Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/cluster/_affinity_propagation.py

475 lines
17 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""Affinity Propagation clustering algorithm."""
# Author: Alexandre Gramfort alexandre.gramfort@inria.fr
# Gael Varoquaux gael.varoquaux@normalesup.org
# License: BSD 3 clause
import numpy as np
import warnings
from ..exceptions import ConvergenceWarning
from ..base import BaseEstimator, ClusterMixin
from ..utils import as_float_array, check_array, check_random_state
from ..utils.validation import check_is_fitted, _deprecate_positional_args
from ..metrics import euclidean_distances
from ..metrics import pairwise_distances_argmin
def _equal_similarities_and_preferences(S, preference):
def all_equal_preferences():
return np.all(preference == preference.flat[0])
def all_equal_similarities():
# Create mask to ignore diagonal of S
mask = np.ones(S.shape, dtype=bool)
np.fill_diagonal(mask, 0)
return np.all(S[mask].flat == S[mask].flat[0])
return all_equal_preferences() and all_equal_similarities()
@_deprecate_positional_args
def affinity_propagation(S, *, preference=None, convergence_iter=15,
max_iter=200, damping=0.5, copy=True, verbose=False,
return_n_iter=False, random_state='warn'):
"""Perform Affinity Propagation Clustering of data
Read more in the :ref:`User Guide <affinity_propagation>`.
Parameters
----------
S : array-like, shape (n_samples, n_samples)
Matrix of similarities between points
preference : array-like, shape (n_samples,) or float, optional
Preferences for each point - points with larger values of
preferences are more likely to be chosen as exemplars. The number of
exemplars, i.e. of clusters, is influenced by the input preferences
value. If the preferences are not passed as arguments, they will be
set to the median of the input similarities (resulting in a moderate
number of clusters). For a smaller amount of clusters, this can be set
to the minimum value of the similarities.
convergence_iter : int, optional, default: 15
Number of iterations with no change in the number
of estimated clusters that stops the convergence.
max_iter : int, optional, default: 200
Maximum number of iterations
damping : float, optional, default: 0.5
Damping factor between 0.5 and 1.
copy : boolean, optional, default: True
If copy is False, the affinity matrix is modified inplace by the
algorithm, for memory efficiency
verbose : boolean, optional, default: False
The verbosity level
return_n_iter : bool, default False
Whether or not to return the number of iterations.
random_state : int or np.random.RandomStateInstance, default: 0
Pseudo-random number generator to control the starting state.
Use an int for reproducible results across function calls.
See the :term:`Glossary <random_state>`.
.. versionadded:: 0.23
this parameter was previously hardcoded as 0.
Returns
-------
cluster_centers_indices : array, shape (n_clusters,)
index of clusters centers
labels : array, shape (n_samples,)
cluster labels for each point
n_iter : int
number of iterations run. Returned only if `return_n_iter` is
set to True.
Notes
-----
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
When the algorithm does not converge, it returns an empty array as
``cluster_center_indices`` and ``-1`` as label for each training sample.
When all training samples have equal similarities and equal preferences,
the assignment of cluster centers and labels depends on the preference.
If the preference is smaller than the similarities, a single cluster center
and label ``0`` for every sample will be returned. Otherwise, every
training sample becomes its own cluster center and is assigned a unique
label.
References
----------
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
Between Data Points", Science Feb. 2007
"""
S = as_float_array(S, copy=copy)
n_samples = S.shape[0]
if S.shape[0] != S.shape[1]:
raise ValueError("S must be a square array (shape=%s)" % repr(S.shape))
if preference is None:
preference = np.median(S)
if damping < 0.5 or damping >= 1:
raise ValueError('damping must be >= 0.5 and < 1')
preference = np.array(preference)
if (n_samples == 1 or
_equal_similarities_and_preferences(S, preference)):
# It makes no sense to run the algorithm in this case, so return 1 or
# n_samples clusters, depending on preferences
warnings.warn("All samples have mutually equal similarities. "
"Returning arbitrary cluster center(s).")
if preference.flat[0] >= S.flat[n_samples - 1]:
return ((np.arange(n_samples), np.arange(n_samples), 0)
if return_n_iter
else (np.arange(n_samples), np.arange(n_samples)))
else:
return ((np.array([0]), np.array([0] * n_samples), 0)
if return_n_iter
else (np.array([0]), np.array([0] * n_samples)))
if random_state == 'warn':
warnings.warn(("'random_state' has been introduced in 0.23. "
"It will be set to None starting from 0.25 which "
"means that results will differ at every function "
"call. Set 'random_state' to None to silence this "
"warning, or to 0 to keep the behavior of versions "
"<0.23."),
FutureWarning)
random_state = 0
random_state = check_random_state(random_state)
# Place preference on the diagonal of S
S.flat[::(n_samples + 1)] = preference
A = np.zeros((n_samples, n_samples))
R = np.zeros((n_samples, n_samples)) # Initialize messages
# Intermediate results
tmp = np.zeros((n_samples, n_samples))
# Remove degeneracies
S += ((np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100) *
random_state.randn(n_samples, n_samples))
# Execute parallel affinity propagation updates
e = np.zeros((n_samples, convergence_iter))
ind = np.arange(n_samples)
for it in range(max_iter):
# tmp = A + S; compute responsibilities
np.add(A, S, tmp)
I = np.argmax(tmp, axis=1)
Y = tmp[ind, I] # np.max(A + S, axis=1)
tmp[ind, I] = -np.inf
Y2 = np.max(tmp, axis=1)
# tmp = Rnew
np.subtract(S, Y[:, None], tmp)
tmp[ind, I] = S[ind, I] - Y2
# Damping
tmp *= 1 - damping
R *= damping
R += tmp
# tmp = Rp; compute availabilities
np.maximum(R, 0, tmp)
tmp.flat[::n_samples + 1] = R.flat[::n_samples + 1]
# tmp = -Anew
tmp -= np.sum(tmp, axis=0)
dA = np.diag(tmp).copy()
tmp.clip(0, np.inf, tmp)
tmp.flat[::n_samples + 1] = dA
# Damping
tmp *= 1 - damping
A *= damping
A -= tmp
# Check for convergence
E = (np.diag(A) + np.diag(R)) > 0
e[:, it % convergence_iter] = E
K = np.sum(E, axis=0)
if it >= convergence_iter:
se = np.sum(e, axis=1)
unconverged = (np.sum((se == convergence_iter) + (se == 0))
!= n_samples)
if (not unconverged and (K > 0)) or (it == max_iter):
never_converged = False
if verbose:
print("Converged after %d iterations." % it)
break
else:
never_converged = True
if verbose:
print("Did not converge")
I = np.flatnonzero(E)
K = I.size # Identify exemplars
if K > 0 and not never_converged:
c = np.argmax(S[:, I], axis=1)
c[I] = np.arange(K) # Identify clusters
# Refine the final set of exemplars and clusters and return results
for k in range(K):
ii = np.where(c == k)[0]
j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0))
I[k] = ii[j]
c = np.argmax(S[:, I], axis=1)
c[I] = np.arange(K)
labels = I[c]
# Reduce labels to a sorted, gapless, list
cluster_centers_indices = np.unique(labels)
labels = np.searchsorted(cluster_centers_indices, labels)
else:
warnings.warn("Affinity propagation did not converge, this model "
"will not have any cluster centers.", ConvergenceWarning)
labels = np.array([-1] * n_samples)
cluster_centers_indices = []
if return_n_iter:
return cluster_centers_indices, labels, it + 1
else:
return cluster_centers_indices, labels
###############################################################################
class AffinityPropagation(ClusterMixin, BaseEstimator):
"""Perform Affinity Propagation Clustering of data.
Read more in the :ref:`User Guide <affinity_propagation>`.
Parameters
----------
damping : float, default=0.5
Damping factor (between 0.5 and 1) is the extent to
which the current value is maintained relative to
incoming values (weighted 1 - damping). This in order
to avoid numerical oscillations when updating these
values (messages).
max_iter : int, default=200
Maximum number of iterations.
convergence_iter : int, default=15
Number of iterations with no change in the number
of estimated clusters that stops the convergence.
copy : bool, default=True
Make a copy of input data.
preference : array-like of shape (n_samples,) or float, default=None
Preferences for each point - points with larger values of
preferences are more likely to be chosen as exemplars. The number
of exemplars, ie of clusters, is influenced by the input
preferences value. If the preferences are not passed as arguments,
they will be set to the median of the input similarities.
affinity : {'euclidean', 'precomputed'}, default='euclidean'
Which affinity to use. At the moment 'precomputed' and
``euclidean`` are supported. 'euclidean' uses the
negative squared euclidean distance between points.
verbose : bool, default=False
Whether to be verbose.
random_state : int or np.random.RandomStateInstance, default: 0
Pseudo-random number generator to control the starting state.
Use an int for reproducible results across function calls.
See the :term:`Glossary <random_state>`.
.. versionadded:: 0.23
this parameter was previously hardcoded as 0.
Attributes
----------
cluster_centers_indices_ : ndarray of shape (n_clusters,)
Indices of cluster centers
cluster_centers_ : ndarray of shape (n_clusters, n_features)
Cluster centers (if affinity != ``precomputed``).
labels_ : ndarray of shape (n_samples,)
Labels of each point
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
Stores the affinity matrix used in ``fit``.
n_iter_ : int
Number of iterations taken to converge.
Notes
-----
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
The algorithmic complexity of affinity propagation is quadratic
in the number of points.
When ``fit`` does not converge, ``cluster_centers_`` becomes an empty
array and all training samples will be labelled as ``-1``. In addition,
``predict`` will then label every sample as ``-1``.
When all training samples have equal similarities and equal preferences,
the assignment of cluster centers and labels depends on the preference.
If the preference is smaller than the similarities, ``fit`` will result in
a single cluster center and label ``0`` for every sample. Otherwise, every
training sample becomes its own cluster center and is assigned a unique
label.
References
----------
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
Between Data Points", Science Feb. 2007
Examples
--------
>>> from sklearn.cluster import AffinityPropagation
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> clustering = AffinityPropagation(random_state=5).fit(X)
>>> clustering
AffinityPropagation(random_state=5)
>>> clustering.labels_
array([0, 0, 0, 1, 1, 1])
>>> clustering.predict([[0, 0], [4, 4]])
array([0, 1])
>>> clustering.cluster_centers_
array([[1, 2],
[4, 2]])
"""
@_deprecate_positional_args
def __init__(self, *, damping=.5, max_iter=200, convergence_iter=15,
copy=True, preference=None, affinity='euclidean',
verbose=False, random_state='warn'):
self.damping = damping
self.max_iter = max_iter
self.convergence_iter = convergence_iter
self.copy = copy
self.verbose = verbose
self.preference = preference
self.affinity = affinity
self.random_state = random_state
@property
def _pairwise(self):
return self.affinity == "precomputed"
def fit(self, X, y=None):
"""Fit the clustering from features, or affinity matrix.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features), or \
array-like, shape (n_samples, n_samples)
Training instances to cluster, or similarities / affinities between
instances if ``affinity='precomputed'``. If a sparse feature matrix
is provided, it will be converted into a sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self
"""
if self.affinity == "precomputed":
accept_sparse = False
else:
accept_sparse = 'csr'
X = self._validate_data(X, accept_sparse=accept_sparse)
if self.affinity == "precomputed":
self.affinity_matrix_ = X
elif self.affinity == "euclidean":
self.affinity_matrix_ = -euclidean_distances(X, squared=True)
else:
raise ValueError("Affinity must be 'precomputed' or "
"'euclidean'. Got %s instead"
% str(self.affinity))
self.cluster_centers_indices_, self.labels_, self.n_iter_ = \
affinity_propagation(
self.affinity_matrix_, preference=self.preference,
max_iter=self.max_iter,
convergence_iter=self.convergence_iter, damping=self.damping,
copy=self.copy, verbose=self.verbose, return_n_iter=True,
random_state=self.random_state)
if self.affinity != "precomputed":
self.cluster_centers_ = X[self.cluster_centers_indices_].copy()
return self
def predict(self, X):
"""Predict the closest cluster each sample in X belongs to.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
New data to predict. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
labels : ndarray, shape (n_samples,)
Cluster labels.
"""
check_is_fitted(self)
X = check_array(X)
if not hasattr(self, "cluster_centers_"):
raise ValueError("Predict method is not supported when "
"affinity='precomputed'.")
if self.cluster_centers_.shape[0] > 0:
return pairwise_distances_argmin(X, self.cluster_centers_)
else:
warnings.warn("This model does not have any cluster centers "
"because affinity propagation did not converge. "
"Labeling every sample as '-1'.", ConvergenceWarning)
return np.array([-1] * X.shape[0])
def fit_predict(self, X, y=None):
"""Fit the clustering from features or affinity matrix, and return
cluster labels.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features), or \
array-like, shape (n_samples, n_samples)
Training instances to cluster, or similarities / affinities between
instances if ``affinity='precomputed'``. If a sparse feature matrix
is provided, it will be converted into a sparse ``csr_matrix``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
labels : ndarray, shape (n_samples,)
Cluster labels.
"""
return super().fit_predict(X, y)