Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/compose/_target.py

257 lines
9.3 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
# Authors: Andreas Mueller <andreas.mueller@columbia.edu>
# Guillaume Lemaitre <guillaume.lemaitre@inria.fr>
# License: BSD 3 clause
import warnings
import numpy as np
from ..base import BaseEstimator, RegressorMixin, clone
from ..utils.validation import check_is_fitted
from ..utils import check_array, _safe_indexing
from ..preprocessing import FunctionTransformer
from ..utils.validation import _deprecate_positional_args
from ..exceptions import NotFittedError
__all__ = ['TransformedTargetRegressor']
class TransformedTargetRegressor(RegressorMixin, BaseEstimator):
"""Meta-estimator to regress on a transformed target.
Useful for applying a non-linear transformation to the target ``y`` in
regression problems. This transformation can be given as a Transformer
such as the QuantileTransformer or as a function and its inverse such as
``log`` and ``exp``.
The computation during ``fit`` is::
regressor.fit(X, func(y))
or::
regressor.fit(X, transformer.transform(y))
The computation during ``predict`` is::
inverse_func(regressor.predict(X))
or::
transformer.inverse_transform(regressor.predict(X))
Read more in the :ref:`User Guide <transformed_target_regressor>`.
.. versionadded:: 0.20
Parameters
----------
regressor : object, default=None
Regressor object such as derived from ``RegressorMixin``. This
regressor will automatically be cloned each time prior to fitting.
If regressor is ``None``, ``LinearRegression()`` is created and used.
transformer : object, default=None
Estimator object such as derived from ``TransformerMixin``. Cannot be
set at the same time as ``func`` and ``inverse_func``. If
``transformer`` is ``None`` as well as ``func`` and ``inverse_func``,
the transformer will be an identity transformer. Note that the
transformer will be cloned during fitting. Also, the transformer is
restricting ``y`` to be a numpy array.
func : function, default=None
Function to apply to ``y`` before passing to ``fit``. Cannot be set at
the same time as ``transformer``. The function needs to return a
2-dimensional array. If ``func`` is ``None``, the function used will be
the identity function.
inverse_func : function, default=None
Function to apply to the prediction of the regressor. Cannot be set at
the same time as ``transformer`` as well. The function needs to return
a 2-dimensional array. The inverse function is used to return
predictions to the same space of the original training labels.
check_inverse : bool, default=True
Whether to check that ``transform`` followed by ``inverse_transform``
or ``func`` followed by ``inverse_func`` leads to the original targets.
Attributes
----------
regressor_ : object
Fitted regressor.
transformer_ : object
Transformer used in ``fit`` and ``predict``.
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.compose import TransformedTargetRegressor
>>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
... func=np.log, inverse_func=np.exp)
>>> X = np.arange(4).reshape(-1, 1)
>>> y = np.exp(2 * X).ravel()
>>> tt.fit(X, y)
TransformedTargetRegressor(...)
>>> tt.score(X, y)
1.0
>>> tt.regressor_.coef_
array([2.])
Notes
-----
Internally, the target ``y`` is always converted into a 2-dimensional array
to be used by scikit-learn transformers. At the time of prediction, the
output will be reshaped to a have the same number of dimensions as ``y``.
See :ref:`examples/compose/plot_transformed_target.py
<sphx_glr_auto_examples_compose_plot_transformed_target.py>`.
"""
@_deprecate_positional_args
def __init__(self, regressor=None, *, transformer=None,
func=None, inverse_func=None, check_inverse=True):
self.regressor = regressor
self.transformer = transformer
self.func = func
self.inverse_func = inverse_func
self.check_inverse = check_inverse
def _fit_transformer(self, y):
"""Check transformer and fit transformer.
Create the default transformer, fit it and make additional inverse
check on a subset (optional).
"""
if (self.transformer is not None and
(self.func is not None or self.inverse_func is not None)):
raise ValueError("'transformer' and functions 'func'/"
"'inverse_func' cannot both be set.")
elif self.transformer is not None:
self.transformer_ = clone(self.transformer)
else:
if self.func is not None and self.inverse_func is None:
raise ValueError("When 'func' is provided, 'inverse_func' must"
" also be provided")
self.transformer_ = FunctionTransformer(
func=self.func, inverse_func=self.inverse_func, validate=True,
check_inverse=self.check_inverse)
# XXX: sample_weight is not currently passed to the
# transformer. However, if transformer starts using sample_weight, the
# code should be modified accordingly. At the time to consider the
# sample_prop feature, it is also a good use case to be considered.
self.transformer_.fit(y)
if self.check_inverse:
idx_selected = slice(None, None, max(1, y.shape[0] // 10))
y_sel = _safe_indexing(y, idx_selected)
y_sel_t = self.transformer_.transform(y_sel)
if not np.allclose(y_sel,
self.transformer_.inverse_transform(y_sel_t)):
warnings.warn("The provided functions or transformer are"
" not strictly inverse of each other. If"
" you are sure you want to proceed regardless"
", set 'check_inverse=False'", UserWarning)
def fit(self, X, y, **fit_params):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like of shape (n_samples,)
Target values.
**fit_params : dict
Parameters passed to the ``fit`` method of the underlying
regressor.
Returns
-------
self : object
"""
y = check_array(y, accept_sparse=False, force_all_finite=True,
ensure_2d=False, dtype='numeric')
# store the number of dimension of the target to predict an array of
# similar shape at predict
self._training_dim = y.ndim
# transformers are designed to modify X which is 2d dimensional, we
# need to modify y accordingly.
if y.ndim == 1:
y_2d = y.reshape(-1, 1)
else:
y_2d = y
self._fit_transformer(y_2d)
# transform y and convert back to 1d array if needed
y_trans = self.transformer_.transform(y_2d)
# FIXME: a FunctionTransformer can return a 1D array even when validate
# is set to True. Therefore, we need to check the number of dimension
# first.
if y_trans.ndim == 2 and y_trans.shape[1] == 1:
y_trans = y_trans.squeeze(axis=1)
if self.regressor is None:
from ..linear_model import LinearRegression
self.regressor_ = LinearRegression()
else:
self.regressor_ = clone(self.regressor)
self.regressor_.fit(X, y_trans, **fit_params)
return self
def predict(self, X):
"""Predict using the base regressor, applying inverse.
The regressor is used to predict and the ``inverse_func`` or
``inverse_transform`` is applied before returning the prediction.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_hat : ndarray of shape (n_samples,)
Predicted values.
"""
check_is_fitted(self)
pred = self.regressor_.predict(X)
if pred.ndim == 1:
pred_trans = self.transformer_.inverse_transform(
pred.reshape(-1, 1))
else:
pred_trans = self.transformer_.inverse_transform(pred)
if (self._training_dim == 1 and
pred_trans.ndim == 2 and pred_trans.shape[1] == 1):
pred_trans = pred_trans.squeeze(axis=1)
return pred_trans
def _more_tags(self):
return {'poor_score': True, 'no_validation': True}
@property
def n_features_in_(self):
# For consistency with other estimators we raise a AttributeError so
# that hasattr() returns False the estimator isn't fitted.
try:
check_is_fitted(self)
except NotFittedError as nfe:
raise AttributeError(
"{} object has no n_features_in_ attribute."
.format(self.__class__.__name__)
) from nfe
return self.regressor_.n_features_in_