Uploaded Test files

This commit is contained in:
Batuhan Berk Başoğlu 2020-11-12 11:05:57 -05:00
parent f584ad9d97
commit 2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions

View file

@ -0,0 +1,6 @@
from jedi.inference.value.module import ModuleValue
from jedi.inference.value.klass import ClassValue
from jedi.inference.value.function import FunctionValue, \
MethodValue
from jedi.inference.value.instance import AnonymousInstance, BoundMethod, \
CompiledInstance, AbstractInstanceValue, TreeInstance

View file

@ -0,0 +1,21 @@
'''
Decorators are not really values, however we need some wrappers to improve
docstrings and other things around decorators.
'''
from jedi.inference.base_value import ValueWrapper, ValueSet
class Decoratee(ValueWrapper):
def __init__(self, wrapped_value, original_value):
super(Decoratee, self).__init__(wrapped_value)
self._original_value = original_value
def py__doc__(self):
return self._original_value.py__doc__()
def py__get__(self, instance, class_value):
return ValueSet(
Decoratee(v, self._original_value)
for v in self._wrapped_value.py__get__(instance, class_value)
)

View file

@ -0,0 +1,204 @@
"""
A module to deal with stuff like `list.append` and `set.add`.
Array modifications
*******************
If the content of an array (``set``/``list``) is requested somewhere, the
current module will be checked for appearances of ``arr.append``,
``arr.insert``, etc. If the ``arr`` name points to an actual array, the
content will be added
This can be really cpu intensive, as you can imagine. Because |jedi| has to
follow **every** ``append`` and check whether it's the right array. However this
works pretty good, because in *slow* cases, the recursion detector and other
settings will stop this process.
It is important to note that:
1. Array modfications work only in the current module.
2. Jedi only checks Array additions; ``list.pop``, etc are ignored.
"""
from jedi import debug
from jedi import settings
from jedi.inference import recursion
from jedi.inference.base_value import ValueSet, NO_VALUES, HelperValueMixin, \
ValueWrapper
from jedi.inference.lazy_value import LazyKnownValues
from jedi.inference.helpers import infer_call_of_leaf
from jedi.inference.cache import inference_state_method_cache
_sentinel = object()
def check_array_additions(context, sequence):
""" Just a mapper function for the internal _internal_check_array_additions """
if sequence.array_type not in ('list', 'set'):
# TODO also check for dict updates
return NO_VALUES
return _internal_check_array_additions(context, sequence)
@inference_state_method_cache(default=NO_VALUES)
@debug.increase_indent
def _internal_check_array_additions(context, sequence):
"""
Checks if a `Array` has "add" (append, insert, extend) statements:
>>> a = [""]
>>> a.append(1)
"""
from jedi.inference import arguments
debug.dbg('Dynamic array search for %s' % sequence, color='MAGENTA')
module_context = context.get_root_context()
if not settings.dynamic_array_additions or module_context.is_compiled():
debug.dbg('Dynamic array search aborted.', color='MAGENTA')
return NO_VALUES
def find_additions(context, arglist, add_name):
params = list(arguments.TreeArguments(context.inference_state, context, arglist).unpack())
result = set()
if add_name in ['insert']:
params = params[1:]
if add_name in ['append', 'add', 'insert']:
for key, lazy_value in params:
result.add(lazy_value)
elif add_name in ['extend', 'update']:
for key, lazy_value in params:
result |= set(lazy_value.infer().iterate())
return result
temp_param_add, settings.dynamic_params_for_other_modules = \
settings.dynamic_params_for_other_modules, False
is_list = sequence.name.string_name == 'list'
search_names = (['append', 'extend', 'insert'] if is_list else ['add', 'update'])
added_types = set()
for add_name in search_names:
try:
possible_names = module_context.tree_node.get_used_names()[add_name]
except KeyError:
continue
else:
for name in possible_names:
value_node = context.tree_node
if not (value_node.start_pos < name.start_pos < value_node.end_pos):
continue
trailer = name.parent
power = trailer.parent
trailer_pos = power.children.index(trailer)
try:
execution_trailer = power.children[trailer_pos + 1]
except IndexError:
continue
else:
if execution_trailer.type != 'trailer' \
or execution_trailer.children[0] != '(' \
or execution_trailer.children[1] == ')':
continue
random_context = context.create_context(name)
with recursion.execution_allowed(context.inference_state, power) as allowed:
if allowed:
found = infer_call_of_leaf(
random_context,
name,
cut_own_trailer=True
)
if sequence in found:
# The arrays match. Now add the results
added_types |= find_additions(
random_context,
execution_trailer.children[1],
add_name
)
# reset settings
settings.dynamic_params_for_other_modules = temp_param_add
debug.dbg('Dynamic array result %s', added_types, color='MAGENTA')
return added_types
def get_dynamic_array_instance(instance, arguments):
"""Used for set() and list() instances."""
ai = _DynamicArrayAdditions(instance, arguments)
from jedi.inference import arguments
return arguments.ValuesArguments([ValueSet([ai])])
class _DynamicArrayAdditions(HelperValueMixin):
"""
Used for the usage of set() and list().
This is definitely a hack, but a good one :-)
It makes it possible to use set/list conversions.
This is not a proper context, because it doesn't have to be. It's not used
in the wild, it's just used within typeshed as an argument to `__init__`
for set/list and never used in any other place.
"""
def __init__(self, instance, arguments):
self._instance = instance
self._arguments = arguments
def py__class__(self):
tuple_, = self._instance.inference_state.builtins_module.py__getattribute__('tuple')
return tuple_
def py__iter__(self, contextualized_node=None):
arguments = self._arguments
try:
_, lazy_value = next(arguments.unpack())
except StopIteration:
pass
else:
for lazy in lazy_value.infer().iterate():
yield lazy
from jedi.inference.arguments import TreeArguments
if isinstance(arguments, TreeArguments):
additions = _internal_check_array_additions(arguments.context, self._instance)
for addition in additions:
yield addition
def iterate(self, contextualized_node=None, is_async=False):
return self.py__iter__(contextualized_node)
class _Modification(ValueWrapper):
def __init__(self, wrapped_value, assigned_values, contextualized_key):
super(_Modification, self).__init__(wrapped_value)
self._assigned_values = assigned_values
self._contextualized_key = contextualized_key
def py__getitem__(self, *args, **kwargs):
return self._wrapped_value.py__getitem__(*args, **kwargs) | self._assigned_values
def py__simple_getitem__(self, index):
actual = [
v.get_safe_value(_sentinel)
for v in self._contextualized_key.infer()
]
if index in actual:
return self._assigned_values
return self._wrapped_value.py__simple_getitem__(index)
class DictModification(_Modification):
def py__iter__(self, contextualized_node=None):
for lazy_context in self._wrapped_value.py__iter__(contextualized_node):
yield lazy_context
yield self._contextualized_key
def get_key_values(self):
return self._wrapped_value.get_key_values() | self._contextualized_key.infer()
class ListModification(_Modification):
def py__iter__(self, contextualized_node=None):
for lazy_context in self._wrapped_value.py__iter__(contextualized_node):
yield lazy_context
yield LazyKnownValues(self._assigned_values)

View file

@ -0,0 +1,470 @@
from parso.python import tree
from jedi._compatibility import use_metaclass
from jedi import debug
from jedi.inference.cache import inference_state_method_cache, CachedMetaClass
from jedi.inference import compiled
from jedi.inference import recursion
from jedi.inference import docstrings
from jedi.inference import flow_analysis
from jedi.inference.signature import TreeSignature
from jedi.inference.filters import ParserTreeFilter, FunctionExecutionFilter, \
AnonymousFunctionExecutionFilter
from jedi.inference.names import ValueName, AbstractNameDefinition, \
AnonymousParamName, ParamName, NameWrapper
from jedi.inference.base_value import ContextualizedNode, NO_VALUES, \
ValueSet, TreeValue, ValueWrapper
from jedi.inference.lazy_value import LazyKnownValues, LazyKnownValue, \
LazyTreeValue
from jedi.inference.context import ValueContext, TreeContextMixin
from jedi.inference.value import iterable
from jedi import parser_utils
from jedi.inference.parser_cache import get_yield_exprs
from jedi.inference.helpers import values_from_qualified_names
from jedi.inference.gradual.generics import TupleGenericManager
class LambdaName(AbstractNameDefinition):
string_name = '<lambda>'
api_type = u'function'
def __init__(self, lambda_value):
self._lambda_value = lambda_value
self.parent_context = lambda_value.parent_context
@property
def start_pos(self):
return self._lambda_value.tree_node.start_pos
def infer(self):
return ValueSet([self._lambda_value])
class FunctionAndClassBase(TreeValue):
def get_qualified_names(self):
if self.parent_context.is_class():
n = self.parent_context.get_qualified_names()
if n is None:
# This means that the parent class lives within a function.
return None
return n + (self.py__name__(),)
elif self.parent_context.is_module():
return (self.py__name__(),)
else:
return None
class FunctionMixin(object):
api_type = u'function'
def get_filters(self, origin_scope=None):
cls = self.py__class__()
for instance in cls.execute_with_values():
for filter in instance.get_filters(origin_scope=origin_scope):
yield filter
def py__get__(self, instance, class_value):
from jedi.inference.value.instance import BoundMethod
if instance is None:
# Calling the Foo.bar results in the original bar function.
return ValueSet([self])
return ValueSet([BoundMethod(instance, class_value.as_context(), self)])
def get_param_names(self):
return [AnonymousParamName(self, param.name)
for param in self.tree_node.get_params()]
@property
def name(self):
if self.tree_node.type == 'lambdef':
return LambdaName(self)
return ValueName(self, self.tree_node.name)
def is_function(self):
return True
def py__name__(self):
return self.name.string_name
def get_type_hint(self, add_class_info=True):
return_annotation = self.tree_node.annotation
if return_annotation is None:
def param_name_to_str(n):
s = n.string_name
annotation = n.infer().get_type_hint()
if annotation is not None:
s += ': ' + annotation
if n.default_node is not None:
s += '=' + n.default_node.get_code(include_prefix=False)
return s
function_execution = self.as_context()
result = function_execution.infer()
return_hint = result.get_type_hint()
body = self.py__name__() + '(%s)' % ', '.join([
param_name_to_str(n)
for n in function_execution.get_param_names()
])
if return_hint is None:
return body
else:
return_hint = return_annotation.get_code(include_prefix=False)
body = self.py__name__() + self.tree_node.children[2].get_code(include_prefix=False)
return body + ' -> ' + return_hint
def py__call__(self, arguments):
function_execution = self.as_context(arguments)
return function_execution.infer()
def _as_context(self, arguments=None):
if arguments is None:
return AnonymousFunctionExecution(self)
return FunctionExecutionContext(self, arguments)
def get_signatures(self):
return [TreeSignature(f) for f in self.get_signature_functions()]
class FunctionValue(use_metaclass(CachedMetaClass, FunctionMixin, FunctionAndClassBase)):
@classmethod
def from_context(cls, context, tree_node):
def create(tree_node):
if context.is_class():
return MethodValue(
context.inference_state,
context,
parent_context=parent_context,
tree_node=tree_node
)
else:
return cls(
context.inference_state,
parent_context=parent_context,
tree_node=tree_node
)
overloaded_funcs = list(_find_overload_functions(context, tree_node))
parent_context = context
while parent_context.is_class() or parent_context.is_instance():
parent_context = parent_context.parent_context
function = create(tree_node)
if overloaded_funcs:
return OverloadedFunctionValue(
function,
# Get them into the correct order: lower line first.
list(reversed([create(f) for f in overloaded_funcs]))
)
return function
def py__class__(self):
c, = values_from_qualified_names(self.inference_state, u'types', u'FunctionType')
return c
def get_default_param_context(self):
return self.parent_context
def get_signature_functions(self):
return [self]
class FunctionNameInClass(NameWrapper):
def __init__(self, class_context, name):
super(FunctionNameInClass, self).__init__(name)
self._class_context = class_context
def get_defining_qualified_value(self):
return self._class_context.get_value() # Might be None.
class MethodValue(FunctionValue):
def __init__(self, inference_state, class_context, *args, **kwargs):
super(MethodValue, self).__init__(inference_state, *args, **kwargs)
self.class_context = class_context
def get_default_param_context(self):
return self.class_context
def get_qualified_names(self):
# Need to implement this, because the parent value of a method
# value is not the class value but the module.
names = self.class_context.get_qualified_names()
if names is None:
return None
return names + (self.py__name__(),)
@property
def name(self):
return FunctionNameInClass(self.class_context, super(MethodValue, self).name)
class BaseFunctionExecutionContext(ValueContext, TreeContextMixin):
def infer_annotations(self):
raise NotImplementedError
@inference_state_method_cache(default=NO_VALUES)
@recursion.execution_recursion_decorator()
def get_return_values(self, check_yields=False):
funcdef = self.tree_node
if funcdef.type == 'lambdef':
return self.infer_node(funcdef.children[-1])
if check_yields:
value_set = NO_VALUES
returns = get_yield_exprs(self.inference_state, funcdef)
else:
value_set = self.infer_annotations()
if value_set:
# If there are annotations, prefer them over anything else.
# This will make it faster.
return value_set
value_set |= docstrings.infer_return_types(self._value)
returns = funcdef.iter_return_stmts()
for r in returns:
if check_yields:
value_set |= ValueSet.from_sets(
lazy_value.infer()
for lazy_value in self._get_yield_lazy_value(r)
)
else:
check = flow_analysis.reachability_check(self, funcdef, r)
if check is flow_analysis.UNREACHABLE:
debug.dbg('Return unreachable: %s', r)
else:
try:
children = r.children
except AttributeError:
ctx = compiled.builtin_from_name(self.inference_state, u'None')
value_set |= ValueSet([ctx])
else:
value_set |= self.infer_node(children[1])
if check is flow_analysis.REACHABLE:
debug.dbg('Return reachable: %s', r)
break
return value_set
def _get_yield_lazy_value(self, yield_expr):
if yield_expr.type == 'keyword':
# `yield` just yields None.
ctx = compiled.builtin_from_name(self.inference_state, u'None')
yield LazyKnownValue(ctx)
return
node = yield_expr.children[1]
if node.type == 'yield_arg': # It must be a yield from.
cn = ContextualizedNode(self, node.children[1])
for lazy_value in cn.infer().iterate(cn):
yield lazy_value
else:
yield LazyTreeValue(self, node)
@recursion.execution_recursion_decorator(default=iter([]))
def get_yield_lazy_values(self, is_async=False):
# TODO: if is_async, wrap yield statements in Awaitable/async_generator_asend
for_parents = [(y, tree.search_ancestor(y, 'for_stmt', 'funcdef',
'while_stmt', 'if_stmt'))
for y in get_yield_exprs(self.inference_state, self.tree_node)]
# Calculate if the yields are placed within the same for loop.
yields_order = []
last_for_stmt = None
for yield_, for_stmt in for_parents:
# For really simple for loops we can predict the order. Otherwise
# we just ignore it.
parent = for_stmt.parent
if parent.type == 'suite':
parent = parent.parent
if for_stmt.type == 'for_stmt' and parent == self.tree_node \
and parser_utils.for_stmt_defines_one_name(for_stmt): # Simplicity for now.
if for_stmt == last_for_stmt:
yields_order[-1][1].append(yield_)
else:
yields_order.append((for_stmt, [yield_]))
elif for_stmt == self.tree_node:
yields_order.append((None, [yield_]))
else:
types = self.get_return_values(check_yields=True)
if types:
yield LazyKnownValues(types, min=0, max=float('inf'))
return
last_for_stmt = for_stmt
for for_stmt, yields in yields_order:
if for_stmt is None:
# No for_stmt, just normal yields.
for yield_ in yields:
for result in self._get_yield_lazy_value(yield_):
yield result
else:
input_node = for_stmt.get_testlist()
cn = ContextualizedNode(self, input_node)
ordered = cn.infer().iterate(cn)
ordered = list(ordered)
for lazy_value in ordered:
dct = {str(for_stmt.children[1].value): lazy_value.infer()}
with self.predefine_names(for_stmt, dct):
for yield_in_same_for_stmt in yields:
for result in self._get_yield_lazy_value(yield_in_same_for_stmt):
yield result
def merge_yield_values(self, is_async=False):
return ValueSet.from_sets(
lazy_value.infer()
for lazy_value in self.get_yield_lazy_values()
)
def is_generator(self):
return bool(get_yield_exprs(self.inference_state, self.tree_node))
def infer(self):
"""
Created to be used by inheritance.
"""
inference_state = self.inference_state
is_coroutine = self.tree_node.parent.type in ('async_stmt', 'async_funcdef')
from jedi.inference.gradual.base import GenericClass
if is_coroutine:
if self.is_generator():
if inference_state.environment.version_info < (3, 6):
return NO_VALUES
async_generator_classes = inference_state.typing_module \
.py__getattribute__('AsyncGenerator')
yield_values = self.merge_yield_values(is_async=True)
# The contravariant doesn't seem to be defined.
generics = (yield_values.py__class__(), NO_VALUES)
return ValueSet(
# In Python 3.6 AsyncGenerator is still a class.
GenericClass(c, TupleGenericManager(generics))
for c in async_generator_classes
).execute_annotation()
else:
if inference_state.environment.version_info < (3, 5):
return NO_VALUES
async_classes = inference_state.typing_module.py__getattribute__('Coroutine')
return_values = self.get_return_values()
# Only the first generic is relevant.
generics = (return_values.py__class__(), NO_VALUES, NO_VALUES)
return ValueSet(
GenericClass(c, TupleGenericManager(generics)) for c in async_classes
).execute_annotation()
else:
if self.is_generator():
return ValueSet([iterable.Generator(inference_state, self)])
else:
return self.get_return_values()
class FunctionExecutionContext(BaseFunctionExecutionContext):
def __init__(self, function_value, arguments):
super(FunctionExecutionContext, self).__init__(function_value)
self._arguments = arguments
def get_filters(self, until_position=None, origin_scope=None):
yield FunctionExecutionFilter(
self, self._value,
until_position=until_position,
origin_scope=origin_scope,
arguments=self._arguments
)
def infer_annotations(self):
from jedi.inference.gradual.annotation import infer_return_types
return infer_return_types(self._value, self._arguments)
def get_param_names(self):
return [
ParamName(self._value, param.name, self._arguments)
for param in self._value.tree_node.get_params()
]
class AnonymousFunctionExecution(BaseFunctionExecutionContext):
def infer_annotations(self):
# I don't think inferring anonymous executions is a big thing.
# Anonymous contexts are mostly there for the user to work in. ~ dave
return NO_VALUES
def get_filters(self, until_position=None, origin_scope=None):
yield AnonymousFunctionExecutionFilter(
self, self._value,
until_position=until_position,
origin_scope=origin_scope,
)
def get_param_names(self):
return self._value.get_param_names()
class OverloadedFunctionValue(FunctionMixin, ValueWrapper):
def __init__(self, function, overloaded_functions):
super(OverloadedFunctionValue, self).__init__(function)
self._overloaded_functions = overloaded_functions
def py__call__(self, arguments):
debug.dbg("Execute overloaded function %s", self._wrapped_value, color='BLUE')
function_executions = []
for signature in self.get_signatures():
function_execution = signature.value.as_context(arguments)
function_executions.append(function_execution)
if signature.matches_signature(arguments):
return function_execution.infer()
if self.inference_state.is_analysis:
# In this case we want precision.
return NO_VALUES
return ValueSet.from_sets(fe.infer() for fe in function_executions)
def get_signature_functions(self):
return self._overloaded_functions
def get_type_hint(self, add_class_info=True):
return 'Union[%s]' % ', '.join(f.get_type_hint() for f in self._overloaded_functions)
def _find_overload_functions(context, tree_node):
def _is_overload_decorated(funcdef):
if funcdef.parent.type == 'decorated':
decorators = funcdef.parent.children[0]
if decorators.type == 'decorator':
decorators = [decorators]
else:
decorators = decorators.children
for decorator in decorators:
dotted_name = decorator.children[1]
if dotted_name.type == 'name' and dotted_name.value == 'overload':
# TODO check with values if it's the right overload
return True
return False
if tree_node.type == 'lambdef':
return
if _is_overload_decorated(tree_node):
yield tree_node
while True:
filter = ParserTreeFilter(
context,
until_position=tree_node.start_pos
)
names = filter.get(tree_node.name.value)
assert isinstance(names, list)
if not names:
break
found = False
for name in names:
funcdef = name.tree_name.parent
if funcdef.type == 'funcdef' and _is_overload_decorated(funcdef):
tree_node = funcdef
found = True
yield funcdef
if not found:
break

View file

@ -0,0 +1,625 @@
from abc import abstractproperty
from parso.python.tree import search_ancestor
from jedi import debug
from jedi import settings
from jedi.inference import compiled
from jedi.inference.compiled.value import CompiledValueFilter
from jedi.inference.helpers import values_from_qualified_names, is_big_annoying_library
from jedi.inference.filters import AbstractFilter, AnonymousFunctionExecutionFilter
from jedi.inference.names import ValueName, TreeNameDefinition, ParamName, \
NameWrapper
from jedi.inference.base_value import Value, NO_VALUES, ValueSet, \
iterator_to_value_set, ValueWrapper
from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.arguments import ValuesArguments, TreeArgumentsWrapper
from jedi.inference.value.function import \
FunctionValue, FunctionMixin, OverloadedFunctionValue, \
BaseFunctionExecutionContext, FunctionExecutionContext, FunctionNameInClass
from jedi.inference.value.klass import ClassFilter
from jedi.inference.value.dynamic_arrays import get_dynamic_array_instance
from jedi.parser_utils import function_is_staticmethod, function_is_classmethod
class InstanceExecutedParamName(ParamName):
def __init__(self, instance, function_value, tree_name):
super(InstanceExecutedParamName, self).__init__(
function_value, tree_name, arguments=None)
self._instance = instance
def infer(self):
return ValueSet([self._instance])
def matches_signature(self):
return True
class AnonymousMethodExecutionFilter(AnonymousFunctionExecutionFilter):
def __init__(self, instance, *args, **kwargs):
super(AnonymousMethodExecutionFilter, self).__init__(*args, **kwargs)
self._instance = instance
def _convert_param(self, param, name):
if param.position_index == 0:
if function_is_classmethod(self._function_value.tree_node):
return InstanceExecutedParamName(
self._instance.py__class__(),
self._function_value,
name
)
elif not function_is_staticmethod(self._function_value.tree_node):
return InstanceExecutedParamName(
self._instance,
self._function_value,
name
)
return super(AnonymousMethodExecutionFilter, self)._convert_param(param, name)
class AnonymousMethodExecutionContext(BaseFunctionExecutionContext):
def __init__(self, instance, value):
super(AnonymousMethodExecutionContext, self).__init__(value)
self.instance = instance
def get_filters(self, until_position=None, origin_scope=None):
yield AnonymousMethodExecutionFilter(
self.instance, self, self._value,
until_position=until_position,
origin_scope=origin_scope,
)
def get_param_names(self):
param_names = list(self._value.get_param_names())
# set the self name
param_names[0] = InstanceExecutedParamName(
self.instance,
self._value,
param_names[0].tree_name
)
return param_names
class MethodExecutionContext(FunctionExecutionContext):
def __init__(self, instance, *args, **kwargs):
super(MethodExecutionContext, self).__init__(*args, **kwargs)
self.instance = instance
class AbstractInstanceValue(Value):
api_type = u'instance'
def __init__(self, inference_state, parent_context, class_value):
super(AbstractInstanceValue, self).__init__(inference_state, parent_context)
# Generated instances are classes that are just generated by self
# (No arguments) used.
self.class_value = class_value
def is_instance(self):
return True
def get_qualified_names(self):
return self.class_value.get_qualified_names()
def get_annotated_class_object(self):
return self.class_value # This is the default.
def py__class__(self):
return self.class_value
def py__bool__(self):
# Signalize that we don't know about the bool type.
return None
@abstractproperty
def name(self):
raise NotImplementedError
def get_signatures(self):
call_funcs = self.py__getattribute__('__call__').py__get__(self, self.class_value)
return [s.bind(self) for s in call_funcs.get_signatures()]
def get_function_slot_names(self, name):
# Searches for Python functions in classes.
return []
def execute_function_slots(self, names, *inferred_args):
return ValueSet.from_sets(
name.infer().execute_with_values(*inferred_args)
for name in names
)
def get_type_hint(self, add_class_info=True):
return self.py__name__()
def __repr__(self):
return "<%s of %s>" % (self.__class__.__name__, self.class_value)
class CompiledInstance(AbstractInstanceValue):
# This is not really a compiled class, it's just an instance from a
# compiled class.
def __init__(self, inference_state, parent_context, class_value, arguments):
super(CompiledInstance, self).__init__(inference_state, parent_context,
class_value)
self._arguments = arguments
def get_filters(self, origin_scope=None, include_self_names=True):
class_value = self.get_annotated_class_object()
class_filters = class_value.get_filters(
origin_scope=origin_scope,
is_instance=True,
)
for f in class_filters:
yield CompiledInstanceClassFilter(self, f)
@property
def name(self):
return compiled.CompiledValueName(self, self.class_value.name.string_name)
def is_stub(self):
return False
class _BaseTreeInstance(AbstractInstanceValue):
@property
def array_type(self):
name = self.class_value.py__name__()
if name in ['list', 'set', 'dict'] \
and self.parent_context.get_root_context().is_builtins_module():
return name
return None
@property
def name(self):
return ValueName(self, self.class_value.name.tree_name)
def get_filters(self, origin_scope=None, include_self_names=True):
class_value = self.get_annotated_class_object()
if include_self_names:
for cls in class_value.py__mro__():
if not cls.is_compiled():
# In this case we're excluding compiled objects that are
# not fake objects. It doesn't make sense for normal
# compiled objects to search for self variables.
yield SelfAttributeFilter(self, class_value, cls.as_context(), origin_scope)
class_filters = class_value.get_filters(
origin_scope=origin_scope,
is_instance=True,
)
for f in class_filters:
if isinstance(f, ClassFilter):
yield InstanceClassFilter(self, f)
elif isinstance(f, CompiledValueFilter):
yield CompiledInstanceClassFilter(self, f)
else:
# Propably from the metaclass.
yield f
@inference_state_method_cache()
def create_instance_context(self, class_context, node):
new = node
while True:
func_node = new
new = search_ancestor(new, 'funcdef', 'classdef')
if class_context.tree_node is new:
func = FunctionValue.from_context(class_context, func_node)
bound_method = BoundMethod(self, class_context, func)
if func_node.name.value == '__init__':
context = bound_method.as_context(self._arguments)
else:
context = bound_method.as_context()
break
return context.create_context(node)
def py__getattribute__alternatives(self, string_name):
'''
Since nothing was inferred, now check the __getattr__ and
__getattribute__ methods. Stubs don't need to be checked, because
they don't contain any logic.
'''
if self.is_stub():
return NO_VALUES
name = compiled.create_simple_object(self.inference_state, string_name)
# This is a little bit special. `__getattribute__` is in Python
# executed before `__getattr__`. But: I know no use case, where
# this could be practical and where Jedi would return wrong types.
# If you ever find something, let me know!
# We are inversing this, because a hand-crafted `__getattribute__`
# could still call another hand-crafted `__getattr__`, but not the
# other way around.
if is_big_annoying_library(self.parent_context):
return NO_VALUES
names = (self.get_function_slot_names(u'__getattr__')
or self.get_function_slot_names(u'__getattribute__'))
return self.execute_function_slots(names, name)
def py__getitem__(self, index_value_set, contextualized_node):
names = self.get_function_slot_names(u'__getitem__')
if not names:
return super(_BaseTreeInstance, self).py__getitem__(
index_value_set,
contextualized_node,
)
args = ValuesArguments([index_value_set])
return ValueSet.from_sets(name.infer().execute(args) for name in names)
def py__iter__(self, contextualized_node=None):
iter_slot_names = self.get_function_slot_names(u'__iter__')
if not iter_slot_names:
return super(_BaseTreeInstance, self).py__iter__(contextualized_node)
def iterate():
for generator in self.execute_function_slots(iter_slot_names):
for lazy_value in generator.py__next__(contextualized_node):
yield lazy_value
return iterate()
def py__next__(self, contextualized_node=None):
# `__next__` logic.
if self.inference_state.environment.version_info.major == 2:
name = u'next'
else:
name = u'__next__'
next_slot_names = self.get_function_slot_names(name)
if next_slot_names:
yield LazyKnownValues(
self.execute_function_slots(next_slot_names)
)
else:
debug.warning('Instance has no __next__ function in %s.', self)
def py__call__(self, arguments):
names = self.get_function_slot_names(u'__call__')
if not names:
# Means the Instance is not callable.
return super(_BaseTreeInstance, self).py__call__(arguments)
return ValueSet.from_sets(name.infer().execute(arguments) for name in names)
def py__get__(self, instance, class_value):
"""
obj may be None.
"""
# Arguments in __get__ descriptors are obj, class.
# `method` is the new parent of the array, don't know if that's good.
for cls in self.class_value.py__mro__():
result = cls.py__get__on_class(self, instance, class_value)
if result is not NotImplemented:
return result
names = self.get_function_slot_names(u'__get__')
if names:
if instance is None:
instance = compiled.builtin_from_name(self.inference_state, u'None')
return self.execute_function_slots(names, instance, class_value)
else:
return ValueSet([self])
def get_function_slot_names(self, name):
# Python classes don't look at the dictionary of the instance when
# looking up `__call__`. This is something that has to do with Python's
# internal slot system (note: not __slots__, but C slots).
for filter in self.get_filters(include_self_names=False):
names = filter.get(name)
if names:
return names
return []
class TreeInstance(_BaseTreeInstance):
def __init__(self, inference_state, parent_context, class_value, arguments):
# I don't think that dynamic append lookups should happen here. That
# sounds more like something that should go to py__iter__.
if class_value.py__name__() in ['list', 'set'] \
and parent_context.get_root_context().is_builtins_module():
# compare the module path with the builtin name.
if settings.dynamic_array_additions:
arguments = get_dynamic_array_instance(self, arguments)
super(TreeInstance, self).__init__(inference_state, parent_context, class_value)
self._arguments = arguments
self.tree_node = class_value.tree_node
# This can recurse, if the initialization of the class includes a reference
# to itself.
@inference_state_method_cache(default=None)
def _get_annotated_class_object(self):
from jedi.inference.gradual.annotation import py__annotations__, \
infer_type_vars_for_execution
args = InstanceArguments(self, self._arguments)
for signature in self.class_value.py__getattribute__('__init__').get_signatures():
# Just take the first result, it should always be one, because we
# control the typeshed code.
funcdef = signature.value.tree_node
if funcdef is None or funcdef.type != 'funcdef' \
or not signature.matches_signature(args):
# First check if the signature even matches, if not we don't
# need to infer anything.
continue
bound_method = BoundMethod(self, self.class_value.as_context(), signature.value)
all_annotations = py__annotations__(funcdef)
type_var_dict = infer_type_vars_for_execution(bound_method, args, all_annotations)
if type_var_dict:
defined, = self.class_value.define_generics(
infer_type_vars_for_execution(signature.value, args, all_annotations),
)
debug.dbg('Inferred instance value as %s', defined, color='BLUE')
return defined
return None
def get_annotated_class_object(self):
return self._get_annotated_class_object() or self.class_value
def get_key_values(self):
values = NO_VALUES
if self.array_type == 'dict':
for i, (key, instance) in enumerate(self._arguments.unpack()):
if key is None and i == 0:
values |= ValueSet.from_sets(
v.get_key_values()
for v in instance.infer()
if v.array_type == 'dict'
)
if key:
values |= ValueSet([compiled.create_simple_object(
self.inference_state,
key,
)])
return values
def py__simple_getitem__(self, index):
if self.array_type == 'dict':
# Logic for dict({'foo': bar}) and dict(foo=bar)
# reversed, because:
# >>> dict({'a': 1}, a=3)
# {'a': 3}
# TODO tuple initializations
# >>> dict([('a', 4)])
# {'a': 4}
for key, lazy_context in reversed(list(self._arguments.unpack())):
if key is None:
values = ValueSet.from_sets(
dct_value.py__simple_getitem__(index)
for dct_value in lazy_context.infer()
if dct_value.array_type == 'dict'
)
if values:
return values
else:
if key == index:
return lazy_context.infer()
return super(TreeInstance, self).py__simple_getitem__(index)
def __repr__(self):
return "<%s of %s(%s)>" % (self.__class__.__name__, self.class_value,
self._arguments)
class AnonymousInstance(_BaseTreeInstance):
_arguments = None
class CompiledInstanceName(compiled.CompiledName):
def __init__(self, inference_state, instance, klass, name):
parent_value = klass.parent_context.get_value()
assert parent_value is not None, "How? Please reproduce and report"
super(CompiledInstanceName, self).__init__(
inference_state,
parent_value,
name.string_name
)
self._instance = instance
self._class_member_name = name
@iterator_to_value_set
def infer(self):
for result_value in self._class_member_name.infer():
if result_value.api_type == 'function':
yield CompiledBoundMethod(result_value)
else:
yield result_value
class CompiledInstanceClassFilter(AbstractFilter):
def __init__(self, instance, f):
self._instance = instance
self._class_filter = f
def get(self, name):
return self._convert(self._class_filter.get(name))
def values(self):
return self._convert(self._class_filter.values())
def _convert(self, names):
klass = self._class_filter.compiled_value
return [
CompiledInstanceName(self._instance.inference_state, self._instance, klass, n)
for n in names
]
class BoundMethod(FunctionMixin, ValueWrapper):
def __init__(self, instance, class_context, function):
super(BoundMethod, self).__init__(function)
self.instance = instance
self._class_context = class_context
def is_bound_method(self):
return True
@property
def name(self):
return FunctionNameInClass(
self._class_context,
super(BoundMethod, self).name
)
def py__class__(self):
c, = values_from_qualified_names(self.inference_state, u'types', u'MethodType')
return c
def _get_arguments(self, arguments):
assert arguments is not None
return InstanceArguments(self.instance, arguments)
def _as_context(self, arguments=None):
if arguments is None:
return AnonymousMethodExecutionContext(self.instance, self)
arguments = self._get_arguments(arguments)
return MethodExecutionContext(self.instance, self, arguments)
def py__call__(self, arguments):
if isinstance(self._wrapped_value, OverloadedFunctionValue):
return self._wrapped_value.py__call__(self._get_arguments(arguments))
function_execution = self.as_context(arguments)
return function_execution.infer()
def get_signature_functions(self):
return [
BoundMethod(self.instance, self._class_context, f)
for f in self._wrapped_value.get_signature_functions()
]
def get_signatures(self):
return [sig.bind(self) for sig in super(BoundMethod, self).get_signatures()]
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._wrapped_value)
class CompiledBoundMethod(ValueWrapper):
def is_bound_method(self):
return True
def get_signatures(self):
return [sig.bind(self) for sig in self._wrapped_value.get_signatures()]
class SelfName(TreeNameDefinition):
"""
This name calculates the parent_context lazily.
"""
def __init__(self, instance, class_context, tree_name):
self._instance = instance
self.class_context = class_context
self.tree_name = tree_name
@property
def parent_context(self):
return self._instance.create_instance_context(self.class_context, self.tree_name)
def get_defining_qualified_value(self):
return self._instance
class LazyInstanceClassName(NameWrapper):
def __init__(self, instance, class_member_name):
super(LazyInstanceClassName, self).__init__(class_member_name)
self._instance = instance
@iterator_to_value_set
def infer(self):
for result_value in self._wrapped_name.infer():
for c in result_value.py__get__(self._instance, self._instance.py__class__()):
yield c
def get_signatures(self):
return self.infer().get_signatures()
def get_defining_qualified_value(self):
return self._instance
class InstanceClassFilter(AbstractFilter):
"""
This filter is special in that it uses the class filter and wraps the
resulting names in LazyInstanceClassName. The idea is that the class name
filtering can be very flexible and always be reflected in instances.
"""
def __init__(self, instance, class_filter):
self._instance = instance
self._class_filter = class_filter
def get(self, name):
return self._convert(self._class_filter.get(name))
def values(self):
return self._convert(self._class_filter.values())
def _convert(self, names):
return [
LazyInstanceClassName(self._instance, n)
for n in names
]
def __repr__(self):
return '<%s for %s>' % (self.__class__.__name__, self._class_filter)
class SelfAttributeFilter(ClassFilter):
"""
This class basically filters all the use cases where `self.*` was assigned.
"""
def __init__(self, instance, instance_class, node_context, origin_scope):
super(SelfAttributeFilter, self).__init__(
class_value=instance_class,
node_context=node_context,
origin_scope=origin_scope,
is_instance=True,
)
self._instance = instance
def _filter(self, names):
start, end = self._parser_scope.start_pos, self._parser_scope.end_pos
names = [n for n in names if start < n.start_pos < end]
return self._filter_self_names(names)
def _filter_self_names(self, names):
for name in names:
trailer = name.parent
if trailer.type == 'trailer' \
and len(trailer.parent.children) == 2 \
and trailer.children[0] == '.':
if name.is_definition() and self._access_possible(name):
# TODO filter non-self assignments instead of this bad
# filter.
if self._is_in_right_scope(trailer.parent.children[0], name):
yield name
def _is_in_right_scope(self, self_name, name):
self_context = self._node_context.create_context(self_name)
names = self_context.goto(self_name, position=self_name.start_pos)
return any(
n.api_type == 'param'
and n.tree_name.get_definition().position_index == 0
and n.parent_context.tree_node is self._parser_scope
for n in names
)
def _convert_names(self, names):
return [SelfName(self._instance, self._node_context, name) for name in names]
def _check_flows(self, names):
return names
class InstanceArguments(TreeArgumentsWrapper):
def __init__(self, instance, arguments):
super(InstanceArguments, self).__init__(arguments)
self.instance = instance
def unpack(self, func=None):
yield None, LazyKnownValue(self.instance)
for values in self._wrapped_arguments.unpack(func):
yield values

View file

@ -0,0 +1,673 @@
"""
Contains all classes and functions to deal with lists, dicts, generators and
iterators in general.
"""
import sys
from jedi._compatibility import force_unicode, is_py3
from jedi.inference import compiled
from jedi.inference import analysis
from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \
LazyTreeValue
from jedi.inference.helpers import get_int_or_none, is_string, \
reraise_getitem_errors, SimpleGetItemNotFound
from jedi.inference.utils import safe_property, to_list
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.filters import LazyAttributeOverwrite, publish_method
from jedi.inference.base_value import ValueSet, Value, NO_VALUES, \
ContextualizedNode, iterate_values, sentinel, \
LazyValueWrapper
from jedi.parser_utils import get_sync_comp_fors
from jedi.inference.context import CompForContext
from jedi.inference.value.dynamic_arrays import check_array_additions
class IterableMixin(object):
def py__next__(self, contextualized_node=None):
return self.py__iter__(contextualized_node)
def py__stop_iteration_returns(self):
return ValueSet([compiled.builtin_from_name(self.inference_state, u'None')])
# At the moment, safe values are simple values like "foo", 1 and not
# lists/dicts. Therefore as a small speed optimization we can just do the
# default instead of resolving the lazy wrapped values, that are just
# doing this in the end as well.
# This mostly speeds up patterns like `sys.version_info >= (3, 0)` in
# typeshed.
if sys.version_info[0] == 2:
# Python 2...........
def get_safe_value(self, default=sentinel):
if default is sentinel:
raise ValueError("There exists no safe value for value %s" % self)
return default
else:
get_safe_value = Value.get_safe_value
class GeneratorBase(LazyAttributeOverwrite, IterableMixin):
array_type = None
def _get_wrapped_value(self):
instance, = self._get_cls().execute_annotation()
return instance
def _get_cls(self):
generator, = self.inference_state.typing_module.py__getattribute__('Generator')
return generator
def py__bool__(self):
return True
@publish_method('__iter__')
def _iter(self, arguments):
return ValueSet([self])
@publish_method('send')
@publish_method('next', python_version_match=2)
@publish_method('__next__', python_version_match=3)
def _next(self, arguments):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
def py__stop_iteration_returns(self):
return ValueSet([compiled.builtin_from_name(self.inference_state, u'None')])
@property
def name(self):
return compiled.CompiledValueName(self, 'Generator')
def get_annotated_class_object(self):
from jedi.inference.gradual.generics import TupleGenericManager
gen_values = self.merge_types_of_iterate().py__class__()
gm = TupleGenericManager((gen_values, NO_VALUES, NO_VALUES))
return self._get_cls().with_generics(gm)
class Generator(GeneratorBase):
"""Handling of `yield` functions."""
def __init__(self, inference_state, func_execution_context):
super(Generator, self).__init__(inference_state)
self._func_execution_context = func_execution_context
def py__iter__(self, contextualized_node=None):
iterators = self._func_execution_context.infer_annotations()
if iterators:
return iterators.iterate(contextualized_node)
return self._func_execution_context.get_yield_lazy_values()
def py__stop_iteration_returns(self):
return self._func_execution_context.get_return_values()
def __repr__(self):
return "<%s of %s>" % (type(self).__name__, self._func_execution_context)
def comprehension_from_atom(inference_state, value, atom):
bracket = atom.children[0]
test_list_comp = atom.children[1]
if bracket == '{':
if atom.children[1].children[1] == ':':
sync_comp_for = test_list_comp.children[3]
if sync_comp_for.type == 'comp_for':
sync_comp_for = sync_comp_for.children[1]
return DictComprehension(
inference_state,
value,
sync_comp_for_node=sync_comp_for,
key_node=test_list_comp.children[0],
value_node=test_list_comp.children[2],
)
else:
cls = SetComprehension
elif bracket == '(':
cls = GeneratorComprehension
elif bracket == '[':
cls = ListComprehension
sync_comp_for = test_list_comp.children[1]
if sync_comp_for.type == 'comp_for':
sync_comp_for = sync_comp_for.children[1]
return cls(
inference_state,
defining_context=value,
sync_comp_for_node=sync_comp_for,
entry_node=test_list_comp.children[0],
)
class ComprehensionMixin(object):
@inference_state_method_cache()
def _get_comp_for_context(self, parent_context, comp_for):
return CompForContext(parent_context, comp_for)
def _nested(self, comp_fors, parent_context=None):
comp_for = comp_fors[0]
is_async = comp_for.parent.type == 'comp_for'
input_node = comp_for.children[3]
parent_context = parent_context or self._defining_context
input_types = parent_context.infer_node(input_node)
cn = ContextualizedNode(parent_context, input_node)
iterated = input_types.iterate(cn, is_async=is_async)
exprlist = comp_for.children[1]
for i, lazy_value in enumerate(iterated):
types = lazy_value.infer()
dct = unpack_tuple_to_dict(parent_context, types, exprlist)
context = self._get_comp_for_context(
parent_context,
comp_for,
)
with context.predefine_names(comp_for, dct):
try:
for result in self._nested(comp_fors[1:], context):
yield result
except IndexError:
iterated = context.infer_node(self._entry_node)
if self.array_type == 'dict':
yield iterated, context.infer_node(self._value_node)
else:
yield iterated
@inference_state_method_cache(default=[])
@to_list
def _iterate(self):
comp_fors = tuple(get_sync_comp_fors(self._sync_comp_for_node))
for result in self._nested(comp_fors):
yield result
def py__iter__(self, contextualized_node=None):
for set_ in self._iterate():
yield LazyKnownValues(set_)
def __repr__(self):
return "<%s of %s>" % (type(self).__name__, self._sync_comp_for_node)
class _DictMixin(object):
def _get_generics(self):
return tuple(c_set.py__class__() for c_set in self.get_mapping_item_values())
class Sequence(LazyAttributeOverwrite, IterableMixin):
api_type = u'instance'
@property
def name(self):
return compiled.CompiledValueName(self, self.array_type)
def _get_generics(self):
return (self.merge_types_of_iterate().py__class__(),)
@inference_state_method_cache(default=())
def _cached_generics(self):
return self._get_generics()
def _get_wrapped_value(self):
from jedi.inference.gradual.base import GenericClass
from jedi.inference.gradual.generics import TupleGenericManager
klass = compiled.builtin_from_name(self.inference_state, self.array_type)
c, = GenericClass(
klass,
TupleGenericManager(self._cached_generics())
).execute_annotation()
return c
def py__bool__(self):
return None # We don't know the length, because of appends.
@safe_property
def parent(self):
return self.inference_state.builtins_module
def py__getitem__(self, index_value_set, contextualized_node):
if self.array_type == 'dict':
return self._dict_values()
return iterate_values(ValueSet([self]))
class _BaseComprehension(ComprehensionMixin):
def __init__(self, inference_state, defining_context, sync_comp_for_node, entry_node):
assert sync_comp_for_node.type == 'sync_comp_for'
super(_BaseComprehension, self).__init__(inference_state)
self._defining_context = defining_context
self._sync_comp_for_node = sync_comp_for_node
self._entry_node = entry_node
class ListComprehension(_BaseComprehension, Sequence):
array_type = u'list'
def py__simple_getitem__(self, index):
if isinstance(index, slice):
return ValueSet([self])
all_types = list(self.py__iter__())
with reraise_getitem_errors(IndexError, TypeError):
lazy_value = all_types[index]
return lazy_value.infer()
class SetComprehension(_BaseComprehension, Sequence):
array_type = u'set'
class GeneratorComprehension(_BaseComprehension, GeneratorBase):
pass
class _DictKeyMixin(object):
# TODO merge with _DictMixin?
def get_mapping_item_values(self):
return self._dict_keys(), self._dict_values()
def get_key_values(self):
# TODO merge with _dict_keys?
return self._dict_keys()
class DictComprehension(ComprehensionMixin, Sequence, _DictKeyMixin):
array_type = u'dict'
def __init__(self, inference_state, defining_context, sync_comp_for_node, key_node, value_node):
assert sync_comp_for_node.type == 'sync_comp_for'
super(DictComprehension, self).__init__(inference_state)
self._defining_context = defining_context
self._sync_comp_for_node = sync_comp_for_node
self._entry_node = key_node
self._value_node = value_node
def py__iter__(self, contextualized_node=None):
for keys, values in self._iterate():
yield LazyKnownValues(keys)
def py__simple_getitem__(self, index):
for keys, values in self._iterate():
for k in keys:
# Be careful in the future if refactoring, index could be a
# slice object.
if k.get_safe_value(default=object()) == index:
return values
raise SimpleGetItemNotFound()
def _dict_keys(self):
return ValueSet.from_sets(keys for keys, values in self._iterate())
def _dict_values(self):
return ValueSet.from_sets(values for keys, values in self._iterate())
@publish_method('values')
def _imitate_values(self, arguments):
lazy_value = LazyKnownValues(self._dict_values())
return ValueSet([FakeList(self.inference_state, [lazy_value])])
@publish_method('items')
def _imitate_items(self, arguments):
lazy_values = [
LazyKnownValue(
FakeTuple(
self.inference_state,
[LazyKnownValues(key),
LazyKnownValues(value)]
)
)
for key, value in self._iterate()
]
return ValueSet([FakeList(self.inference_state, lazy_values)])
def exact_key_items(self):
# NOTE: A smarter thing can probably done here to achieve better
# completions, but at least like this jedi doesn't crash
return []
class SequenceLiteralValue(Sequence):
_TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist'
mapping = {'(': u'tuple',
'[': u'list',
'{': u'set'}
def __init__(self, inference_state, defining_context, atom):
super(SequenceLiteralValue, self).__init__(inference_state)
self.atom = atom
self._defining_context = defining_context
if self.atom.type in self._TUPLE_LIKE:
self.array_type = u'tuple'
else:
self.array_type = SequenceLiteralValue.mapping[atom.children[0]]
"""The builtin name of the array (list, set, tuple or dict)."""
def _get_generics(self):
if self.array_type == u'tuple':
return tuple(x.infer().py__class__() for x in self.py__iter__())
return super(SequenceLiteralValue, self)._get_generics()
def py__simple_getitem__(self, index):
"""Here the index is an int/str. Raises IndexError/KeyError."""
if isinstance(index, slice):
return ValueSet([self])
else:
with reraise_getitem_errors(TypeError, KeyError, IndexError):
node = self.get_tree_entries()[index]
return self._defining_context.infer_node(node)
def py__iter__(self, contextualized_node=None):
"""
While values returns the possible values for any array field, this
function returns the value for a certain index.
"""
for node in self.get_tree_entries():
if node == ':' or node.type == 'subscript':
# TODO this should probably use at least part of the code
# of infer_subscript_list.
yield LazyKnownValue(Slice(self._defining_context, None, None, None))
else:
yield LazyTreeValue(self._defining_context, node)
for addition in check_array_additions(self._defining_context, self):
yield addition
def py__len__(self):
# This function is not really used often. It's more of a try.
return len(self.get_tree_entries())
def get_tree_entries(self):
c = self.atom.children
if self.atom.type in self._TUPLE_LIKE:
return c[::2]
array_node = c[1]
if array_node in (']', '}', ')'):
return [] # Direct closing bracket, doesn't contain items.
if array_node.type == 'testlist_comp':
# filter out (for now) pep 448 single-star unpacking
return [value for value in array_node.children[::2]
if value.type != "star_expr"]
elif array_node.type == 'dictorsetmaker':
kv = []
iterator = iter(array_node.children)
for key in iterator:
if key == "**":
# dict with pep 448 double-star unpacking
# for now ignoring the values imported by **
next(iterator)
next(iterator, None) # Possible comma.
else:
op = next(iterator, None)
if op is None or op == ',':
if key.type == "star_expr":
# pep 448 single-star unpacking
# for now ignoring values imported by *
pass
else:
kv.append(key) # A set.
else:
assert op == ':' # A dict.
kv.append((key, next(iterator)))
next(iterator, None) # Possible comma.
return kv
else:
if array_node.type == "star_expr":
# pep 448 single-star unpacking
# for now ignoring values imported by *
return []
else:
return [array_node]
def exact_key_items(self):
"""
Returns a generator of tuples like dict.items(), where the key is
resolved (as a string) and the values are still lazy values.
"""
for key_node, value in self.get_tree_entries():
for key in self._defining_context.infer_node(key_node):
if is_string(key):
yield key.get_safe_value(), LazyTreeValue(self._defining_context, value)
def __repr__(self):
return "<%s of %s>" % (self.__class__.__name__, self.atom)
class DictLiteralValue(_DictMixin, SequenceLiteralValue, _DictKeyMixin):
array_type = u'dict'
def __init__(self, inference_state, defining_context, atom):
super(SequenceLiteralValue, self).__init__(inference_state)
self._defining_context = defining_context
self.atom = atom
def py__simple_getitem__(self, index):
"""Here the index is an int/str. Raises IndexError/KeyError."""
compiled_value_index = compiled.create_simple_object(self.inference_state, index)
for key, value in self.get_tree_entries():
for k in self._defining_context.infer_node(key):
for key_v in k.execute_operation(compiled_value_index, u'=='):
if key_v.get_safe_value():
return self._defining_context.infer_node(value)
raise SimpleGetItemNotFound('No key found in dictionary %s.' % self)
def py__iter__(self, contextualized_node=None):
"""
While values returns the possible values for any array field, this
function returns the value for a certain index.
"""
# Get keys.
types = NO_VALUES
for k, _ in self.get_tree_entries():
types |= self._defining_context.infer_node(k)
# We don't know which dict index comes first, therefore always
# yield all the types.
for _ in types:
yield LazyKnownValues(types)
@publish_method('values')
def _imitate_values(self, arguments):
lazy_value = LazyKnownValues(self._dict_values())
return ValueSet([FakeList(self.inference_state, [lazy_value])])
@publish_method('items')
def _imitate_items(self, arguments):
lazy_values = [
LazyKnownValue(FakeTuple(
self.inference_state,
(LazyTreeValue(self._defining_context, key_node),
LazyTreeValue(self._defining_context, value_node))
)) for key_node, value_node in self.get_tree_entries()
]
return ValueSet([FakeList(self.inference_state, lazy_values)])
def _dict_values(self):
return ValueSet.from_sets(
self._defining_context.infer_node(v)
for k, v in self.get_tree_entries()
)
def _dict_keys(self):
return ValueSet.from_sets(
self._defining_context.infer_node(k)
for k, v in self.get_tree_entries()
)
class _FakeSequence(Sequence):
def __init__(self, inference_state, lazy_value_list):
"""
type should be one of "tuple", "list"
"""
super(_FakeSequence, self).__init__(inference_state)
self._lazy_value_list = lazy_value_list
def py__simple_getitem__(self, index):
if isinstance(index, slice):
return ValueSet([self])
with reraise_getitem_errors(IndexError, TypeError):
lazy_value = self._lazy_value_list[index]
return lazy_value.infer()
def py__iter__(self, contextualized_node=None):
return self._lazy_value_list
def py__bool__(self):
return bool(len(self._lazy_value_list))
def __repr__(self):
return "<%s of %s>" % (type(self).__name__, self._lazy_value_list)
class FakeTuple(_FakeSequence):
array_type = u'tuple'
class FakeList(_FakeSequence):
array_type = u'tuple'
class FakeDict(_DictMixin, Sequence, _DictKeyMixin):
array_type = u'dict'
def __init__(self, inference_state, dct):
super(FakeDict, self).__init__(inference_state)
self._dct = dct
def py__iter__(self, contextualized_node=None):
for key in self._dct:
yield LazyKnownValue(compiled.create_simple_object(self.inference_state, key))
def py__simple_getitem__(self, index):
if is_py3 and self.inference_state.environment.version_info.major == 2:
# In Python 2 bytes and unicode compare.
if isinstance(index, bytes):
index_unicode = force_unicode(index)
try:
return self._dct[index_unicode].infer()
except KeyError:
pass
elif isinstance(index, str):
index_bytes = index.encode('utf-8')
try:
return self._dct[index_bytes].infer()
except KeyError:
pass
with reraise_getitem_errors(KeyError, TypeError):
lazy_value = self._dct[index]
return lazy_value.infer()
@publish_method('values')
def _values(self, arguments):
return ValueSet([FakeTuple(
self.inference_state,
[LazyKnownValues(self._dict_values())]
)])
def _dict_values(self):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self._dct.values())
def _dict_keys(self):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
def exact_key_items(self):
return self._dct.items()
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._dct)
class MergedArray(Sequence):
def __init__(self, inference_state, arrays):
super(MergedArray, self).__init__(inference_state)
self.array_type = arrays[-1].array_type
self._arrays = arrays
def py__iter__(self, contextualized_node=None):
for array in self._arrays:
for lazy_value in array.py__iter__():
yield lazy_value
def py__simple_getitem__(self, index):
return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
def unpack_tuple_to_dict(context, types, exprlist):
"""
Unpacking tuple assignments in for statements and expr_stmts.
"""
if exprlist.type == 'name':
return {exprlist.value: types}
elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['):
return unpack_tuple_to_dict(context, types, exprlist.children[1])
elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist',
'testlist_star_expr'):
dct = {}
parts = iter(exprlist.children[::2])
n = 0
for lazy_value in types.iterate(ContextualizedNode(context, exprlist)):
n += 1
try:
part = next(parts)
except StopIteration:
analysis.add(context, 'value-error-too-many-values', part,
message="ValueError: too many values to unpack (expected %s)" % n)
else:
dct.update(unpack_tuple_to_dict(context, lazy_value.infer(), part))
has_parts = next(parts, None)
if types and has_parts is not None:
analysis.add(context, 'value-error-too-few-values', has_parts,
message="ValueError: need more than %s values to unpack" % n)
return dct
elif exprlist.type == 'power' or exprlist.type == 'atom_expr':
# Something like ``arr[x], var = ...``.
# This is something that is not yet supported, would also be difficult
# to write into a dict.
return {}
elif exprlist.type == 'star_expr': # `a, *b, c = x` type unpackings
# Currently we're not supporting them.
return {}
raise NotImplementedError
class Slice(LazyValueWrapper):
def __init__(self, python_context, start, stop, step):
self.inference_state = python_context.inference_state
self._context = python_context
# All of them are either a Precedence or None.
self._start = start
self._stop = stop
self._step = step
def _get_wrapped_value(self):
value = compiled.builtin_from_name(self._context.inference_state, 'slice')
slice_value, = value.execute_with_values()
return slice_value
def get_safe_value(self, default=sentinel):
"""
Imitate CompiledValue.obj behavior and return a ``builtin.slice()``
object.
"""
def get(element):
if element is None:
return None
result = self._context.infer_node(element)
if len(result) != 1:
# For simplicity, we want slices to be clear defined with just
# one type. Otherwise we will return an empty slice object.
raise IndexError
value, = result
return get_int_or_none(value)
try:
return slice(get(self._start), get(self._stop), get(self._step))
except IndexError:
return slice(None, None, None)

View file

@ -0,0 +1,392 @@
"""
Like described in the :mod:`parso.python.tree` module,
there's a need for an ast like module to represent the states of parsed
modules.
But now there are also structures in Python that need a little bit more than
that. An ``Instance`` for example is only a ``Class`` before it is
instantiated. This class represents these cases.
So, why is there also a ``Class`` class here? Well, there are decorators and
they change classes in Python 3.
Representation modules also define "magic methods". Those methods look like
``py__foo__`` and are typically mappable to the Python equivalents ``__call__``
and others. Here's a list:
====================================== ========================================
**Method** **Description**
-------------------------------------- ----------------------------------------
py__call__(arguments: Array) On callable objects, returns types.
py__bool__() Returns True/False/None; None means that
there's no certainty.
py__bases__() Returns a list of base classes.
py__iter__() Returns a generator of a set of types.
py__class__() Returns the class of an instance.
py__simple_getitem__(index: int/str) Returns a a set of types of the index.
Can raise an IndexError/KeyError.
py__getitem__(indexes: ValueSet) Returns a a set of types of the index.
py__file__() Only on modules. Returns None if does
not exist.
py__package__() -> List[str] Only on modules. For the import system.
py__path__() Only on modules. For the import system.
py__get__(call_object) Only on instances. Simulates
descriptors.
py__doc__() Returns the docstring for a value.
====================================== ========================================
"""
from jedi import debug
from jedi._compatibility import use_metaclass
from jedi.parser_utils import get_cached_parent_scope, expr_is_dotted
from jedi.inference.cache import inference_state_method_cache, CachedMetaClass, \
inference_state_method_generator_cache
from jedi.inference import compiled
from jedi.inference.lazy_value import LazyKnownValues, LazyTreeValue
from jedi.inference.filters import ParserTreeFilter
from jedi.inference.names import TreeNameDefinition, ValueName
from jedi.inference.arguments import unpack_arglist, ValuesArguments
from jedi.inference.base_value import ValueSet, iterator_to_value_set, \
NO_VALUES
from jedi.inference.context import ClassContext
from jedi.inference.value.function import FunctionAndClassBase
from jedi.inference.gradual.generics import LazyGenericManager, TupleGenericManager
from jedi.plugins import plugin_manager
class ClassName(TreeNameDefinition):
def __init__(self, class_value, tree_name, name_context, apply_decorators):
super(ClassName, self).__init__(name_context, tree_name)
self._apply_decorators = apply_decorators
self._class_value = class_value
@iterator_to_value_set
def infer(self):
# We're using a different value to infer, so we cannot call super().
from jedi.inference.syntax_tree import tree_name_to_values
inferred = tree_name_to_values(
self.parent_context.inference_state, self.parent_context, self.tree_name)
for result_value in inferred:
if self._apply_decorators:
for c in result_value.py__get__(instance=None, class_value=self._class_value):
yield c
else:
yield result_value
class ClassFilter(ParserTreeFilter):
def __init__(self, class_value, node_context=None, until_position=None,
origin_scope=None, is_instance=False):
super(ClassFilter, self).__init__(
class_value.as_context(), node_context,
until_position=until_position,
origin_scope=origin_scope,
)
self._class_value = class_value
self._is_instance = is_instance
def _convert_names(self, names):
return [
ClassName(
class_value=self._class_value,
tree_name=name,
name_context=self._node_context,
apply_decorators=not self._is_instance,
) for name in names
]
def _equals_origin_scope(self):
node = self._origin_scope
while node is not None:
if node == self._parser_scope or node == self.parent_context:
return True
node = get_cached_parent_scope(self._used_names, node)
return False
def _access_possible(self, name):
# Filter for ClassVar variables
# TODO this is not properly done, yet. It just checks for the string
# ClassVar in the annotation, which can be quite imprecise. If we
# wanted to do this correct, we would have to infer the ClassVar.
if not self._is_instance:
expr_stmt = name.get_definition()
if expr_stmt is not None and expr_stmt.type == 'expr_stmt':
annassign = expr_stmt.children[1]
if annassign.type == 'annassign':
# If there is an =, the variable is obviously also
# defined on the class.
if 'ClassVar' not in annassign.children[1].get_code() \
and '=' not in annassign.children:
return False
# Filter for name mangling of private variables like __foo
return not name.value.startswith('__') or name.value.endswith('__') \
or self._equals_origin_scope()
def _filter(self, names):
names = super(ClassFilter, self)._filter(names)
return [name for name in names if self._access_possible(name)]
class ClassMixin(object):
def is_class(self):
return True
def is_class_mixin(self):
return True
def py__call__(self, arguments):
from jedi.inference.value import TreeInstance
from jedi.inference.gradual.typing import TypedDict
if self.is_typeddict():
return ValueSet([TypedDict(self)])
return ValueSet([TreeInstance(self.inference_state, self.parent_context, self, arguments)])
def py__class__(self):
return compiled.builtin_from_name(self.inference_state, u'type')
@property
def name(self):
return ValueName(self, self.tree_node.name)
def py__name__(self):
return self.name.string_name
@inference_state_method_generator_cache()
def py__mro__(self):
mro = [self]
yield self
# TODO Do a proper mro resolution. Currently we are just listing
# classes. However, it's a complicated algorithm.
for lazy_cls in self.py__bases__():
# TODO there's multiple different mro paths possible if this yields
# multiple possibilities. Could be changed to be more correct.
for cls in lazy_cls.infer():
# TODO detect for TypeError: duplicate base class str,
# e.g. `class X(str, str): pass`
try:
mro_method = cls.py__mro__
except AttributeError:
# TODO add a TypeError like:
"""
>>> class Y(lambda: test): pass
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() argument 1 must be code, not str
>>> class Y(1): pass
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: int() takes at most 2 arguments (3 given)
"""
debug.warning('Super class of %s is not a class: %s', self, cls)
else:
for cls_new in mro_method():
if cls_new not in mro:
mro.append(cls_new)
yield cls_new
def get_filters(self, origin_scope=None, is_instance=False,
include_metaclasses=True, include_type_when_class=True):
if include_metaclasses:
metaclasses = self.get_metaclasses()
if metaclasses:
for f in self.get_metaclass_filters(metaclasses, is_instance):
yield f # Python 2..
for cls in self.py__mro__():
if cls.is_compiled():
for filter in cls.get_filters(is_instance=is_instance):
yield filter
else:
yield ClassFilter(
self, node_context=cls.as_context(),
origin_scope=origin_scope,
is_instance=is_instance
)
if not is_instance and include_type_when_class:
from jedi.inference.compiled import builtin_from_name
type_ = builtin_from_name(self.inference_state, u'type')
assert isinstance(type_, ClassValue)
if type_ != self:
# We are not using execute_with_values here, because the
# plugin function for type would get executed instead of an
# instance creation.
args = ValuesArguments([])
for instance in type_.py__call__(args):
instance_filters = instance.get_filters()
# Filter out self filters
next(instance_filters, None)
next(instance_filters, None)
x = next(instance_filters, None)
assert x is not None
yield x
def get_signatures(self):
# Since calling staticmethod without a function is illegal, the Jedi
# plugin doesn't return anything. Therefore call directly and get what
# we want: An instance of staticmethod.
metaclasses = self.get_metaclasses()
if metaclasses:
sigs = self.get_metaclass_signatures(metaclasses)
if sigs:
return sigs
args = ValuesArguments([])
init_funcs = self.py__call__(args).py__getattribute__('__init__')
return [sig.bind(self) for sig in init_funcs.get_signatures()]
def _as_context(self):
return ClassContext(self)
def get_type_hint(self, add_class_info=True):
if add_class_info:
return 'Type[%s]' % self.py__name__()
return self.py__name__()
@inference_state_method_cache(default=False)
def is_typeddict(self):
# TODO Do a proper mro resolution. Currently we are just listing
# classes. However, it's a complicated algorithm.
from jedi.inference.gradual.typing import TypedDictClass
for lazy_cls in self.py__bases__():
if not isinstance(lazy_cls, LazyTreeValue):
return False
tree_node = lazy_cls.data
# Only resolve simple classes, stuff like Iterable[str] are more
# intensive to resolve and if generics are involved, we know it's
# not a TypedDict.
if not expr_is_dotted(tree_node):
return False
for cls in lazy_cls.infer():
if isinstance(cls, TypedDictClass):
return True
try:
method = cls.is_typeddict
except AttributeError:
# We're only dealing with simple classes, so just returning
# here should be fine. This only happens with e.g. compiled
# classes.
return False
else:
if method():
return True
return False
def py__getitem__(self, index_value_set, contextualized_node):
from jedi.inference.gradual.base import GenericClass
if not index_value_set:
debug.warning('Class indexes inferred to nothing. Returning class instead')
return ValueSet([self])
return ValueSet(
GenericClass(
self,
LazyGenericManager(
context_of_index=contextualized_node.context,
index_value=index_value,
)
)
for index_value in index_value_set
)
def with_generics(self, generics_tuple):
from jedi.inference.gradual.base import GenericClass
return GenericClass(
self,
TupleGenericManager(generics_tuple)
)
def define_generics(self, type_var_dict):
from jedi.inference.gradual.base import GenericClass
def remap_type_vars():
"""
The TypeVars in the resulting classes have sometimes different names
and we need to check for that, e.g. a signature can be:
def iter(iterable: Iterable[_T]) -> Iterator[_T]: ...
However, the iterator is defined as Iterator[_T_co], which means it has
a different type var name.
"""
for type_var in self.list_type_vars():
yield type_var_dict.get(type_var.py__name__(), NO_VALUES)
if type_var_dict:
return ValueSet([GenericClass(
self,
TupleGenericManager(tuple(remap_type_vars()))
)])
return ValueSet({self})
class ClassValue(use_metaclass(CachedMetaClass, ClassMixin, FunctionAndClassBase)):
api_type = u'class'
@inference_state_method_cache()
def list_type_vars(self):
found = []
arglist = self.tree_node.get_super_arglist()
if arglist is None:
return []
for stars, node in unpack_arglist(arglist):
if stars:
continue # These are not relevant for this search.
from jedi.inference.gradual.annotation import find_unknown_type_vars
for type_var in find_unknown_type_vars(self.parent_context, node):
if type_var not in found:
# The order matters and it's therefore a list.
found.append(type_var)
return found
def _get_bases_arguments(self):
arglist = self.tree_node.get_super_arglist()
if arglist:
from jedi.inference import arguments
return arguments.TreeArguments(self.inference_state, self.parent_context, arglist)
return None
@inference_state_method_cache(default=())
def py__bases__(self):
args = self._get_bases_arguments()
if args is not None:
lst = [value for key, value in args.unpack() if key is None]
if lst:
return lst
if self.py__name__() == 'object' \
and self.parent_context.is_builtins_module():
return []
return [LazyKnownValues(
self.inference_state.builtins_module.py__getattribute__('object')
)]
@plugin_manager.decorate()
def get_metaclass_filters(self, metaclasses, is_instance):
debug.warning('Unprocessed metaclass %s', metaclasses)
return []
@inference_state_method_cache(default=NO_VALUES)
def get_metaclasses(self):
args = self._get_bases_arguments()
if args is not None:
m = [value for key, value in args.unpack() if key == 'metaclass']
metaclasses = ValueSet.from_sets(lazy_value.infer() for lazy_value in m)
metaclasses = ValueSet(m for m in metaclasses if m.is_class())
if metaclasses:
return metaclasses
for lazy_base in self.py__bases__():
for value in lazy_base.infer():
if value.is_class():
values = value.get_metaclasses()
if values:
return values
return NO_VALUES
@plugin_manager.decorate()
def get_metaclass_signatures(self, metaclasses):
return []

View file

@ -0,0 +1,229 @@
import os
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.names import AbstractNameDefinition, ModuleName
from jedi.inference.filters import GlobalNameFilter, ParserTreeFilter, DictFilter, MergedFilter
from jedi.inference import compiled
from jedi.inference.base_value import TreeValue
from jedi.inference.names import SubModuleName
from jedi.inference.helpers import values_from_qualified_names
from jedi.inference.compiled import create_simple_object
from jedi.inference.base_value import ValueSet
from jedi.inference.context import ModuleContext
class _ModuleAttributeName(AbstractNameDefinition):
"""
For module attributes like __file__, __str__ and so on.
"""
api_type = u'instance'
def __init__(self, parent_module, string_name, string_value=None):
self.parent_context = parent_module
self.string_name = string_name
self._string_value = string_value
def infer(self):
if self._string_value is not None:
s = self._string_value
if self.parent_context.inference_state.environment.version_info.major == 2 \
and not isinstance(s, bytes):
s = s.encode('utf-8')
return ValueSet([
create_simple_object(self.parent_context.inference_state, s)
])
return compiled.get_string_value_set(self.parent_context.inference_state)
class SubModuleDictMixin(object):
@inference_state_method_cache()
def sub_modules_dict(self):
"""
Lists modules in the directory of this module (if this module is a
package).
"""
names = {}
if self.is_package():
mods = self.inference_state.compiled_subprocess.iter_module_names(
self.py__path__()
)
for name in mods:
# It's obviously a relative import to the current module.
names[name] = SubModuleName(self.as_context(), name)
# In the case of an import like `from x.` we don't need to
# add all the variables, this is only about submodules.
return names
class ModuleMixin(SubModuleDictMixin):
_module_name_class = ModuleName
def get_filters(self, origin_scope=None):
yield MergedFilter(
ParserTreeFilter(
parent_context=self.as_context(),
origin_scope=origin_scope
),
GlobalNameFilter(self.as_context(), self.tree_node),
)
yield DictFilter(self.sub_modules_dict())
yield DictFilter(self._module_attributes_dict())
for star_filter in self.iter_star_filters():
yield star_filter
def py__class__(self):
c, = values_from_qualified_names(self.inference_state, u'types', u'ModuleType')
return c
def is_module(self):
return True
def is_stub(self):
return False
@property
@inference_state_method_cache()
def name(self):
return self._module_name_class(self, self.string_names[-1])
@inference_state_method_cache()
def _module_attributes_dict(self):
names = ['__package__', '__doc__', '__name__']
# All the additional module attributes are strings.
dct = dict((n, _ModuleAttributeName(self, n)) for n in names)
file = self.py__file__()
if file is not None:
dct['__file__'] = _ModuleAttributeName(self, '__file__', file)
return dct
def iter_star_filters(self):
for star_module in self.star_imports():
f = next(star_module.get_filters(), None)
assert f is not None
yield f
# I'm not sure if the star import cache is really that effective anymore
# with all the other really fast import caches. Recheck. Also we would need
# to push the star imports into InferenceState.module_cache, if we reenable this.
@inference_state_method_cache([])
def star_imports(self):
from jedi.inference.imports import Importer
modules = []
module_context = self.as_context()
for i in self.tree_node.iter_imports():
if i.is_star_import():
new = Importer(
self.inference_state,
import_path=i.get_paths()[-1],
module_context=module_context,
level=i.level
).follow()
for module in new:
if isinstance(module, ModuleValue):
modules += module.star_imports()
modules += new
return modules
def get_qualified_names(self):
"""
A module doesn't have a qualified name, but it's important to note that
it's reachable and not `None`. With this information we can add
qualified names on top for all value children.
"""
return ()
class ModuleValue(ModuleMixin, TreeValue):
api_type = u'module'
def __init__(self, inference_state, module_node, code_lines, file_io=None,
string_names=None, is_package=False):
super(ModuleValue, self).__init__(
inference_state,
parent_context=None,
tree_node=module_node
)
self.file_io = file_io
if file_io is None:
self._path = None
else:
self._path = file_io.path
self.string_names = string_names # Optional[Tuple[str, ...]]
self.code_lines = code_lines
self._is_package = is_package
def is_stub(self):
if self._path is not None and self._path.endswith('.pyi'):
# Currently this is the way how we identify stubs when e.g. goto is
# used in them. This could be changed if stubs would be identified
# sooner and used as StubModuleValue.
return True
return super(ModuleValue, self).is_stub()
def py__name__(self):
if self.string_names is None:
return None
return '.'.join(self.string_names)
def py__file__(self):
"""
In contrast to Python's __file__ can be None.
"""
if self._path is None:
return None
return os.path.abspath(self._path)
def is_package(self):
return self._is_package
def py__package__(self):
if self._is_package:
return self.string_names
return self.string_names[:-1]
def py__path__(self):
"""
In case of a package, this returns Python's __path__ attribute, which
is a list of paths (strings).
Returns None if the module is not a package.
"""
if not self._is_package:
return None
# A namespace package is typically auto generated and ~10 lines long.
first_few_lines = ''.join(self.code_lines[:50])
# these are strings that need to be used for namespace packages,
# the first one is ``pkgutil``, the second ``pkg_resources``.
options = ('declare_namespace(__name__)', 'extend_path(__path__')
if options[0] in first_few_lines or options[1] in first_few_lines:
# It is a namespace, now try to find the rest of the
# modules on sys_path or whatever the search_path is.
paths = set()
for s in self.inference_state.get_sys_path():
other = os.path.join(s, self.name.string_name)
if os.path.isdir(other):
paths.add(other)
if paths:
return list(paths)
# Nested namespace packages will not be supported. Nobody ever
# asked for it and in Python 3 they are there without using all the
# crap above.
# Default to the of this file.
file = self.py__file__()
assert file is not None # Shouldn't be a package in the first place.
return [os.path.dirname(file)]
def _as_context(self):
return ModuleContext(self)
def __repr__(self):
return "<%s: %s@%s-%s is_stub=%s>" % (
self.__class__.__name__, self.py__name__(),
self.tree_node.start_pos[0], self.tree_node.end_pos[0],
self.is_stub()
)

View file

@ -0,0 +1,74 @@
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.filters import DictFilter
from jedi.inference.names import ValueNameMixin, AbstractNameDefinition
from jedi.inference.base_value import Value
from jedi.inference.value.module import SubModuleDictMixin
from jedi.inference.context import NamespaceContext
class ImplicitNSName(ValueNameMixin, AbstractNameDefinition):
"""
Accessing names for implicit namespace packages should infer to nothing.
This object will prevent Jedi from raising exceptions
"""
def __init__(self, implicit_ns_value, string_name):
self._value = implicit_ns_value
self.string_name = string_name
class ImplicitNamespaceValue(Value, SubModuleDictMixin):
"""
Provides support for implicit namespace packages
"""
# Is a module like every other module, because if you import an empty
# folder foobar it will be available as an object:
# <module 'foobar' (namespace)>.
api_type = u'module'
parent_context = None
def __init__(self, inference_state, string_names, paths):
super(ImplicitNamespaceValue, self).__init__(inference_state, parent_context=None)
self.inference_state = inference_state
self.string_names = string_names
self._paths = paths
def get_filters(self, origin_scope=None):
yield DictFilter(self.sub_modules_dict())
def get_qualified_names(self):
return ()
@property
@inference_state_method_cache()
def name(self):
string_name = self.py__package__()[-1]
return ImplicitNSName(self, string_name)
def py__file__(self):
return None
def py__package__(self):
"""Return the fullname
"""
return self.string_names
def py__path__(self):
return self._paths
def py__name__(self):
return '.'.join(self.string_names)
def is_namespace(self):
return True
def is_stub(self):
return False
def is_package(self):
return True
def as_context(self):
return NamespaceContext(self)
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())