Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
842
venv/Lib/site-packages/joblib/externals/cloudpickle/cloudpickle.py
vendored
Normal file
842
venv/Lib/site-packages/joblib/externals/cloudpickle/cloudpickle.py
vendored
Normal file
|
@ -0,0 +1,842 @@
|
|||
"""
|
||||
This class is defined to override standard pickle functionality
|
||||
|
||||
The goals of it follow:
|
||||
-Serialize lambdas and nested functions to compiled byte code
|
||||
-Deal with main module correctly
|
||||
-Deal with other non-serializable objects
|
||||
|
||||
It does not include an unpickler, as standard python unpickling suffices.
|
||||
|
||||
This module was extracted from the `cloud` package, developed by `PiCloud, Inc.
|
||||
<https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
|
||||
|
||||
Copyright (c) 2012, Regents of the University of California.
|
||||
Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
* Neither the name of the University of California, Berkeley nor the
|
||||
names of its contributors may be used to endorse or promote
|
||||
products derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||||
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
import builtins
|
||||
import dis
|
||||
import opcode
|
||||
import platform
|
||||
import sys
|
||||
import types
|
||||
import weakref
|
||||
import uuid
|
||||
import threading
|
||||
import typing
|
||||
import warnings
|
||||
|
||||
from .compat import pickle
|
||||
from typing import Generic, Union, Tuple, Callable
|
||||
from pickle import _getattribute
|
||||
from importlib._bootstrap import _find_spec
|
||||
|
||||
try: # pragma: no branch
|
||||
import typing_extensions as _typing_extensions
|
||||
from typing_extensions import Literal, Final
|
||||
except ImportError:
|
||||
_typing_extensions = Literal = Final = None
|
||||
|
||||
if sys.version_info >= (3, 5, 3):
|
||||
from typing import ClassVar
|
||||
else: # pragma: no cover
|
||||
ClassVar = None
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
from types import CellType
|
||||
else:
|
||||
def f():
|
||||
a = 1
|
||||
|
||||
def g():
|
||||
return a
|
||||
return g
|
||||
CellType = type(f().__closure__[0])
|
||||
|
||||
|
||||
# cloudpickle is meant for inter process communication: we expect all
|
||||
# communicating processes to run the same Python version hence we favor
|
||||
# communication speed over compatibility:
|
||||
DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL
|
||||
|
||||
# Track the provenance of reconstructed dynamic classes to make it possible to
|
||||
# recontruct instances from the matching singleton class definition when
|
||||
# appropriate and preserve the usual "isinstance" semantics of Python objects.
|
||||
_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary()
|
||||
_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary()
|
||||
_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock()
|
||||
|
||||
PYPY = platform.python_implementation() == "PyPy"
|
||||
|
||||
builtin_code_type = None
|
||||
if PYPY:
|
||||
# builtin-code objects only exist in pypy
|
||||
builtin_code_type = type(float.__new__.__code__)
|
||||
|
||||
_extract_code_globals_cache = weakref.WeakKeyDictionary()
|
||||
|
||||
|
||||
def _get_or_create_tracker_id(class_def):
|
||||
with _DYNAMIC_CLASS_TRACKER_LOCK:
|
||||
class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def)
|
||||
if class_tracker_id is None:
|
||||
class_tracker_id = uuid.uuid4().hex
|
||||
_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
|
||||
_DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def
|
||||
return class_tracker_id
|
||||
|
||||
|
||||
def _lookup_class_or_track(class_tracker_id, class_def):
|
||||
if class_tracker_id is not None:
|
||||
with _DYNAMIC_CLASS_TRACKER_LOCK:
|
||||
class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault(
|
||||
class_tracker_id, class_def)
|
||||
_DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
|
||||
return class_def
|
||||
|
||||
|
||||
def _whichmodule(obj, name):
|
||||
"""Find the module an object belongs to.
|
||||
|
||||
This function differs from ``pickle.whichmodule`` in two ways:
|
||||
- it does not mangle the cases where obj's module is __main__ and obj was
|
||||
not found in any module.
|
||||
- Errors arising during module introspection are ignored, as those errors
|
||||
are considered unwanted side effects.
|
||||
"""
|
||||
if sys.version_info[:2] < (3, 7) and isinstance(obj, typing.TypeVar): # pragma: no branch # noqa
|
||||
# Workaround bug in old Python versions: prior to Python 3.7,
|
||||
# T.__module__ would always be set to "typing" even when the TypeVar T
|
||||
# would be defined in a different module.
|
||||
#
|
||||
# For such older Python versions, we ignore the __module__ attribute of
|
||||
# TypeVar instances and instead exhaustively lookup those instances in
|
||||
# all currently imported modules.
|
||||
module_name = None
|
||||
else:
|
||||
module_name = getattr(obj, '__module__', None)
|
||||
|
||||
if module_name is not None:
|
||||
return module_name
|
||||
# Protect the iteration by using a copy of sys.modules against dynamic
|
||||
# modules that trigger imports of other modules upon calls to getattr or
|
||||
# other threads importing at the same time.
|
||||
for module_name, module in sys.modules.copy().items():
|
||||
# Some modules such as coverage can inject non-module objects inside
|
||||
# sys.modules
|
||||
if (
|
||||
module_name == '__main__' or
|
||||
module is None or
|
||||
not isinstance(module, types.ModuleType)
|
||||
):
|
||||
continue
|
||||
try:
|
||||
if _getattribute(module, name)[0] is obj:
|
||||
return module_name
|
||||
except Exception:
|
||||
pass
|
||||
return None
|
||||
|
||||
|
||||
def _is_importable(obj, name=None):
|
||||
"""Dispatcher utility to test the importability of various constructs."""
|
||||
if isinstance(obj, types.FunctionType):
|
||||
return _lookup_module_and_qualname(obj, name=name) is not None
|
||||
elif issubclass(type(obj), type):
|
||||
return _lookup_module_and_qualname(obj, name=name) is not None
|
||||
elif isinstance(obj, types.ModuleType):
|
||||
# We assume that sys.modules is primarily used as a cache mechanism for
|
||||
# the Python import machinery. Checking if a module has been added in
|
||||
# is sys.modules therefore a cheap and simple heuristic to tell us whether
|
||||
# we can assume that a given module could be imported by name in
|
||||
# another Python process.
|
||||
return obj.__name__ in sys.modules
|
||||
else:
|
||||
raise TypeError(
|
||||
"cannot check importability of {} instances".format(
|
||||
type(obj).__name__)
|
||||
)
|
||||
|
||||
|
||||
def _lookup_module_and_qualname(obj, name=None):
|
||||
if name is None:
|
||||
name = getattr(obj, '__qualname__', None)
|
||||
if name is None: # pragma: no cover
|
||||
# This used to be needed for Python 2.7 support but is probably not
|
||||
# needed anymore. However we keep the __name__ introspection in case
|
||||
# users of cloudpickle rely on this old behavior for unknown reasons.
|
||||
name = getattr(obj, '__name__', None)
|
||||
|
||||
module_name = _whichmodule(obj, name)
|
||||
|
||||
if module_name is None:
|
||||
# In this case, obj.__module__ is None AND obj was not found in any
|
||||
# imported module. obj is thus treated as dynamic.
|
||||
return None
|
||||
|
||||
if module_name == "__main__":
|
||||
return None
|
||||
|
||||
# Note: if module_name is in sys.modules, the corresponding module is
|
||||
# assumed importable at unpickling time. See #357
|
||||
module = sys.modules.get(module_name, None)
|
||||
if module is None:
|
||||
# The main reason why obj's module would not be imported is that this
|
||||
# module has been dynamically created, using for example
|
||||
# types.ModuleType. The other possibility is that module was removed
|
||||
# from sys.modules after obj was created/imported. But this case is not
|
||||
# supported, as the standard pickle does not support it either.
|
||||
return None
|
||||
|
||||
try:
|
||||
obj2, parent = _getattribute(module, name)
|
||||
except AttributeError:
|
||||
# obj was not found inside the module it points to
|
||||
return None
|
||||
if obj2 is not obj:
|
||||
return None
|
||||
return module, name
|
||||
|
||||
|
||||
def _extract_code_globals(co):
|
||||
"""
|
||||
Find all globals names read or written to by codeblock co
|
||||
"""
|
||||
out_names = _extract_code_globals_cache.get(co)
|
||||
if out_names is None:
|
||||
names = co.co_names
|
||||
out_names = {names[oparg] for _, oparg in _walk_global_ops(co)}
|
||||
|
||||
# Declaring a function inside another one using the "def ..."
|
||||
# syntax generates a constant code object corresonding to the one
|
||||
# of the nested function's As the nested function may itself need
|
||||
# global variables, we need to introspect its code, extract its
|
||||
# globals, (look for code object in it's co_consts attribute..) and
|
||||
# add the result to code_globals
|
||||
if co.co_consts:
|
||||
for const in co.co_consts:
|
||||
if isinstance(const, types.CodeType):
|
||||
out_names |= _extract_code_globals(const)
|
||||
|
||||
_extract_code_globals_cache[co] = out_names
|
||||
|
||||
return out_names
|
||||
|
||||
|
||||
def _find_imported_submodules(code, top_level_dependencies):
|
||||
"""
|
||||
Find currently imported submodules used by a function.
|
||||
|
||||
Submodules used by a function need to be detected and referenced for the
|
||||
function to work correctly at depickling time. Because submodules can be
|
||||
referenced as attribute of their parent package (``package.submodule``), we
|
||||
need a special introspection technique that does not rely on GLOBAL-related
|
||||
opcodes to find references of them in a code object.
|
||||
|
||||
Example:
|
||||
```
|
||||
import concurrent.futures
|
||||
import cloudpickle
|
||||
def func():
|
||||
x = concurrent.futures.ThreadPoolExecutor
|
||||
if __name__ == '__main__':
|
||||
cloudpickle.dumps(func)
|
||||
```
|
||||
The globals extracted by cloudpickle in the function's state include the
|
||||
concurrent package, but not its submodule (here, concurrent.futures), which
|
||||
is the module used by func. Find_imported_submodules will detect the usage
|
||||
of concurrent.futures. Saving this module alongside with func will ensure
|
||||
that calling func once depickled does not fail due to concurrent.futures
|
||||
not being imported
|
||||
"""
|
||||
|
||||
subimports = []
|
||||
# check if any known dependency is an imported package
|
||||
for x in top_level_dependencies:
|
||||
if (isinstance(x, types.ModuleType) and
|
||||
hasattr(x, '__package__') and x.__package__):
|
||||
# check if the package has any currently loaded sub-imports
|
||||
prefix = x.__name__ + '.'
|
||||
# A concurrent thread could mutate sys.modules,
|
||||
# make sure we iterate over a copy to avoid exceptions
|
||||
for name in list(sys.modules):
|
||||
# Older versions of pytest will add a "None" module to
|
||||
# sys.modules.
|
||||
if name is not None and name.startswith(prefix):
|
||||
# check whether the function can address the sub-module
|
||||
tokens = set(name[len(prefix):].split('.'))
|
||||
if not tokens - set(code.co_names):
|
||||
subimports.append(sys.modules[name])
|
||||
return subimports
|
||||
|
||||
|
||||
def cell_set(cell, value):
|
||||
"""Set the value of a closure cell.
|
||||
|
||||
The point of this function is to set the cell_contents attribute of a cell
|
||||
after its creation. This operation is necessary in case the cell contains a
|
||||
reference to the function the cell belongs to, as when calling the
|
||||
function's constructor
|
||||
``f = types.FunctionType(code, globals, name, argdefs, closure)``,
|
||||
closure will not be able to contain the yet-to-be-created f.
|
||||
|
||||
In Python3.7, cell_contents is writeable, so setting the contents of a cell
|
||||
can be done simply using
|
||||
>>> cell.cell_contents = value
|
||||
|
||||
In earlier Python3 versions, the cell_contents attribute of a cell is read
|
||||
only, but this limitation can be worked around by leveraging the Python 3
|
||||
``nonlocal`` keyword.
|
||||
|
||||
In Python2 however, this attribute is read only, and there is no
|
||||
``nonlocal`` keyword. For this reason, we need to come up with more
|
||||
complicated hacks to set this attribute.
|
||||
|
||||
The chosen approach is to create a function with a STORE_DEREF opcode,
|
||||
which sets the content of a closure variable. Typically:
|
||||
|
||||
>>> def inner(value):
|
||||
... lambda: cell # the lambda makes cell a closure
|
||||
... cell = value # cell is a closure, so this triggers a STORE_DEREF
|
||||
|
||||
(Note that in Python2, A STORE_DEREF can never be triggered from an inner
|
||||
function. The function g for example here
|
||||
>>> def f(var):
|
||||
... def g():
|
||||
... var += 1
|
||||
... return g
|
||||
|
||||
will not modify the closure variable ``var```inplace, but instead try to
|
||||
load a local variable var and increment it. As g does not assign the local
|
||||
variable ``var`` any initial value, calling f(1)() will fail at runtime.)
|
||||
|
||||
Our objective is to set the value of a given cell ``cell``. So we need to
|
||||
somewhat reference our ``cell`` object into the ``inner`` function so that
|
||||
this object (and not the smoke cell of the lambda function) gets affected
|
||||
by the STORE_DEREF operation.
|
||||
|
||||
In inner, ``cell`` is referenced as a cell variable (an enclosing variable
|
||||
that is referenced by the inner function). If we create a new function
|
||||
cell_set with the exact same code as ``inner``, but with ``cell`` marked as
|
||||
a free variable instead, the STORE_DEREF will be applied on its closure -
|
||||
``cell``, which we can specify explicitly during construction! The new
|
||||
cell_set variable thus actually sets the contents of a specified cell!
|
||||
|
||||
Note: we do not make use of the ``nonlocal`` keyword to set the contents of
|
||||
a cell in early python3 versions to limit possible syntax errors in case
|
||||
test and checker libraries decide to parse the whole file.
|
||||
"""
|
||||
|
||||
if sys.version_info[:2] >= (3, 7): # pragma: no branch
|
||||
cell.cell_contents = value
|
||||
else:
|
||||
_cell_set = types.FunctionType(
|
||||
_cell_set_template_code, {}, '_cell_set', (), (cell,),)
|
||||
_cell_set(value)
|
||||
|
||||
|
||||
def _make_cell_set_template_code():
|
||||
def _cell_set_factory(value):
|
||||
lambda: cell
|
||||
cell = value
|
||||
|
||||
co = _cell_set_factory.__code__
|
||||
|
||||
_cell_set_template_code = types.CodeType(
|
||||
co.co_argcount,
|
||||
co.co_kwonlyargcount, # Python 3 only argument
|
||||
co.co_nlocals,
|
||||
co.co_stacksize,
|
||||
co.co_flags,
|
||||
co.co_code,
|
||||
co.co_consts,
|
||||
co.co_names,
|
||||
co.co_varnames,
|
||||
co.co_filename,
|
||||
co.co_name,
|
||||
co.co_firstlineno,
|
||||
co.co_lnotab,
|
||||
co.co_cellvars, # co_freevars is initialized with co_cellvars
|
||||
(), # co_cellvars is made empty
|
||||
)
|
||||
return _cell_set_template_code
|
||||
|
||||
|
||||
if sys.version_info[:2] < (3, 7):
|
||||
_cell_set_template_code = _make_cell_set_template_code()
|
||||
|
||||
# relevant opcodes
|
||||
STORE_GLOBAL = opcode.opmap['STORE_GLOBAL']
|
||||
DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL']
|
||||
LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL']
|
||||
GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL)
|
||||
HAVE_ARGUMENT = dis.HAVE_ARGUMENT
|
||||
EXTENDED_ARG = dis.EXTENDED_ARG
|
||||
|
||||
|
||||
_BUILTIN_TYPE_NAMES = {}
|
||||
for k, v in types.__dict__.items():
|
||||
if type(v) is type:
|
||||
_BUILTIN_TYPE_NAMES[v] = k
|
||||
|
||||
|
||||
def _builtin_type(name):
|
||||
if name == "ClassType": # pragma: no cover
|
||||
# Backward compat to load pickle files generated with cloudpickle
|
||||
# < 1.3 even if loading pickle files from older versions is not
|
||||
# officially supported.
|
||||
return type
|
||||
return getattr(types, name)
|
||||
|
||||
|
||||
def _walk_global_ops(code):
|
||||
"""
|
||||
Yield (opcode, argument number) tuples for all
|
||||
global-referencing instructions in *code*.
|
||||
"""
|
||||
for instr in dis.get_instructions(code):
|
||||
op = instr.opcode
|
||||
if op in GLOBAL_OPS:
|
||||
yield op, instr.arg
|
||||
|
||||
|
||||
def _extract_class_dict(cls):
|
||||
"""Retrieve a copy of the dict of a class without the inherited methods"""
|
||||
clsdict = dict(cls.__dict__) # copy dict proxy to a dict
|
||||
if len(cls.__bases__) == 1:
|
||||
inherited_dict = cls.__bases__[0].__dict__
|
||||
else:
|
||||
inherited_dict = {}
|
||||
for base in reversed(cls.__bases__):
|
||||
inherited_dict.update(base.__dict__)
|
||||
to_remove = []
|
||||
for name, value in clsdict.items():
|
||||
try:
|
||||
base_value = inherited_dict[name]
|
||||
if value is base_value:
|
||||
to_remove.append(name)
|
||||
except KeyError:
|
||||
pass
|
||||
for name in to_remove:
|
||||
clsdict.pop(name)
|
||||
return clsdict
|
||||
|
||||
|
||||
if sys.version_info[:2] < (3, 7): # pragma: no branch
|
||||
def _is_parametrized_type_hint(obj):
|
||||
# This is very cheap but might generate false positives.
|
||||
# general typing Constructs
|
||||
is_typing = getattr(obj, '__origin__', None) is not None
|
||||
|
||||
# typing_extensions.Literal
|
||||
is_litteral = getattr(obj, '__values__', None) is not None
|
||||
|
||||
# typing_extensions.Final
|
||||
is_final = getattr(obj, '__type__', None) is not None
|
||||
|
||||
# typing.Union/Tuple for old Python 3.5
|
||||
is_union = getattr(obj, '__union_params__', None) is not None
|
||||
is_tuple = getattr(obj, '__tuple_params__', None) is not None
|
||||
is_callable = (
|
||||
getattr(obj, '__result__', None) is not None and
|
||||
getattr(obj, '__args__', None) is not None
|
||||
)
|
||||
return any((is_typing, is_litteral, is_final, is_union, is_tuple,
|
||||
is_callable))
|
||||
|
||||
def _create_parametrized_type_hint(origin, args):
|
||||
return origin[args]
|
||||
else:
|
||||
_is_parametrized_type_hint = None
|
||||
_create_parametrized_type_hint = None
|
||||
|
||||
|
||||
def parametrized_type_hint_getinitargs(obj):
|
||||
# The distorted type check sematic for typing construct becomes:
|
||||
# ``type(obj) is type(TypeHint)``, which means "obj is a
|
||||
# parametrized TypeHint"
|
||||
if type(obj) is type(Literal): # pragma: no branch
|
||||
initargs = (Literal, obj.__values__)
|
||||
elif type(obj) is type(Final): # pragma: no branch
|
||||
initargs = (Final, obj.__type__)
|
||||
elif type(obj) is type(ClassVar):
|
||||
initargs = (ClassVar, obj.__type__)
|
||||
elif type(obj) is type(Generic):
|
||||
parameters = obj.__parameters__
|
||||
if len(obj.__parameters__) > 0:
|
||||
# in early Python 3.5, __parameters__ was sometimes
|
||||
# preferred to __args__
|
||||
initargs = (obj.__origin__, parameters)
|
||||
|
||||
else:
|
||||
initargs = (obj.__origin__, obj.__args__)
|
||||
elif type(obj) is type(Union):
|
||||
if sys.version_info < (3, 5, 3): # pragma: no cover
|
||||
initargs = (Union, obj.__union_params__)
|
||||
else:
|
||||
initargs = (Union, obj.__args__)
|
||||
elif type(obj) is type(Tuple):
|
||||
if sys.version_info < (3, 5, 3): # pragma: no cover
|
||||
initargs = (Tuple, obj.__tuple_params__)
|
||||
else:
|
||||
initargs = (Tuple, obj.__args__)
|
||||
elif type(obj) is type(Callable):
|
||||
if sys.version_info < (3, 5, 3): # pragma: no cover
|
||||
args = obj.__args__
|
||||
result = obj.__result__
|
||||
if args != Ellipsis:
|
||||
if isinstance(args, tuple):
|
||||
args = list(args)
|
||||
else:
|
||||
args = [args]
|
||||
else:
|
||||
(*args, result) = obj.__args__
|
||||
if len(args) == 1 and args[0] is Ellipsis:
|
||||
args = Ellipsis
|
||||
else:
|
||||
args = list(args)
|
||||
initargs = (Callable, (args, result))
|
||||
else: # pragma: no cover
|
||||
raise pickle.PicklingError(
|
||||
"Cloudpickle Error: Unknown type {}".format(type(obj))
|
||||
)
|
||||
return initargs
|
||||
|
||||
|
||||
# Tornado support
|
||||
|
||||
def is_tornado_coroutine(func):
|
||||
"""
|
||||
Return whether *func* is a Tornado coroutine function.
|
||||
Running coroutines are not supported.
|
||||
"""
|
||||
if 'tornado.gen' not in sys.modules:
|
||||
return False
|
||||
gen = sys.modules['tornado.gen']
|
||||
if not hasattr(gen, "is_coroutine_function"):
|
||||
# Tornado version is too old
|
||||
return False
|
||||
return gen.is_coroutine_function(func)
|
||||
|
||||
|
||||
def _rebuild_tornado_coroutine(func):
|
||||
from tornado import gen
|
||||
return gen.coroutine(func)
|
||||
|
||||
|
||||
# including pickles unloading functions in this namespace
|
||||
load = pickle.load
|
||||
loads = pickle.loads
|
||||
|
||||
|
||||
# hack for __import__ not working as desired
|
||||
def subimport(name):
|
||||
__import__(name)
|
||||
return sys.modules[name]
|
||||
|
||||
|
||||
def dynamic_subimport(name, vars):
|
||||
mod = types.ModuleType(name)
|
||||
mod.__dict__.update(vars)
|
||||
mod.__dict__['__builtins__'] = builtins.__dict__
|
||||
return mod
|
||||
|
||||
|
||||
def _gen_ellipsis():
|
||||
return Ellipsis
|
||||
|
||||
|
||||
def _gen_not_implemented():
|
||||
return NotImplemented
|
||||
|
||||
|
||||
def _get_cell_contents(cell):
|
||||
try:
|
||||
return cell.cell_contents
|
||||
except ValueError:
|
||||
# sentinel used by ``_fill_function`` which will leave the cell empty
|
||||
return _empty_cell_value
|
||||
|
||||
|
||||
def instance(cls):
|
||||
"""Create a new instance of a class.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cls : type
|
||||
The class to create an instance of.
|
||||
|
||||
Returns
|
||||
-------
|
||||
instance : cls
|
||||
A new instance of ``cls``.
|
||||
"""
|
||||
return cls()
|
||||
|
||||
|
||||
@instance
|
||||
class _empty_cell_value(object):
|
||||
"""sentinel for empty closures
|
||||
"""
|
||||
@classmethod
|
||||
def __reduce__(cls):
|
||||
return cls.__name__
|
||||
|
||||
|
||||
def _fill_function(*args):
|
||||
"""Fills in the rest of function data into the skeleton function object
|
||||
|
||||
The skeleton itself is create by _make_skel_func().
|
||||
"""
|
||||
if len(args) == 2:
|
||||
func = args[0]
|
||||
state = args[1]
|
||||
elif len(args) == 5:
|
||||
# Backwards compat for cloudpickle v0.4.0, after which the `module`
|
||||
# argument was introduced
|
||||
func = args[0]
|
||||
keys = ['globals', 'defaults', 'dict', 'closure_values']
|
||||
state = dict(zip(keys, args[1:]))
|
||||
elif len(args) == 6:
|
||||
# Backwards compat for cloudpickle v0.4.1, after which the function
|
||||
# state was passed as a dict to the _fill_function it-self.
|
||||
func = args[0]
|
||||
keys = ['globals', 'defaults', 'dict', 'module', 'closure_values']
|
||||
state = dict(zip(keys, args[1:]))
|
||||
else:
|
||||
raise ValueError('Unexpected _fill_value arguments: %r' % (args,))
|
||||
|
||||
# - At pickling time, any dynamic global variable used by func is
|
||||
# serialized by value (in state['globals']).
|
||||
# - At unpickling time, func's __globals__ attribute is initialized by
|
||||
# first retrieving an empty isolated namespace that will be shared
|
||||
# with other functions pickled from the same original module
|
||||
# by the same CloudPickler instance and then updated with the
|
||||
# content of state['globals'] to populate the shared isolated
|
||||
# namespace with all the global variables that are specifically
|
||||
# referenced for this function.
|
||||
func.__globals__.update(state['globals'])
|
||||
|
||||
func.__defaults__ = state['defaults']
|
||||
func.__dict__ = state['dict']
|
||||
if 'annotations' in state:
|
||||
func.__annotations__ = state['annotations']
|
||||
if 'doc' in state:
|
||||
func.__doc__ = state['doc']
|
||||
if 'name' in state:
|
||||
func.__name__ = state['name']
|
||||
if 'module' in state:
|
||||
func.__module__ = state['module']
|
||||
if 'qualname' in state:
|
||||
func.__qualname__ = state['qualname']
|
||||
if 'kwdefaults' in state:
|
||||
func.__kwdefaults__ = state['kwdefaults']
|
||||
# _cloudpickle_subimports is a set of submodules that must be loaded for
|
||||
# the pickled function to work correctly at unpickling time. Now that these
|
||||
# submodules are depickled (hence imported), they can be removed from the
|
||||
# object's state (the object state only served as a reference holder to
|
||||
# these submodules)
|
||||
if '_cloudpickle_submodules' in state:
|
||||
state.pop('_cloudpickle_submodules')
|
||||
|
||||
cells = func.__closure__
|
||||
if cells is not None:
|
||||
for cell, value in zip(cells, state['closure_values']):
|
||||
if value is not _empty_cell_value:
|
||||
cell_set(cell, value)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
def _make_empty_cell():
|
||||
if False:
|
||||
# trick the compiler into creating an empty cell in our lambda
|
||||
cell = None
|
||||
raise AssertionError('this route should not be executed')
|
||||
|
||||
return (lambda: cell).__closure__[0]
|
||||
|
||||
|
||||
def _make_cell(value=_empty_cell_value):
|
||||
cell = _make_empty_cell()
|
||||
if value is not _empty_cell_value:
|
||||
cell_set(cell, value)
|
||||
return cell
|
||||
|
||||
|
||||
def _make_skel_func(code, cell_count, base_globals=None):
|
||||
""" Creates a skeleton function object that contains just the provided
|
||||
code and the correct number of cells in func_closure. All other
|
||||
func attributes (e.g. func_globals) are empty.
|
||||
"""
|
||||
# This function is deprecated and should be removed in cloudpickle 1.7
|
||||
warnings.warn(
|
||||
"A pickle file created using an old (<=1.4.1) version of cloudpicke "
|
||||
"is currently being loaded. This is not supported by cloudpickle and "
|
||||
"will break in cloudpickle 1.7", category=UserWarning
|
||||
)
|
||||
# This is backward-compatibility code: for cloudpickle versions between
|
||||
# 0.5.4 and 0.7, base_globals could be a string or None. base_globals
|
||||
# should now always be a dictionary.
|
||||
if base_globals is None or isinstance(base_globals, str):
|
||||
base_globals = {}
|
||||
|
||||
base_globals['__builtins__'] = __builtins__
|
||||
|
||||
closure = (
|
||||
tuple(_make_empty_cell() for _ in range(cell_count))
|
||||
if cell_count >= 0 else
|
||||
None
|
||||
)
|
||||
return types.FunctionType(code, base_globals, None, None, closure)
|
||||
|
||||
|
||||
def _make_skeleton_class(type_constructor, name, bases, type_kwargs,
|
||||
class_tracker_id, extra):
|
||||
"""Build dynamic class with an empty __dict__ to be filled once memoized
|
||||
|
||||
If class_tracker_id is not None, try to lookup an existing class definition
|
||||
matching that id. If none is found, track a newly reconstructed class
|
||||
definition under that id so that other instances stemming from the same
|
||||
class id will also reuse this class definition.
|
||||
|
||||
The "extra" variable is meant to be a dict (or None) that can be used for
|
||||
forward compatibility shall the need arise.
|
||||
"""
|
||||
skeleton_class = types.new_class(
|
||||
name, bases, {'metaclass': type_constructor},
|
||||
lambda ns: ns.update(type_kwargs)
|
||||
)
|
||||
return _lookup_class_or_track(class_tracker_id, skeleton_class)
|
||||
|
||||
|
||||
def _rehydrate_skeleton_class(skeleton_class, class_dict):
|
||||
"""Put attributes from `class_dict` back on `skeleton_class`.
|
||||
|
||||
See CloudPickler.save_dynamic_class for more info.
|
||||
"""
|
||||
registry = None
|
||||
for attrname, attr in class_dict.items():
|
||||
if attrname == "_abc_impl":
|
||||
registry = attr
|
||||
else:
|
||||
setattr(skeleton_class, attrname, attr)
|
||||
if registry is not None:
|
||||
for subclass in registry:
|
||||
skeleton_class.register(subclass)
|
||||
|
||||
return skeleton_class
|
||||
|
||||
|
||||
def _make_skeleton_enum(bases, name, qualname, members, module,
|
||||
class_tracker_id, extra):
|
||||
"""Build dynamic enum with an empty __dict__ to be filled once memoized
|
||||
|
||||
The creation of the enum class is inspired by the code of
|
||||
EnumMeta._create_.
|
||||
|
||||
If class_tracker_id is not None, try to lookup an existing enum definition
|
||||
matching that id. If none is found, track a newly reconstructed enum
|
||||
definition under that id so that other instances stemming from the same
|
||||
class id will also reuse this enum definition.
|
||||
|
||||
The "extra" variable is meant to be a dict (or None) that can be used for
|
||||
forward compatibility shall the need arise.
|
||||
"""
|
||||
# enums always inherit from their base Enum class at the last position in
|
||||
# the list of base classes:
|
||||
enum_base = bases[-1]
|
||||
metacls = enum_base.__class__
|
||||
classdict = metacls.__prepare__(name, bases)
|
||||
|
||||
for member_name, member_value in members.items():
|
||||
classdict[member_name] = member_value
|
||||
enum_class = metacls.__new__(metacls, name, bases, classdict)
|
||||
enum_class.__module__ = module
|
||||
enum_class.__qualname__ = qualname
|
||||
|
||||
return _lookup_class_or_track(class_tracker_id, enum_class)
|
||||
|
||||
|
||||
def _make_typevar(name, bound, constraints, covariant, contravariant,
|
||||
class_tracker_id):
|
||||
tv = typing.TypeVar(
|
||||
name, *constraints, bound=bound,
|
||||
covariant=covariant, contravariant=contravariant
|
||||
)
|
||||
if class_tracker_id is not None:
|
||||
return _lookup_class_or_track(class_tracker_id, tv)
|
||||
else: # pragma: nocover
|
||||
# Only for Python 3.5.3 compat.
|
||||
return tv
|
||||
|
||||
|
||||
def _decompose_typevar(obj):
|
||||
try:
|
||||
class_tracker_id = _get_or_create_tracker_id(obj)
|
||||
except TypeError: # pragma: nocover
|
||||
# TypeVar instances are not weakref-able in Python 3.5.3
|
||||
class_tracker_id = None
|
||||
return (
|
||||
obj.__name__, obj.__bound__, obj.__constraints__,
|
||||
obj.__covariant__, obj.__contravariant__,
|
||||
class_tracker_id,
|
||||
)
|
||||
|
||||
|
||||
def _typevar_reduce(obj):
|
||||
# TypeVar instances have no __qualname__ hence we pass the name explicitly.
|
||||
module_and_name = _lookup_module_and_qualname(obj, name=obj.__name__)
|
||||
if module_and_name is None:
|
||||
return (_make_typevar, _decompose_typevar(obj))
|
||||
return (getattr, module_and_name)
|
||||
|
||||
|
||||
def _get_bases(typ):
|
||||
if hasattr(typ, '__orig_bases__'):
|
||||
# For generic types (see PEP 560)
|
||||
bases_attr = '__orig_bases__'
|
||||
else:
|
||||
# For regular class objects
|
||||
bases_attr = '__bases__'
|
||||
return getattr(typ, bases_attr)
|
||||
|
||||
|
||||
def _make_dict_keys(obj):
|
||||
return dict.fromkeys(obj).keys()
|
||||
|
||||
|
||||
def _make_dict_values(obj):
|
||||
return {i: _ for i, _ in enumerate(obj)}.values()
|
||||
|
||||
|
||||
def _make_dict_items(obj):
|
||||
return obj.items()
|
Loading…
Add table
Add a link
Reference in a new issue