Uploaded Test files
This commit is contained in:
parent
f584ad9d97
commit
2e81cb7d99
16627 changed files with 2065359 additions and 102444 deletions
439
venv/Lib/site-packages/jedi/inference/gradual/annotation.py
Normal file
439
venv/Lib/site-packages/jedi/inference/gradual/annotation.py
Normal file
|
@ -0,0 +1,439 @@
|
|||
"""
|
||||
PEP 0484 ( https://www.python.org/dev/peps/pep-0484/ ) describes type hints
|
||||
through function annotations. There is a strong suggestion in this document
|
||||
that only the type of type hinting defined in PEP0484 should be allowed
|
||||
as annotations in future python versions.
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
from parso import ParserSyntaxError, parse
|
||||
|
||||
from jedi._compatibility import force_unicode, Parameter
|
||||
from jedi.inference.cache import inference_state_method_cache
|
||||
from jedi.inference.base_value import ValueSet, NO_VALUES
|
||||
from jedi.inference.gradual.base import DefineGenericBaseClass, GenericClass
|
||||
from jedi.inference.gradual.generics import TupleGenericManager
|
||||
from jedi.inference.gradual.type_var import TypeVar
|
||||
from jedi.inference.helpers import is_string
|
||||
from jedi.inference.compiled import builtin_from_name
|
||||
from jedi.inference.param import get_executed_param_names
|
||||
from jedi import debug
|
||||
from jedi import parser_utils
|
||||
|
||||
|
||||
def infer_annotation(context, annotation):
|
||||
"""
|
||||
Inferes an annotation node. This means that it inferes the part of
|
||||
`int` here:
|
||||
|
||||
foo: int = 3
|
||||
|
||||
Also checks for forward references (strings)
|
||||
"""
|
||||
value_set = context.infer_node(annotation)
|
||||
if len(value_set) != 1:
|
||||
debug.warning("Inferred typing index %s should lead to 1 object, "
|
||||
" not %s" % (annotation, value_set))
|
||||
return value_set
|
||||
|
||||
inferred_value = list(value_set)[0]
|
||||
if is_string(inferred_value):
|
||||
result = _get_forward_reference_node(context, inferred_value.get_safe_value())
|
||||
if result is not None:
|
||||
return context.infer_node(result)
|
||||
return value_set
|
||||
|
||||
|
||||
def _infer_annotation_string(context, string, index=None):
|
||||
node = _get_forward_reference_node(context, string)
|
||||
if node is None:
|
||||
return NO_VALUES
|
||||
|
||||
value_set = context.infer_node(node)
|
||||
if index is not None:
|
||||
value_set = value_set.filter(
|
||||
lambda value: value.array_type == u'tuple' # noqa
|
||||
and len(list(value.py__iter__())) >= index
|
||||
).py__simple_getitem__(index)
|
||||
return value_set
|
||||
|
||||
|
||||
def _get_forward_reference_node(context, string):
|
||||
try:
|
||||
new_node = context.inference_state.grammar.parse(
|
||||
force_unicode(string),
|
||||
start_symbol='eval_input',
|
||||
error_recovery=False
|
||||
)
|
||||
except ParserSyntaxError:
|
||||
debug.warning('Annotation not parsed: %s' % string)
|
||||
return None
|
||||
else:
|
||||
module = context.tree_node.get_root_node()
|
||||
parser_utils.move(new_node, module.end_pos[0])
|
||||
new_node.parent = context.tree_node
|
||||
return new_node
|
||||
|
||||
|
||||
def _split_comment_param_declaration(decl_text):
|
||||
"""
|
||||
Split decl_text on commas, but group generic expressions
|
||||
together.
|
||||
|
||||
For example, given "foo, Bar[baz, biz]" we return
|
||||
['foo', 'Bar[baz, biz]'].
|
||||
|
||||
"""
|
||||
try:
|
||||
node = parse(decl_text, error_recovery=False).children[0]
|
||||
except ParserSyntaxError:
|
||||
debug.warning('Comment annotation is not valid Python: %s' % decl_text)
|
||||
return []
|
||||
|
||||
if node.type in ['name', 'atom_expr', 'power']:
|
||||
return [node.get_code().strip()]
|
||||
|
||||
params = []
|
||||
try:
|
||||
children = node.children
|
||||
except AttributeError:
|
||||
return []
|
||||
else:
|
||||
for child in children:
|
||||
if child.type in ['name', 'atom_expr', 'power']:
|
||||
params.append(child.get_code().strip())
|
||||
|
||||
return params
|
||||
|
||||
|
||||
@inference_state_method_cache()
|
||||
def infer_param(function_value, param, ignore_stars=False):
|
||||
values = _infer_param(function_value, param)
|
||||
if ignore_stars or not values:
|
||||
return values
|
||||
inference_state = function_value.inference_state
|
||||
if param.star_count == 1:
|
||||
tuple_ = builtin_from_name(inference_state, 'tuple')
|
||||
return ValueSet([GenericClass(
|
||||
tuple_,
|
||||
TupleGenericManager((values,)),
|
||||
)])
|
||||
elif param.star_count == 2:
|
||||
dct = builtin_from_name(inference_state, 'dict')
|
||||
generics = (
|
||||
ValueSet([builtin_from_name(inference_state, 'str')]),
|
||||
values
|
||||
)
|
||||
return ValueSet([GenericClass(
|
||||
dct,
|
||||
TupleGenericManager(generics),
|
||||
)])
|
||||
return values
|
||||
|
||||
|
||||
def _infer_param(function_value, param):
|
||||
"""
|
||||
Infers the type of a function parameter, using type annotations.
|
||||
"""
|
||||
annotation = param.annotation
|
||||
if annotation is None:
|
||||
# If no Python 3-style annotation, look for a Python 2-style comment
|
||||
# annotation.
|
||||
# Identify parameters to function in the same sequence as they would
|
||||
# appear in a type comment.
|
||||
all_params = [child for child in param.parent.children
|
||||
if child.type == 'param']
|
||||
|
||||
node = param.parent.parent
|
||||
comment = parser_utils.get_following_comment_same_line(node)
|
||||
if comment is None:
|
||||
return NO_VALUES
|
||||
|
||||
match = re.match(r"^#\s*type:\s*\(([^#]*)\)\s*->", comment)
|
||||
if not match:
|
||||
return NO_VALUES
|
||||
params_comments = _split_comment_param_declaration(match.group(1))
|
||||
|
||||
# Find the specific param being investigated
|
||||
index = all_params.index(param)
|
||||
# If the number of parameters doesn't match length of type comment,
|
||||
# ignore first parameter (assume it's self).
|
||||
if len(params_comments) != len(all_params):
|
||||
debug.warning(
|
||||
"Comments length != Params length %s %s",
|
||||
params_comments, all_params
|
||||
)
|
||||
if function_value.is_bound_method():
|
||||
if index == 0:
|
||||
# Assume it's self, which is already handled
|
||||
return NO_VALUES
|
||||
index -= 1
|
||||
if index >= len(params_comments):
|
||||
return NO_VALUES
|
||||
|
||||
param_comment = params_comments[index]
|
||||
return _infer_annotation_string(
|
||||
function_value.get_default_param_context(),
|
||||
param_comment
|
||||
)
|
||||
# Annotations are like default params and resolve in the same way.
|
||||
context = function_value.get_default_param_context()
|
||||
return infer_annotation(context, annotation)
|
||||
|
||||
|
||||
def py__annotations__(funcdef):
|
||||
dct = {}
|
||||
for function_param in funcdef.get_params():
|
||||
param_annotation = function_param.annotation
|
||||
if param_annotation is not None:
|
||||
dct[function_param.name.value] = param_annotation
|
||||
|
||||
return_annotation = funcdef.annotation
|
||||
if return_annotation:
|
||||
dct['return'] = return_annotation
|
||||
return dct
|
||||
|
||||
|
||||
@inference_state_method_cache()
|
||||
def infer_return_types(function, arguments):
|
||||
"""
|
||||
Infers the type of a function's return value,
|
||||
according to type annotations.
|
||||
"""
|
||||
all_annotations = py__annotations__(function.tree_node)
|
||||
annotation = all_annotations.get("return", None)
|
||||
if annotation is None:
|
||||
# If there is no Python 3-type annotation, look for a Python 2-type annotation
|
||||
node = function.tree_node
|
||||
comment = parser_utils.get_following_comment_same_line(node)
|
||||
if comment is None:
|
||||
return NO_VALUES
|
||||
|
||||
match = re.match(r"^#\s*type:\s*\([^#]*\)\s*->\s*([^#]*)", comment)
|
||||
if not match:
|
||||
return NO_VALUES
|
||||
|
||||
return _infer_annotation_string(
|
||||
function.get_default_param_context(),
|
||||
match.group(1).strip()
|
||||
).execute_annotation()
|
||||
|
||||
context = function.get_default_param_context()
|
||||
unknown_type_vars = find_unknown_type_vars(context, annotation)
|
||||
annotation_values = infer_annotation(context, annotation)
|
||||
if not unknown_type_vars:
|
||||
return annotation_values.execute_annotation()
|
||||
|
||||
type_var_dict = infer_type_vars_for_execution(function, arguments, all_annotations)
|
||||
|
||||
return ValueSet.from_sets(
|
||||
ann.define_generics(type_var_dict)
|
||||
if isinstance(ann, (DefineGenericBaseClass, TypeVar)) else ValueSet({ann})
|
||||
for ann in annotation_values
|
||||
).execute_annotation()
|
||||
|
||||
|
||||
def infer_type_vars_for_execution(function, arguments, annotation_dict):
|
||||
"""
|
||||
Some functions use type vars that are not defined by the class, but rather
|
||||
only defined in the function. See for example `iter`. In those cases we
|
||||
want to:
|
||||
|
||||
1. Search for undefined type vars.
|
||||
2. Infer type vars with the execution state we have.
|
||||
3. Return the union of all type vars that have been found.
|
||||
"""
|
||||
context = function.get_default_param_context()
|
||||
|
||||
annotation_variable_results = {}
|
||||
executed_param_names = get_executed_param_names(function, arguments)
|
||||
for executed_param_name in executed_param_names:
|
||||
try:
|
||||
annotation_node = annotation_dict[executed_param_name.string_name]
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
annotation_variables = find_unknown_type_vars(context, annotation_node)
|
||||
if annotation_variables:
|
||||
# Infer unknown type var
|
||||
annotation_value_set = context.infer_node(annotation_node)
|
||||
kind = executed_param_name.get_kind()
|
||||
actual_value_set = executed_param_name.infer()
|
||||
if kind is Parameter.VAR_POSITIONAL:
|
||||
actual_value_set = actual_value_set.merge_types_of_iterate()
|
||||
elif kind is Parameter.VAR_KEYWORD:
|
||||
# TODO _dict_values is not public.
|
||||
actual_value_set = actual_value_set.try_merge('_dict_values')
|
||||
merge_type_var_dicts(
|
||||
annotation_variable_results,
|
||||
annotation_value_set.infer_type_vars(actual_value_set),
|
||||
)
|
||||
return annotation_variable_results
|
||||
|
||||
|
||||
def infer_return_for_callable(arguments, param_values, result_values):
|
||||
all_type_vars = {}
|
||||
for pv in param_values:
|
||||
if pv.array_type == 'list':
|
||||
type_var_dict = _infer_type_vars_for_callable(arguments, pv.py__iter__())
|
||||
all_type_vars.update(type_var_dict)
|
||||
|
||||
return ValueSet.from_sets(
|
||||
v.define_generics(all_type_vars)
|
||||
if isinstance(v, (DefineGenericBaseClass, TypeVar))
|
||||
else ValueSet({v})
|
||||
for v in result_values
|
||||
).execute_annotation()
|
||||
|
||||
|
||||
def _infer_type_vars_for_callable(arguments, lazy_params):
|
||||
"""
|
||||
Infers type vars for the Calllable class:
|
||||
|
||||
def x() -> Callable[[Callable[..., _T]], _T]: ...
|
||||
"""
|
||||
annotation_variable_results = {}
|
||||
for (_, lazy_value), lazy_callable_param in zip(arguments.unpack(), lazy_params):
|
||||
callable_param_values = lazy_callable_param.infer()
|
||||
# Infer unknown type var
|
||||
actual_value_set = lazy_value.infer()
|
||||
merge_type_var_dicts(
|
||||
annotation_variable_results,
|
||||
callable_param_values.infer_type_vars(actual_value_set),
|
||||
)
|
||||
return annotation_variable_results
|
||||
|
||||
|
||||
def merge_type_var_dicts(base_dict, new_dict):
|
||||
for type_var_name, values in new_dict.items():
|
||||
if values:
|
||||
try:
|
||||
base_dict[type_var_name] |= values
|
||||
except KeyError:
|
||||
base_dict[type_var_name] = values
|
||||
|
||||
|
||||
def merge_pairwise_generics(annotation_value, annotated_argument_class):
|
||||
"""
|
||||
Match up the generic parameters from the given argument class to the
|
||||
target annotation.
|
||||
|
||||
This walks the generic parameters immediately within the annotation and
|
||||
argument's type, in order to determine the concrete values of the
|
||||
annotation's parameters for the current case.
|
||||
|
||||
For example, given the following code:
|
||||
|
||||
def values(mapping: Mapping[K, V]) -> List[V]: ...
|
||||
|
||||
for val in values({1: 'a'}):
|
||||
val
|
||||
|
||||
Then this function should be given representations of `Mapping[K, V]`
|
||||
and `Mapping[int, str]`, so that it can determine that `K` is `int and
|
||||
`V` is `str`.
|
||||
|
||||
Note that it is responsibility of the caller to traverse the MRO of the
|
||||
argument type as needed in order to find the type matching the
|
||||
annotation (in this case finding `Mapping[int, str]` as a parent of
|
||||
`Dict[int, str]`).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
`annotation_value`: represents the annotation to infer the concrete
|
||||
parameter types of.
|
||||
|
||||
`annotated_argument_class`: represents the annotated class of the
|
||||
argument being passed to the object annotated by `annotation_value`.
|
||||
"""
|
||||
|
||||
type_var_dict = {}
|
||||
|
||||
if not isinstance(annotated_argument_class, DefineGenericBaseClass):
|
||||
return type_var_dict
|
||||
|
||||
annotation_generics = annotation_value.get_generics()
|
||||
actual_generics = annotated_argument_class.get_generics()
|
||||
|
||||
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
|
||||
merge_type_var_dicts(
|
||||
type_var_dict,
|
||||
annotation_generics_set.infer_type_vars(actual_generic_set.execute_annotation()),
|
||||
)
|
||||
|
||||
return type_var_dict
|
||||
|
||||
|
||||
def find_type_from_comment_hint_for(context, node, name):
|
||||
return _find_type_from_comment_hint(context, node, node.children[1], name)
|
||||
|
||||
|
||||
def find_type_from_comment_hint_with(context, node, name):
|
||||
assert len(node.children[1].children) == 3, \
|
||||
"Can only be here when children[1] is 'foo() as f'"
|
||||
varlist = node.children[1].children[2]
|
||||
return _find_type_from_comment_hint(context, node, varlist, name)
|
||||
|
||||
|
||||
def find_type_from_comment_hint_assign(context, node, name):
|
||||
return _find_type_from_comment_hint(context, node, node.children[0], name)
|
||||
|
||||
|
||||
def _find_type_from_comment_hint(context, node, varlist, name):
|
||||
index = None
|
||||
if varlist.type in ("testlist_star_expr", "exprlist", "testlist"):
|
||||
# something like "a, b = 1, 2"
|
||||
index = 0
|
||||
for child in varlist.children:
|
||||
if child == name:
|
||||
break
|
||||
if child.type == "operator":
|
||||
continue
|
||||
index += 1
|
||||
else:
|
||||
return []
|
||||
|
||||
comment = parser_utils.get_following_comment_same_line(node)
|
||||
if comment is None:
|
||||
return []
|
||||
match = re.match(r"^#\s*type:\s*([^#]*)", comment)
|
||||
if match is None:
|
||||
return []
|
||||
return _infer_annotation_string(
|
||||
context, match.group(1).strip(), index
|
||||
).execute_annotation()
|
||||
|
||||
|
||||
def find_unknown_type_vars(context, node):
|
||||
def check_node(node):
|
||||
if node.type in ('atom_expr', 'power'):
|
||||
trailer = node.children[-1]
|
||||
if trailer.type == 'trailer' and trailer.children[0] == '[':
|
||||
for subscript_node in _unpack_subscriptlist(trailer.children[1]):
|
||||
check_node(subscript_node)
|
||||
else:
|
||||
found[:] = _filter_type_vars(context.infer_node(node), found)
|
||||
|
||||
found = [] # We're not using a set, because the order matters.
|
||||
check_node(node)
|
||||
return found
|
||||
|
||||
|
||||
def _filter_type_vars(value_set, found=()):
|
||||
new_found = list(found)
|
||||
for type_var in value_set:
|
||||
if isinstance(type_var, TypeVar) and type_var not in found:
|
||||
new_found.append(type_var)
|
||||
return new_found
|
||||
|
||||
|
||||
def _unpack_subscriptlist(subscriptlist):
|
||||
if subscriptlist.type == 'subscriptlist':
|
||||
for subscript in subscriptlist.children[::2]:
|
||||
if subscript.type != 'subscript':
|
||||
yield subscript
|
||||
else:
|
||||
if subscriptlist.type != 'subscript':
|
||||
yield subscriptlist
|
Loading…
Add table
Add a link
Reference in a new issue