Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/nbconvert/preprocessors/clearmetadata.py

86 lines
3.4 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""Module containing a preprocessor that removes metadata from code cells"""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
from traitlets import Bool, Set
from .base import Preprocessor
class ClearMetadataPreprocessor(Preprocessor):
"""
Removes all the metadata from all code cells in a notebook.
"""
clear_cell_metadata = Bool(True,
help=("Flag to choose if cell metadata is to be cleared "
"in addition to notebook metadata.")).tag(config=True)
clear_notebook_metadata = Bool(True,
help=("Flag to choose if notebook metadata is to be cleared "
"in addition to cell metadata.")).tag(config=True)
preserve_nb_metadata_mask = Set([('language_info', 'name')],
help=("Indicates the key paths to preserve when deleting metadata "
"across both cells and notebook metadata fields. Tuples of "
"keys can be passed to preserved specific nested values")).tag(config=True)
preserve_cell_metadata_mask = Set(
help=("Indicates the key paths to preserve when deleting metadata "
"across both cells and notebook metadata fields. Tuples of "
"keys can be passed to preserved specific nested values")).tag(config=True)
def current_key(self, mask_key):
if isinstance(mask_key, str):
return mask_key
elif len(mask_key) == 0:
# Safeguard
return None
else:
return mask_key[0]
def current_mask(self, mask):
return { self.current_key(k) for k in mask if self.current_key(k) is not None }
def nested_masks(self, mask):
return { self.current_key(k[0]): k[1:] for k in mask if k and not isinstance(k, str) and len(k) > 1 }
def nested_filter(self, items, mask):
keep_current = self.current_mask(mask)
keep_nested_lookup = self.nested_masks(mask)
for k, v in items:
keep_nested = keep_nested_lookup.get(k)
if k in keep_current:
if keep_nested is not None:
if isinstance(v, dict):
yield k, dict(self.nested_filter(v.items(), keep_nested))
else:
yield k, v
def preprocess_cell(self, cell, resources, cell_index):
"""
All the code cells are returned with an empty metadata field.
"""
if self.clear_cell_metadata:
if cell.cell_type == 'code':
# Remove metadata
if 'metadata' in cell:
cell.metadata = dict(self.nested_filter(cell.metadata.items(), self.preserve_cell_metadata_mask))
return cell, resources
def preprocess(self, nb, resources):
"""
Preprocessing to apply on each notebook.
Must return modified nb, resources.
Parameters
----------
nb : NotebookNode
Notebook being converted
resources : dictionary
Additional resources used in the conversion process. Allows
preprocessors to pass variables into the Jinja engine.
"""
nb, resources = super().preprocess(nb, resources)
if self.clear_notebook_metadata:
if 'metadata' in nb:
nb.metadata = dict(self.nested_filter(nb.metadata.items(), self.preserve_nb_metadata_mask))
return nb, resources