
|
||||
pickling of tasks and results send to the executor.
|
||||
|
||||
When provided, the ``initializer`` is run first in newly spawned
|
||||
processes with argument ``initargs``.
|
||||
|
||||
The environment variable in the child process are a copy of the values in
|
||||
the main process. One can provide a dict ``{ENV: VAL}`` where ``ENV`` and
|
||||
``VAR`` are string literals to overwrite the environment variable ``ENV``
|
||||
in the child processes to value ``VAL``. The environment variables are set
|
||||
in the children before any module is loaded. This only works with with the
|
||||
``loky`` context and it is unreliable on Windows with Python < 3.6.
|
||||
"""
|
||||
_executor, _ = _ReusablePoolExecutor.get_reusable_executor(
|
||||
max_workers=max_workers, context=context, timeout=timeout,
|
||||
kill_workers=kill_workers, reuse=reuse, job_reducers=job_reducers,
|
||||
result_reducers=result_reducers, initializer=initializer,
|
||||
initargs=initargs, env=env
|
||||
)
|
||||
return _executor
|
||||
|
||||
|
||||
class _ReusablePoolExecutor(ProcessPoolExecutor):
|
||||
def __init__(self, submit_resize_lock, max_workers=None, context=None,
|
||||
timeout=None, executor_id=0, job_reducers=None,
|
||||
result_reducers=None, initializer=None, initargs=(),
|
||||
env=None):
|
||||
super(_ReusablePoolExecutor, self).__init__(
|
||||
max_workers=max_workers, context=context, timeout=timeout,
|
||||
job_reducers=job_reducers, result_reducers=result_reducers,
|
||||
initializer=initializer, initargs=initargs, env=env)
|
||||
self.executor_id = executor_id
|
||||
self._submit_resize_lock = submit_resize_lock
|
||||
|
||||
@classmethod
|
||||
def get_reusable_executor(cls, max_workers=None, context=None, timeout=10,
|
||||
kill_workers=False, reuse="auto",
|
||||
job_reducers=None, result_reducers=None,
|
||||
initializer=None, initargs=(), env=None):
|
||||
with _executor_lock:
|
||||
global _executor, _executor_kwargs
|
||||
executor = _executor
|
||||
|
||||
if max_workers is None:
|
||||
if reuse is True and executor is not None:
|
||||
max_workers = executor._max_workers
|
||||
else:
|
||||
max_workers = cpu_count()
|
||||
elif max_workers <= 0:
|
||||
raise ValueError(
|
||||
"max_workers must be greater than 0, got {}."
|
||||
.format(max_workers))
|
||||
|
||||
if isinstance(context, STRING_TYPE):
|
||||
context = get_context(context)
|
||||
if context is not None and context.get_start_method() == "fork":
|
||||
raise ValueError(
|
||||
"Cannot use reusable executor with the 'fork' context"
|
||||
)
|
||||
|
||||
kwargs = dict(context=context, timeout=timeout,
|
||||
job_reducers=job_reducers,
|
||||
result_reducers=result_reducers,
|
||||
initializer=initializer, initargs=initargs,
|
||||
env=env)
|
||||
if executor is None:
|
||||
is_reused = False
|
||||
mp.util.debug("Create a executor with max_workers={}."
|
||||
.format(max_workers))
|
||||
executor_id = _get_next_executor_id()
|
||||
_executor_kwargs = kwargs
|
||||
_executor = executor = cls(
|
||||
_executor_lock, max_workers=max_workers,
|
||||
executor_id=executor_id, **kwargs)
|
||||
else:
|
||||
if reuse == 'auto':
|
||||
reuse = kwargs == _executor_kwargs
|
||||
if (executor._flags.broken or executor._flags.shutdown
|
||||
or not reuse):
|
||||
if executor._flags.broken:
|
||||
reason = "broken"
|
||||
elif executor._flags.shutdown:
|
||||
reason = "shutdown"
|
||||
else:
|
||||
reason = "arguments have changed"
|
||||
mp.util.debug(
|
||||
"Creating a new executor with max_workers={} as the "
|
||||
"previous instance cannot be reused ({})."
|
||||
.format(max_workers, reason))
|
||||
executor.shutdown(wait=True, kill_workers=kill_workers)
|
||||
_executor = executor = _executor_kwargs = None
|
||||
# Recursive call to build a new instance
|
||||
return cls.get_reusable_executor(max_workers=max_workers,
|
||||
**kwargs)
|
||||
else:
|
||||
mp.util.debug(
|
||||
"Reusing existing executor with max_workers={}."
|
||||
.format(executor._max_workers)
|
||||
)
|
||||
is_reused = True
|
||||
executor._resize(max_workers)
|
||||
|
||||
return executor, is_reused
|
||||
|
||||
def submit(self, fn, *args, **kwargs):
|
||||
with self._submit_resize_lock:
|
||||
return super(_ReusablePoolExecutor, self).submit(
|
||||
fn, *args, **kwargs)
|
||||
|
||||
def _resize(self, max_workers):
|
||||
with self._submit_resize_lock:
|
||||
if max_workers is None:
|
||||
raise ValueError("Trying to resize with max_workers=None")
|
||||
elif max_workers == self._max_workers:
|
||||
return
|
||||
|
||||
if self._executor_manager_thread is None:
|
||||
# If the executor_manager_thread has not been started
|
||||
# then no processes have been spawned and we can just
|
||||
# update _max_workers and return
|
||||
self._max_workers = max_workers
|
||||
return
|
||||
|
||||
self._wait_job_completion()
|
||||
|
||||
# Some process might have returned due to timeout so check how many
|
||||
# children are still alive. Use the _process_management_lock to
|
||||
# ensure that no process are spawned or timeout during the resize.
|
||||
with self._processes_management_lock:
|
||||
processes = list(self._processes.values())
|
||||
nb_children_alive = sum(p.is_alive() for p in processes)
|
||||
self._max_workers = max_workers
|
||||
for _ in range(max_workers, nb_children_alive):
|
||||
self._call_queue.put(None)
|
||||
while (len(self._processes) > max_workers
|
||||
and not self._flags.broken):
|
||||
time.sleep(1e-3)
|
||||
|
||||
self._adjust_process_count()
|
||||
processes = list(self._processes.values())
|
||||
while not all([p.is_alive() for p in processes]):
|
||||
time.sleep(1e-3)
|
||||
|
||||
def _wait_job_completion(self):
|
||||
"""Wait for the cache to be empty before resizing the pool."""
|
||||
# Issue a warning to the user about the bad effect of this usage.
|
||||
if len(self._pending_work_items) > 0:
|
||||
warnings.warn("Trying to resize an executor with running jobs: "
|
||||
"waiting for jobs completion before resizing.",
|
||||
UserWarning)
|
||||
mp.util.debug("Executor {} waiting for jobs completion before"
|
||||
" resizing".format(self.executor_id))
|
||||
# Wait for the completion of the jobs
|
||||
while len(self._pending_work_items) > 0:
|
||||
time.sleep(1e-3)
|
||||
|
||||
def _setup_queues(self, job_reducers, result_reducers):
|
||||
# As this executor can be resized, use a large queue size to avoid
|
||||
# underestimating capacity and introducing overhead
|
||||
queue_size = 2 * cpu_count() + EXTRA_QUEUED_CALLS
|
||||
super(_ReusablePoolExecutor, self)._setup_queues(
|
||||
job_reducers, result_reducers, queue_size=queue_size)
|
Loading…
Add table
Add a link
Reference in a new issue