Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/utils/validation.py

1379 lines
52 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""Utilities for input validation"""
# Authors: Olivier Grisel
# Gael Varoquaux
# Andreas Mueller
# Lars Buitinck
# Alexandre Gramfort
# Nicolas Tresegnie
# Sylvain Marie
# License: BSD 3 clause
from functools import wraps
import warnings
import numbers
import numpy as np
import scipy.sparse as sp
from inspect import signature, isclass, Parameter
from numpy.core.numeric import ComplexWarning
import joblib
from contextlib import suppress
from .fixes import _object_dtype_isnan, parse_version
from .. import get_config as _get_config
from ..exceptions import NonBLASDotWarning, PositiveSpectrumWarning
from ..exceptions import NotFittedError
from ..exceptions import DataConversionWarning
FLOAT_DTYPES = (np.float64, np.float32, np.float16)
# Silenced by default to reduce verbosity. Turn on at runtime for
# performance profiling.
warnings.simplefilter('ignore', NonBLASDotWarning)
def _deprecate_positional_args(f):
"""Decorator for methods that issues warnings for positional arguments
Using the keyword-only argument syntax in pep 3102, arguments after the
* will issue a warning when passed as a positional argument.
Parameters
----------
f : function
function to check arguments on
"""
sig = signature(f)
kwonly_args = []
all_args = []
for name, param in sig.parameters.items():
if param.kind == Parameter.POSITIONAL_OR_KEYWORD:
all_args.append(name)
elif param.kind == Parameter.KEYWORD_ONLY:
kwonly_args.append(name)
@wraps(f)
def inner_f(*args, **kwargs):
extra_args = len(args) - len(all_args)
if extra_args > 0:
# ignore first 'self' argument for instance methods
args_msg = ['{}={}'.format(name, arg)
for name, arg in zip(kwonly_args[:extra_args],
args[-extra_args:])]
warnings.warn("Pass {} as keyword args. From version 0.25 "
"passing these as positional arguments will "
"result in an error".format(", ".join(args_msg)),
FutureWarning)
kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
return f(**kwargs)
return inner_f
def _assert_all_finite(X, allow_nan=False, msg_dtype=None):
"""Like assert_all_finite, but only for ndarray."""
# validation is also imported in extmath
from .extmath import _safe_accumulator_op
if _get_config()['assume_finite']:
return
X = np.asanyarray(X)
# First try an O(n) time, O(1) space solution for the common case that
# everything is finite; fall back to O(n) space np.isfinite to prevent
# false positives from overflow in sum method. The sum is also calculated
# safely to reduce dtype induced overflows.
is_float = X.dtype.kind in 'fc'
if is_float and (np.isfinite(_safe_accumulator_op(np.sum, X))):
pass
elif is_float:
msg_err = "Input contains {} or a value too large for {!r}."
if (allow_nan and np.isinf(X).any() or
not allow_nan and not np.isfinite(X).all()):
type_err = 'infinity' if allow_nan else 'NaN, infinity'
raise ValueError(
msg_err.format
(type_err,
msg_dtype if msg_dtype is not None else X.dtype)
)
# for object dtype data, we only check for NaNs (GH-13254)
elif X.dtype == np.dtype('object') and not allow_nan:
if _object_dtype_isnan(X).any():
raise ValueError("Input contains NaN")
@_deprecate_positional_args
def assert_all_finite(X, *, allow_nan=False):
"""Throw a ValueError if X contains NaN or infinity.
Parameters
----------
X : array or sparse matrix
allow_nan : bool
"""
_assert_all_finite(X.data if sp.issparse(X) else X, allow_nan)
@_deprecate_positional_args
def as_float_array(X, *, copy=True, force_all_finite=True):
"""Converts an array-like to an array of floats.
The new dtype will be np.float32 or np.float64, depending on the original
type. The function can create a copy or modify the argument depending
on the argument copy.
Parameters
----------
X : {array-like, sparse matrix}
copy : bool, optional
If True, a copy of X will be created. If False, a copy may still be
returned if X's dtype is not a floating point type.
force_all_finite : boolean or 'allow-nan', (default=True)
Whether to raise an error on np.inf, np.nan, pd.NA in X. The
possibilities are:
- True: Force all values of X to be finite.
- False: accepts np.inf, np.nan, pd.NA in X.
- 'allow-nan': accepts only np.nan and pd.NA values in X. Values cannot
be infinite.
.. versionadded:: 0.20
``force_all_finite`` accepts the string ``'allow-nan'``.
.. versionchanged:: 0.23
Accepts `pd.NA` and converts it into `np.nan`
Returns
-------
XT : {array, sparse matrix}
An array of type np.float
"""
if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray)
and not sp.issparse(X)):
return check_array(X, accept_sparse=['csr', 'csc', 'coo'],
dtype=np.float64, copy=copy,
force_all_finite=force_all_finite, ensure_2d=False)
elif sp.issparse(X) and X.dtype in [np.float32, np.float64]:
return X.copy() if copy else X
elif X.dtype in [np.float32, np.float64]: # is numpy array
return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X
else:
if X.dtype.kind in 'uib' and X.dtype.itemsize <= 4:
return_dtype = np.float32
else:
return_dtype = np.float64
return X.astype(return_dtype)
def _is_arraylike(x):
"""Returns whether the input is array-like"""
return (hasattr(x, '__len__') or
hasattr(x, 'shape') or
hasattr(x, '__array__'))
def _num_samples(x):
"""Return number of samples in array-like x."""
message = 'Expected sequence or array-like, got %s' % type(x)
if hasattr(x, 'fit') and callable(x.fit):
# Don't get num_samples from an ensembles length!
raise TypeError(message)
if not hasattr(x, '__len__') and not hasattr(x, 'shape'):
if hasattr(x, '__array__'):
x = np.asarray(x)
else:
raise TypeError(message)
if hasattr(x, 'shape') and x.shape is not None:
if len(x.shape) == 0:
raise TypeError("Singleton array %r cannot be considered"
" a valid collection." % x)
# Check that shape is returning an integer or default to len
# Dask dataframes may not return numeric shape[0] value
if isinstance(x.shape[0], numbers.Integral):
return x.shape[0]
try:
return len(x)
except TypeError:
raise TypeError(message)
def check_memory(memory):
"""Check that ``memory`` is joblib.Memory-like.
joblib.Memory-like means that ``memory`` can be converted into a
joblib.Memory instance (typically a str denoting the ``location``)
or has the same interface (has a ``cache`` method).
Parameters
----------
memory : None, str or object with the joblib.Memory interface
Returns
-------
memory : object with the joblib.Memory interface
Raises
------
ValueError
If ``memory`` is not joblib.Memory-like.
"""
if memory is None or isinstance(memory, str):
if parse_version(joblib.__version__) < parse_version('0.12'):
memory = joblib.Memory(cachedir=memory, verbose=0)
else:
memory = joblib.Memory(location=memory, verbose=0)
elif not hasattr(memory, 'cache'):
raise ValueError("'memory' should be None, a string or have the same"
" interface as joblib.Memory."
" Got memory='{}' instead.".format(memory))
return memory
def check_consistent_length(*arrays):
"""Check that all arrays have consistent first dimensions.
Checks whether all objects in arrays have the same shape or length.
Parameters
----------
*arrays : list or tuple of input objects.
Objects that will be checked for consistent length.
"""
lengths = [_num_samples(X) for X in arrays if X is not None]
uniques = np.unique(lengths)
if len(uniques) > 1:
raise ValueError("Found input variables with inconsistent numbers of"
" samples: %r" % [int(l) for l in lengths])
def _make_indexable(iterable):
"""Ensure iterable supports indexing or convert to an indexable variant.
Convert sparse matrices to csr and other non-indexable iterable to arrays.
Let `None` and indexable objects (e.g. pandas dataframes) pass unchanged.
Parameters
----------
iterable : {list, dataframe, array, sparse} or None
Object to be converted to an indexable iterable.
"""
if sp.issparse(iterable):
return iterable.tocsr()
elif hasattr(iterable, "__getitem__") or hasattr(iterable, "iloc"):
return iterable
elif iterable is None:
return iterable
return np.array(iterable)
def indexable(*iterables):
"""Make arrays indexable for cross-validation.
Checks consistent length, passes through None, and ensures that everything
can be indexed by converting sparse matrices to csr and converting
non-interable objects to arrays.
Parameters
----------
*iterables : lists, dataframes, arrays, sparse matrices
List of objects to ensure sliceability.
"""
result = [_make_indexable(X) for X in iterables]
check_consistent_length(*result)
return result
def _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy,
force_all_finite, accept_large_sparse):
"""Convert a sparse matrix to a given format.
Checks the sparse format of spmatrix and converts if necessary.
Parameters
----------
spmatrix : scipy sparse matrix
Input to validate and convert.
accept_sparse : string, boolean or list/tuple of strings
String[s] representing allowed sparse matrix formats ('csc',
'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). If the input is sparse but
not in the allowed format, it will be converted to the first listed
format. True allows the input to be any format. False means
that a sparse matrix input will raise an error.
dtype : string, type or None
Data type of result. If None, the dtype of the input is preserved.
copy : boolean
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean or 'allow-nan', (default=True)
Whether to raise an error on np.inf, np.nan, pd.NA in X. The
possibilities are:
- True: Force all values of X to be finite.
- False: accepts np.inf, np.nan, pd.NA in X.
- 'allow-nan': accepts only np.nan and pd.NA values in X. Values cannot
be infinite.
.. versionadded:: 0.20
``force_all_finite`` accepts the string ``'allow-nan'``.
.. versionchanged:: 0.23
Accepts `pd.NA` and converts it into `np.nan`
Returns
-------
spmatrix_converted : scipy sparse matrix.
Matrix that is ensured to have an allowed type.
"""
if dtype is None:
dtype = spmatrix.dtype
changed_format = False
if isinstance(accept_sparse, str):
accept_sparse = [accept_sparse]
# Indices dtype validation
_check_large_sparse(spmatrix, accept_large_sparse)
if accept_sparse is False:
raise TypeError('A sparse matrix was passed, but dense '
'data is required. Use X.toarray() to '
'convert to a dense numpy array.')
elif isinstance(accept_sparse, (list, tuple)):
if len(accept_sparse) == 0:
raise ValueError("When providing 'accept_sparse' "
"as a tuple or list, it must contain at "
"least one string value.")
# ensure correct sparse format
if spmatrix.format not in accept_sparse:
# create new with correct sparse
spmatrix = spmatrix.asformat(accept_sparse[0])
changed_format = True
elif accept_sparse is not True:
# any other type
raise ValueError("Parameter 'accept_sparse' should be a string, "
"boolean or list of strings. You provided "
"'accept_sparse={}'.".format(accept_sparse))
if dtype != spmatrix.dtype:
# convert dtype
spmatrix = spmatrix.astype(dtype)
elif copy and not changed_format:
# force copy
spmatrix = spmatrix.copy()
if force_all_finite:
if not hasattr(spmatrix, "data"):
warnings.warn("Can't check %s sparse matrix for nan or inf."
% spmatrix.format, stacklevel=2)
else:
_assert_all_finite(spmatrix.data,
allow_nan=force_all_finite == 'allow-nan')
return spmatrix
def _ensure_no_complex_data(array):
if hasattr(array, 'dtype') and array.dtype is not None \
and hasattr(array.dtype, 'kind') and array.dtype.kind == "c":
raise ValueError("Complex data not supported\n"
"{}\n".format(array))
@_deprecate_positional_args
def check_array(array, accept_sparse=False, *, accept_large_sparse=True,
dtype="numeric", order=None, copy=False, force_all_finite=True,
ensure_2d=True, allow_nd=False, ensure_min_samples=1,
ensure_min_features=1, estimator=None):
"""Input validation on an array, list, sparse matrix or similar.
By default, the input is checked to be a non-empty 2D array containing
only finite values. If the dtype of the array is object, attempt
converting to float, raising on failure.
Parameters
----------
array : object
Input object to check / convert.
accept_sparse : string, boolean or list/tuple of strings (default=False)
String[s] representing allowed sparse matrix formats, such as 'csc',
'csr', etc. If the input is sparse but not in the allowed format,
it will be converted to the first listed format. True allows the input
to be any format. False means that a sparse matrix input will
raise an error.
accept_large_sparse : bool (default=True)
If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by
accept_sparse, accept_large_sparse=False will cause it to be accepted
only if its indices are stored with a 32-bit dtype.
.. versionadded:: 0.20
dtype : string, type, list of types or None (default="numeric")
Data type of result. If None, the dtype of the input is preserved.
If "numeric", dtype is preserved unless array.dtype is object.
If dtype is a list of types, conversion on the first type is only
performed if the dtype of the input is not in the list.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
When order is None (default), then if copy=False, nothing is ensured
about the memory layout of the output array; otherwise (copy=True)
the memory layout of the returned array is kept as close as possible
to the original array.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean or 'allow-nan', (default=True)
Whether to raise an error on np.inf, np.nan, pd.NA in array. The
possibilities are:
- True: Force all values of array to be finite.
- False: accepts np.inf, np.nan, pd.NA in array.
- 'allow-nan': accepts only np.nan and pd.NA values in array. Values
cannot be infinite.
.. versionadded:: 0.20
``force_all_finite`` accepts the string ``'allow-nan'``.
.. versionchanged:: 0.23
Accepts `pd.NA` and converts it into `np.nan`
ensure_2d : boolean (default=True)
Whether to raise a value error if array is not 2D.
allow_nd : boolean (default=False)
Whether to allow array.ndim > 2.
ensure_min_samples : int (default=1)
Make sure that the array has a minimum number of samples in its first
axis (rows for a 2D array). Setting to 0 disables this check.
ensure_min_features : int (default=1)
Make sure that the 2D array has some minimum number of features
(columns). The default value of 1 rejects empty datasets.
This check is only enforced when the input data has effectively 2
dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0
disables this check.
estimator : str or estimator instance (default=None)
If passed, include the name of the estimator in warning messages.
Returns
-------
array_converted : object
The converted and validated array.
"""
# store reference to original array to check if copy is needed when
# function returns
array_orig = array
# store whether originally we wanted numeric dtype
dtype_numeric = isinstance(dtype, str) and dtype == "numeric"
dtype_orig = getattr(array, "dtype", None)
if not hasattr(dtype_orig, 'kind'):
# not a data type (e.g. a column named dtype in a pandas DataFrame)
dtype_orig = None
# check if the object contains several dtypes (typically a pandas
# DataFrame), and store them. If not, store None.
dtypes_orig = None
has_pd_integer_array = False
if hasattr(array, "dtypes") and hasattr(array.dtypes, '__array__'):
# throw warning if columns are sparse. If all columns are sparse, then
# array.sparse exists and sparsity will be perserved (later).
with suppress(ImportError):
from pandas.api.types import is_sparse
if (not hasattr(array, 'sparse') and
array.dtypes.apply(is_sparse).any()):
warnings.warn(
"pandas.DataFrame with sparse columns found."
"It will be converted to a dense numpy array."
)
dtypes_orig = list(array.dtypes)
# pandas boolean dtype __array__ interface coerces bools to objects
for i, dtype_iter in enumerate(dtypes_orig):
if dtype_iter.kind == 'b':
dtypes_orig[i] = np.dtype(np.object)
elif dtype_iter.name.startswith(("Int", "UInt")):
# name looks like an Integer Extension Array, now check for
# the dtype
with suppress(ImportError):
from pandas import (Int8Dtype, Int16Dtype,
Int32Dtype, Int64Dtype,
UInt8Dtype, UInt16Dtype,
UInt32Dtype, UInt64Dtype)
if isinstance(dtype_iter, (Int8Dtype, Int16Dtype,
Int32Dtype, Int64Dtype,
UInt8Dtype, UInt16Dtype,
UInt32Dtype, UInt64Dtype)):
has_pd_integer_array = True
if all(isinstance(dtype, np.dtype) for dtype in dtypes_orig):
dtype_orig = np.result_type(*dtypes_orig)
if dtype_numeric:
if dtype_orig is not None and dtype_orig.kind == "O":
# if input is object, convert to float.
dtype = np.float64
else:
dtype = None
if isinstance(dtype, (list, tuple)):
if dtype_orig is not None and dtype_orig in dtype:
# no dtype conversion required
dtype = None
else:
# dtype conversion required. Let's select the first element of the
# list of accepted types.
dtype = dtype[0]
if has_pd_integer_array:
# If there are any pandas integer extension arrays,
array = array.astype(dtype)
if force_all_finite not in (True, False, 'allow-nan'):
raise ValueError('force_all_finite should be a bool or "allow-nan"'
'. Got {!r} instead'.format(force_all_finite))
if estimator is not None:
if isinstance(estimator, str):
estimator_name = estimator
else:
estimator_name = estimator.__class__.__name__
else:
estimator_name = "Estimator"
context = " by %s" % estimator_name if estimator is not None else ""
# When all dataframe columns are sparse, convert to a sparse array
if hasattr(array, 'sparse') and array.ndim > 1:
# DataFrame.sparse only supports `to_coo`
array = array.sparse.to_coo()
if sp.issparse(array):
_ensure_no_complex_data(array)
array = _ensure_sparse_format(array, accept_sparse=accept_sparse,
dtype=dtype, copy=copy,
force_all_finite=force_all_finite,
accept_large_sparse=accept_large_sparse)
else:
# If np.array(..) gives ComplexWarning, then we convert the warning
# to an error. This is needed because specifying a non complex
# dtype to the function converts complex to real dtype,
# thereby passing the test made in the lines following the scope
# of warnings context manager.
with warnings.catch_warnings():
try:
warnings.simplefilter('error', ComplexWarning)
if dtype is not None and np.dtype(dtype).kind in 'iu':
# Conversion float -> int should not contain NaN or
# inf (numpy#14412). We cannot use casting='safe' because
# then conversion float -> int would be disallowed.
array = np.asarray(array, order=order)
if array.dtype.kind == 'f':
_assert_all_finite(array, allow_nan=False,
msg_dtype=dtype)
array = array.astype(dtype, casting="unsafe", copy=False)
else:
array = np.asarray(array, order=order, dtype=dtype)
except ComplexWarning:
raise ValueError("Complex data not supported\n"
"{}\n".format(array))
# It is possible that the np.array(..) gave no warning. This happens
# when no dtype conversion happened, for example dtype = None. The
# result is that np.array(..) produces an array of complex dtype
# and we need to catch and raise exception for such cases.
_ensure_no_complex_data(array)
if ensure_2d:
# If input is scalar raise error
if array.ndim == 0:
raise ValueError(
"Expected 2D array, got scalar array instead:\narray={}.\n"
"Reshape your data either using array.reshape(-1, 1) if "
"your data has a single feature or array.reshape(1, -1) "
"if it contains a single sample.".format(array))
# If input is 1D raise error
if array.ndim == 1:
raise ValueError(
"Expected 2D array, got 1D array instead:\narray={}.\n"
"Reshape your data either using array.reshape(-1, 1) if "
"your data has a single feature or array.reshape(1, -1) "
"if it contains a single sample.".format(array))
# in the future np.flexible dtypes will be handled like object dtypes
if dtype_numeric and np.issubdtype(array.dtype, np.flexible):
warnings.warn(
"Beginning in version 0.22, arrays of bytes/strings will be "
"converted to decimal numbers if dtype='numeric'. "
"It is recommended that you convert the array to "
"a float dtype before using it in scikit-learn, "
"for example by using "
"your_array = your_array.astype(np.float64).",
FutureWarning, stacklevel=2)
# make sure we actually converted to numeric:
if dtype_numeric and array.dtype.kind == "O":
array = array.astype(np.float64)
if not allow_nd and array.ndim >= 3:
raise ValueError("Found array with dim %d. %s expected <= 2."
% (array.ndim, estimator_name))
if force_all_finite:
_assert_all_finite(array,
allow_nan=force_all_finite == 'allow-nan')
if ensure_min_samples > 0:
n_samples = _num_samples(array)
if n_samples < ensure_min_samples:
raise ValueError("Found array with %d sample(s) (shape=%s) while a"
" minimum of %d is required%s."
% (n_samples, array.shape, ensure_min_samples,
context))
if ensure_min_features > 0 and array.ndim == 2:
n_features = array.shape[1]
if n_features < ensure_min_features:
raise ValueError("Found array with %d feature(s) (shape=%s) while"
" a minimum of %d is required%s."
% (n_features, array.shape, ensure_min_features,
context))
if copy and np.may_share_memory(array, array_orig):
array = np.array(array, dtype=dtype, order=order)
return array
def _check_large_sparse(X, accept_large_sparse=False):
"""Raise a ValueError if X has 64bit indices and accept_large_sparse=False
"""
if not accept_large_sparse:
supported_indices = ["int32"]
if X.getformat() == "coo":
index_keys = ['col', 'row']
elif X.getformat() in ["csr", "csc", "bsr"]:
index_keys = ['indices', 'indptr']
else:
return
for key in index_keys:
indices_datatype = getattr(X, key).dtype
if (indices_datatype not in supported_indices):
raise ValueError("Only sparse matrices with 32-bit integer"
" indices are accepted. Got %s indices."
% indices_datatype)
@_deprecate_positional_args
def check_X_y(X, y, accept_sparse=False, *, accept_large_sparse=True,
dtype="numeric", order=None, copy=False, force_all_finite=True,
ensure_2d=True, allow_nd=False, multi_output=False,
ensure_min_samples=1, ensure_min_features=1, y_numeric=False,
estimator=None):
"""Input validation for standard estimators.
Checks X and y for consistent length, enforces X to be 2D and y 1D. By
default, X is checked to be non-empty and containing only finite values.
Standard input checks are also applied to y, such as checking that y
does not have np.nan or np.inf targets. For multi-label y, set
multi_output=True to allow 2D and sparse y. If the dtype of X is
object, attempt converting to float, raising on failure.
Parameters
----------
X : nd-array, list or sparse matrix
Input data.
y : nd-array, list or sparse matrix
Labels.
accept_sparse : string, boolean or list of string (default=False)
String[s] representing allowed sparse matrix formats, such as 'csc',
'csr', etc. If the input is sparse but not in the allowed format,
it will be converted to the first listed format. True allows the input
to be any format. False means that a sparse matrix input will
raise an error.
accept_large_sparse : bool (default=True)
If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by
accept_sparse, accept_large_sparse will cause it to be accepted only
if its indices are stored with a 32-bit dtype.
.. versionadded:: 0.20
dtype : string, type, list of types or None (default="numeric")
Data type of result. If None, the dtype of the input is preserved.
If "numeric", dtype is preserved unless array.dtype is object.
If dtype is a list of types, conversion on the first type is only
performed if the dtype of the input is not in the list.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean or 'allow-nan', (default=True)
Whether to raise an error on np.inf, np.nan, pd.NA in X. This parameter
does not influence whether y can have np.inf, np.nan, pd.NA values.
The possibilities are:
- True: Force all values of X to be finite.
- False: accepts np.inf, np.nan, pd.NA in X.
- 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot
be infinite.
.. versionadded:: 0.20
``force_all_finite`` accepts the string ``'allow-nan'``.
.. versionchanged:: 0.23
Accepts `pd.NA` and converts it into `np.nan`
ensure_2d : boolean (default=True)
Whether to raise a value error if X is not 2D.
allow_nd : boolean (default=False)
Whether to allow X.ndim > 2.
multi_output : boolean (default=False)
Whether to allow 2D y (array or sparse matrix). If false, y will be
validated as a vector. y cannot have np.nan or np.inf values if
multi_output=True.
ensure_min_samples : int (default=1)
Make sure that X has a minimum number of samples in its first
axis (rows for a 2D array).
ensure_min_features : int (default=1)
Make sure that the 2D array has some minimum number of features
(columns). The default value of 1 rejects empty datasets.
This check is only enforced when X has effectively 2 dimensions or
is originally 1D and ``ensure_2d`` is True. Setting to 0 disables
this check.
y_numeric : boolean (default=False)
Whether to ensure that y has a numeric type. If dtype of y is object,
it is converted to float64. Should only be used for regression
algorithms.
estimator : str or estimator instance (default=None)
If passed, include the name of the estimator in warning messages.
Returns
-------
X_converted : object
The converted and validated X.
y_converted : object
The converted and validated y.
"""
if y is None:
raise ValueError("y cannot be None")
X = check_array(X, accept_sparse=accept_sparse,
accept_large_sparse=accept_large_sparse,
dtype=dtype, order=order, copy=copy,
force_all_finite=force_all_finite,
ensure_2d=ensure_2d, allow_nd=allow_nd,
ensure_min_samples=ensure_min_samples,
ensure_min_features=ensure_min_features,
estimator=estimator)
if multi_output:
y = check_array(y, accept_sparse='csr', force_all_finite=True,
ensure_2d=False, dtype=None)
else:
y = column_or_1d(y, warn=True)
_assert_all_finite(y)
if y_numeric and y.dtype.kind == 'O':
y = y.astype(np.float64)
check_consistent_length(X, y)
return X, y
@_deprecate_positional_args
def column_or_1d(y, *, warn=False):
""" Ravel column or 1d numpy array, else raises an error
Parameters
----------
y : array-like
warn : boolean, default False
To control display of warnings.
Returns
-------
y : array
"""
y = np.asarray(y)
shape = np.shape(y)
if len(shape) == 1:
return np.ravel(y)
if len(shape) == 2 and shape[1] == 1:
if warn:
warnings.warn("A column-vector y was passed when a 1d array was"
" expected. Please change the shape of y to "
"(n_samples, ), for example using ravel().",
DataConversionWarning, stacklevel=2)
return np.ravel(y)
raise ValueError(
"y should be a 1d array, "
"got an array of shape {} instead.".format(shape))
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance
Parameters
----------
seed : None | int | instance of RandomState
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, numbers.Integral):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
def has_fit_parameter(estimator, parameter):
"""Checks whether the estimator's fit method supports the given parameter.
Parameters
----------
estimator : object
An estimator to inspect.
parameter : str
The searched parameter.
Returns
-------
is_parameter: bool
Whether the parameter was found to be a named parameter of the
estimator's fit method.
Examples
--------
>>> from sklearn.svm import SVC
>>> has_fit_parameter(SVC(), "sample_weight")
True
"""
return parameter in signature(estimator.fit).parameters
@_deprecate_positional_args
def check_symmetric(array, *, tol=1E-10, raise_warning=True,
raise_exception=False):
"""Make sure that array is 2D, square and symmetric.
If the array is not symmetric, then a symmetrized version is returned.
Optionally, a warning or exception is raised if the matrix is not
symmetric.
Parameters
----------
array : nd-array or sparse matrix
Input object to check / convert. Must be two-dimensional and square,
otherwise a ValueError will be raised.
tol : float
Absolute tolerance for equivalence of arrays. Default = 1E-10.
raise_warning : boolean (default=True)
If True then raise a warning if conversion is required.
raise_exception : boolean (default=False)
If True then raise an exception if array is not symmetric.
Returns
-------
array_sym : ndarray or sparse matrix
Symmetrized version of the input array, i.e. the average of array
and array.transpose(). If sparse, then duplicate entries are first
summed and zeros are eliminated.
"""
if (array.ndim != 2) or (array.shape[0] != array.shape[1]):
raise ValueError("array must be 2-dimensional and square. "
"shape = {0}".format(array.shape))
if sp.issparse(array):
diff = array - array.T
# only csr, csc, and coo have `data` attribute
if diff.format not in ['csr', 'csc', 'coo']:
diff = diff.tocsr()
symmetric = np.all(abs(diff.data) < tol)
else:
symmetric = np.allclose(array, array.T, atol=tol)
if not symmetric:
if raise_exception:
raise ValueError("Array must be symmetric")
if raise_warning:
warnings.warn("Array is not symmetric, and will be converted "
"to symmetric by average with its transpose.",
stacklevel=2)
if sp.issparse(array):
conversion = 'to' + array.format
array = getattr(0.5 * (array + array.T), conversion)()
else:
array = 0.5 * (array + array.T)
return array
@_deprecate_positional_args
def check_is_fitted(estimator, attributes=None, *, msg=None, all_or_any=all):
"""Perform is_fitted validation for estimator.
Checks if the estimator is fitted by verifying the presence of
fitted attributes (ending with a trailing underscore) and otherwise
raises a NotFittedError with the given message.
This utility is meant to be used internally by estimators themselves,
typically in their own predict / transform methods.
Parameters
----------
estimator : estimator instance.
estimator instance for which the check is performed.
attributes : str, list or tuple of str, default=None
Attribute name(s) given as string or a list/tuple of strings
Eg.: ``["coef_", "estimator_", ...], "coef_"``
If `None`, `estimator` is considered fitted if there exist an
attribute that ends with a underscore and does not start with double
underscore.
msg : string
The default error message is, "This %(name)s instance is not fitted
yet. Call 'fit' with appropriate arguments before using this
estimator."
For custom messages if "%(name)s" is present in the message string,
it is substituted for the estimator name.
Eg. : "Estimator, %(name)s, must be fitted before sparsifying".
all_or_any : callable, {all, any}, default all
Specify whether all or any of the given attributes must exist.
Returns
-------
None
Raises
------
NotFittedError
If the attributes are not found.
"""
if isclass(estimator):
raise TypeError("{} is a class, not an instance.".format(estimator))
if msg is None:
msg = ("This %(name)s instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using this estimator.")
if not hasattr(estimator, 'fit'):
raise TypeError("%s is not an estimator instance." % (estimator))
if attributes is not None:
if not isinstance(attributes, (list, tuple)):
attributes = [attributes]
attrs = all_or_any([hasattr(estimator, attr) for attr in attributes])
else:
attrs = [v for v in vars(estimator)
if v.endswith("_") and not v.startswith("__")]
if not attrs:
raise NotFittedError(msg % {'name': type(estimator).__name__})
def check_non_negative(X, whom):
"""
Check if there is any negative value in an array.
Parameters
----------
X : array-like or sparse matrix
Input data.
whom : string
Who passed X to this function.
"""
# avoid X.min() on sparse matrix since it also sorts the indices
if sp.issparse(X):
if X.format in ['lil', 'dok']:
X = X.tocsr()
if X.data.size == 0:
X_min = 0
else:
X_min = X.data.min()
else:
X_min = X.min()
if X_min < 0:
raise ValueError("Negative values in data passed to %s" % whom)
def check_scalar(x, name, target_type, *, min_val=None, max_val=None):
"""Validate scalar parameters type and value.
Parameters
----------
x : object
The scalar parameter to validate.
name : str
The name of the parameter to be printed in error messages.
target_type : type or tuple
Acceptable data types for the parameter.
min_val : float or int, optional (default=None)
The minimum valid value the parameter can take. If None (default) it
is implied that the parameter does not have a lower bound.
max_val : float or int, optional (default=None)
The maximum valid value the parameter can take. If None (default) it
is implied that the parameter does not have an upper bound.
Raises
-------
TypeError
If the parameter's type does not match the desired type.
ValueError
If the parameter's value violates the given bounds.
"""
if not isinstance(x, target_type):
raise TypeError('`{}` must be an instance of {}, not {}.'
.format(name, target_type, type(x)))
if min_val is not None and x < min_val:
raise ValueError('`{}`= {}, must be >= {}.'.format(name, x, min_val))
if max_val is not None and x > max_val:
raise ValueError('`{}`= {}, must be <= {}.'.format(name, x, max_val))
def _check_psd_eigenvalues(lambdas, enable_warnings=False):
"""Check the eigenvalues of a positive semidefinite (PSD) matrix.
Checks the provided array of PSD matrix eigenvalues for numerical or
conditioning issues and returns a fixed validated version. This method
should typically be used if the PSD matrix is user-provided (e.g. a
Gram matrix) or computed using a user-provided dissimilarity metric
(e.g. kernel function), or if the decomposition process uses approximation
methods (randomized SVD, etc.).
It checks for three things:
- that there are no significant imaginary parts in eigenvalues (more than
1e-5 times the maximum real part). If this check fails, it raises a
``ValueError``. Otherwise all non-significant imaginary parts that may
remain are set to zero. This operation is traced with a
``PositiveSpectrumWarning`` when ``enable_warnings=True``.
- that eigenvalues are not all negative. If this check fails, it raises a
``ValueError``
- that there are no significant negative eigenvalues with absolute value
more than 1e-10 (1e-6) and more than 1e-5 (5e-3) times the largest
positive eigenvalue in double (simple) precision. If this check fails,
it raises a ``ValueError``. Otherwise all negative eigenvalues that may
remain are set to zero. This operation is traced with a
``PositiveSpectrumWarning`` when ``enable_warnings=True``.
Finally, all the positive eigenvalues that are too small (with a value
smaller than the maximum eigenvalue divided by 1e12) are set to zero.
This operation is traced with a ``PositiveSpectrumWarning`` when
``enable_warnings=True``.
Parameters
----------
lambdas : array-like of shape (n_eigenvalues,)
Array of eigenvalues to check / fix.
enable_warnings : bool, default=False
When this is set to ``True``, a ``PositiveSpectrumWarning`` will be
raised when there are imaginary parts, negative eigenvalues, or
extremely small non-zero eigenvalues. Otherwise no warning will be
raised. In both cases, imaginary parts, negative eigenvalues, and
extremely small non-zero eigenvalues will be set to zero.
Returns
-------
lambdas_fixed : ndarray of shape (n_eigenvalues,)
A fixed validated copy of the array of eigenvalues.
Examples
--------
>>> _check_psd_eigenvalues([1, 2]) # nominal case
array([1, 2])
>>> _check_psd_eigenvalues([5, 5j]) # significant imag part
Traceback (most recent call last):
...
ValueError: There are significant imaginary parts in eigenvalues (1
of the maximum real part). Either the matrix is not PSD, or there was
an issue while computing the eigendecomposition of the matrix.
>>> _check_psd_eigenvalues([5, 5e-5j]) # insignificant imag part
array([5., 0.])
>>> _check_psd_eigenvalues([-5, -1]) # all negative
Traceback (most recent call last):
...
ValueError: All eigenvalues are negative (maximum is -1). Either the
matrix is not PSD, or there was an issue while computing the
eigendecomposition of the matrix.
>>> _check_psd_eigenvalues([5, -1]) # significant negative
Traceback (most recent call last):
...
ValueError: There are significant negative eigenvalues (0.2 of the
maximum positive). Either the matrix is not PSD, or there was an issue
while computing the eigendecomposition of the matrix.
>>> _check_psd_eigenvalues([5, -5e-5]) # insignificant negative
array([5., 0.])
>>> _check_psd_eigenvalues([5, 4e-12]) # bad conditioning (too small)
array([5., 0.])
"""
lambdas = np.array(lambdas)
is_double_precision = lambdas.dtype == np.float64
# note: the minimum value available is
# - single-precision: np.finfo('float32').eps = 1.2e-07
# - double-precision: np.finfo('float64').eps = 2.2e-16
# the various thresholds used for validation
# we may wish to change the value according to precision.
significant_imag_ratio = 1e-5
significant_neg_ratio = 1e-5 if is_double_precision else 5e-3
significant_neg_value = 1e-10 if is_double_precision else 1e-6
small_pos_ratio = 1e-12
# Check that there are no significant imaginary parts
if not np.isreal(lambdas).all():
max_imag_abs = np.abs(np.imag(lambdas)).max()
max_real_abs = np.abs(np.real(lambdas)).max()
if max_imag_abs > significant_imag_ratio * max_real_abs:
raise ValueError(
"There are significant imaginary parts in eigenvalues (%g "
"of the maximum real part). Either the matrix is not PSD, or "
"there was an issue while computing the eigendecomposition "
"of the matrix."
% (max_imag_abs / max_real_abs))
# warn about imaginary parts being removed
if enable_warnings:
warnings.warn("There are imaginary parts in eigenvalues (%g "
"of the maximum real part). Either the matrix is not"
" PSD, or there was an issue while computing the "
"eigendecomposition of the matrix. Only the real "
"parts will be kept."
% (max_imag_abs / max_real_abs),
PositiveSpectrumWarning)
# Remove all imaginary parts (even if zero)
lambdas = np.real(lambdas)
# Check that there are no significant negative eigenvalues
max_eig = lambdas.max()
if max_eig < 0:
raise ValueError("All eigenvalues are negative (maximum is %g). "
"Either the matrix is not PSD, or there was an "
"issue while computing the eigendecomposition of "
"the matrix." % max_eig)
else:
min_eig = lambdas.min()
if (min_eig < -significant_neg_ratio * max_eig
and min_eig < -significant_neg_value):
raise ValueError("There are significant negative eigenvalues (%g"
" of the maximum positive). Either the matrix is "
"not PSD, or there was an issue while computing "
"the eigendecomposition of the matrix."
% (-min_eig / max_eig))
elif min_eig < 0:
# Remove all negative values and warn about it
if enable_warnings:
warnings.warn("There are negative eigenvalues (%g of the "
"maximum positive). Either the matrix is not "
"PSD, or there was an issue while computing the"
" eigendecomposition of the matrix. Negative "
"eigenvalues will be replaced with 0."
% (-min_eig / max_eig),
PositiveSpectrumWarning)
lambdas[lambdas < 0] = 0
# Check for conditioning (small positive non-zeros)
too_small_lambdas = (0 < lambdas) & (lambdas < small_pos_ratio * max_eig)
if too_small_lambdas.any():
if enable_warnings:
warnings.warn("Badly conditioned PSD matrix spectrum: the largest "
"eigenvalue is more than %g times the smallest. "
"Small eigenvalues will be replaced with 0."
"" % (1 / small_pos_ratio),
PositiveSpectrumWarning)
lambdas[too_small_lambdas] = 0
return lambdas
def _check_sample_weight(sample_weight, X, dtype=None):
"""Validate sample weights.
Note that passing sample_weight=None will output an array of ones.
Therefore, in some cases, you may want to protect the call with:
if sample_weight is not None:
sample_weight = _check_sample_weight(...)
Parameters
----------
sample_weight : {ndarray, Number or None}, shape (n_samples,)
Input sample weights.
X : nd-array, list or sparse matrix
Input data.
dtype: dtype
dtype of the validated `sample_weight`.
If None, and the input `sample_weight` is an array, the dtype of the
input is preserved; otherwise an array with the default numpy dtype
is be allocated. If `dtype` is not one of `float32`, `float64`,
`None`, the output will be of dtype `float64`.
Returns
-------
sample_weight : ndarray, shape (n_samples,)
Validated sample weight. It is guaranteed to be "C" contiguous.
"""
n_samples = _num_samples(X)
if dtype is not None and dtype not in [np.float32, np.float64]:
dtype = np.float64
if sample_weight is None:
sample_weight = np.ones(n_samples, dtype=dtype)
elif isinstance(sample_weight, numbers.Number):
sample_weight = np.full(n_samples, sample_weight, dtype=dtype)
else:
if dtype is None:
dtype = [np.float64, np.float32]
sample_weight = check_array(
sample_weight, accept_sparse=False, ensure_2d=False, dtype=dtype,
order="C"
)
if sample_weight.ndim != 1:
raise ValueError("Sample weights must be 1D array or scalar")
if sample_weight.shape != (n_samples,):
raise ValueError("sample_weight.shape == {}, expected {}!"
.format(sample_weight.shape, (n_samples,)))
return sample_weight
def _allclose_dense_sparse(x, y, rtol=1e-7, atol=1e-9):
"""Check allclose for sparse and dense data.
Both x and y need to be either sparse or dense, they
can't be mixed.
Parameters
----------
x : array-like or sparse matrix
First array to compare.
y : array-like or sparse matrix
Second array to compare.
rtol : float, optional
relative tolerance; see numpy.allclose
atol : float, optional
absolute tolerance; see numpy.allclose. Note that the default here is
more tolerant than the default for numpy.testing.assert_allclose, where
atol=0.
"""
if sp.issparse(x) and sp.issparse(y):
x = x.tocsr()
y = y.tocsr()
x.sum_duplicates()
y.sum_duplicates()
return (np.array_equal(x.indices, y.indices) and
np.array_equal(x.indptr, y.indptr) and
np.allclose(x.data, y.data, rtol=rtol, atol=atol))
elif not sp.issparse(x) and not sp.issparse(y):
return np.allclose(x, y, rtol=rtol, atol=atol)
raise ValueError("Can only compare two sparse matrices, not a sparse "
"matrix and an array")
def _check_fit_params(X, fit_params, indices=None):
"""Check and validate the parameters passed during `fit`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data array.
fit_params : dict
Dictionary containing the parameters passed at fit.
indices : array-like of shape (n_samples,), default=None
Indices to be selected if the parameter has the same size as `X`.
Returns
-------
fit_params_validated : dict
Validated parameters. We ensure that the values support indexing.
"""
from . import _safe_indexing
fit_params_validated = {}
for param_key, param_value in fit_params.items():
if (not _is_arraylike(param_value) or
_num_samples(param_value) != _num_samples(X)):
# Non-indexable pass-through (for now for backward-compatibility).
# https://github.com/scikit-learn/scikit-learn/issues/15805
fit_params_validated[param_key] = param_value
else:
# Any other fit_params should support indexing
# (e.g. for cross-validation).
fit_params_validated[param_key] = _make_indexable(param_value)
fit_params_validated[param_key] = _safe_indexing(
fit_params_validated[param_key], indices
)
return fit_params_validated