Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/utils/_testing.py

874 lines
30 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""Testing utilities."""
# Copyright (c) 2011, 2012
# Authors: Pietro Berkes,
# Andreas Muller
# Mathieu Blondel
# Olivier Grisel
# Arnaud Joly
# Denis Engemann
# Giorgio Patrini
# Thierry Guillemot
# License: BSD 3 clause
import os
import os.path as op
import inspect
import pkgutil
import warnings
import sys
import functools
import tempfile
from subprocess import check_output, STDOUT, CalledProcessError
from subprocess import TimeoutExpired
import scipy as sp
from functools import wraps
from operator import itemgetter
from inspect import signature
import shutil
import atexit
import unittest
from unittest import TestCase
# WindowsError only exist on Windows
try:
WindowsError
except NameError:
WindowsError = None
from numpy.testing import assert_allclose
from numpy.testing import assert_almost_equal
from numpy.testing import assert_approx_equal
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_array_less
import numpy as np
import joblib
import sklearn
from sklearn.base import (BaseEstimator, ClassifierMixin, ClusterMixin,
RegressorMixin, TransformerMixin)
from sklearn.utils import deprecated, IS_PYPY, _IS_32BIT
__all__ = ["assert_equal", "assert_not_equal", "assert_raises",
"assert_raises_regexp",
"assert_almost_equal", "assert_array_equal",
"assert_array_almost_equal", "assert_array_less",
"assert_less", "assert_less_equal",
"assert_greater", "assert_greater_equal",
"assert_approx_equal", "assert_allclose",
"assert_run_python_script", "SkipTest", "all_estimators"]
_dummy = TestCase('__init__')
deprecation_message = (
'This helper is deprecated in version 0.22 and will be removed in version '
'0.24. Please use "assert" instead'
)
assert_equal = deprecated(deprecation_message)(_dummy.assertEqual)
assert_not_equal = deprecated(deprecation_message)(_dummy.assertNotEqual)
assert_raises = _dummy.assertRaises
SkipTest = unittest.case.SkipTest
assert_dict_equal = _dummy.assertDictEqual
assert_in = deprecated(deprecation_message)(_dummy.assertIn)
assert_not_in = deprecated(deprecation_message)(_dummy.assertNotIn)
assert_less = deprecated(deprecation_message)(_dummy.assertLess)
assert_greater = deprecated(deprecation_message)(_dummy.assertGreater)
assert_less_equal = deprecated(deprecation_message)(_dummy.assertLessEqual)
assert_greater_equal = deprecated(deprecation_message)(
_dummy.assertGreaterEqual)
assert_raises_regex = _dummy.assertRaisesRegex
# assert_raises_regexp is deprecated in Python 3.4 in favor of
# assert_raises_regex but lets keep the backward compat in scikit-learn with
# the old name for now
assert_raises_regexp = assert_raises_regex
def assert_warns(warning_class, func, *args, **kw):
"""Test that a certain warning occurs.
Parameters
----------
warning_class : the warning class
The class to test for, e.g. UserWarning.
func : callable
Callable object to trigger warnings.
*args : the positional arguments to `func`.
**kw : the keyword arguments to `func`
Returns
-------
result : the return value of `func`
"""
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
# Trigger a warning.
result = func(*args, **kw)
if hasattr(np, 'FutureWarning'):
# Filter out numpy-specific warnings in numpy >= 1.9
w = [e for e in w
if e.category is not np.VisibleDeprecationWarning]
# Verify some things
if not len(w) > 0:
raise AssertionError("No warning raised when calling %s"
% func.__name__)
found = any(warning.category is warning_class for warning in w)
if not found:
raise AssertionError("%s did not give warning: %s( is %s)"
% (func.__name__, warning_class, w))
return result
def assert_warns_message(warning_class, message, func, *args, **kw):
# very important to avoid uncontrolled state propagation
"""Test that a certain warning occurs and with a certain message.
Parameters
----------
warning_class : the warning class
The class to test for, e.g. UserWarning.
message : str | callable
The message or a substring of the message to test for. If callable,
it takes a string as the argument and will trigger an AssertionError
if the callable returns `False`.
func : callable
Callable object to trigger warnings.
*args : the positional arguments to `func`.
**kw : the keyword arguments to `func`.
Returns
-------
result : the return value of `func`
"""
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
if hasattr(np, 'FutureWarning'):
# Let's not catch the numpy internal DeprecationWarnings
warnings.simplefilter('ignore', np.VisibleDeprecationWarning)
# Trigger a warning.
result = func(*args, **kw)
# Verify some things
if not len(w) > 0:
raise AssertionError("No warning raised when calling %s"
% func.__name__)
found = [issubclass(warning.category, warning_class) for warning in w]
if not any(found):
raise AssertionError("No warning raised for %s with class "
"%s"
% (func.__name__, warning_class))
message_found = False
# Checks the message of all warnings belong to warning_class
for index in [i for i, x in enumerate(found) if x]:
# substring will match, the entire message with typo won't
msg = w[index].message # For Python 3 compatibility
msg = str(msg.args[0] if hasattr(msg, 'args') else msg)
if callable(message): # add support for certain tests
check_in_message = message
else:
def check_in_message(msg): return message in msg
if check_in_message(msg):
message_found = True
break
if not message_found:
raise AssertionError("Did not receive the message you expected "
"('%s') for <%s>, got: '%s'"
% (message, func.__name__, msg))
return result
def assert_warns_div0(func, *args, **kw):
"""Assume that numpy's warning for divide by zero is raised
Handles the case of platforms that do not support warning on divide by zero
Parameters
----------
func
*args
**kw
"""
with np.errstate(divide='warn', invalid='warn'):
try:
assert_warns(RuntimeWarning, np.divide, 1, np.zeros(1))
except AssertionError:
# This platform does not report numpy divide by zeros
return func(*args, **kw)
return assert_warns_message(RuntimeWarning,
'invalid value encountered',
func, *args, **kw)
# To remove when we support numpy 1.7
def assert_no_warnings(func, *args, **kw):
"""
Parameters
----------
func
*args
**kw
"""
# very important to avoid uncontrolled state propagation
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
result = func(*args, **kw)
if hasattr(np, 'FutureWarning'):
# Filter out numpy-specific warnings in numpy >= 1.9
w = [e for e in w
if e.category is not np.VisibleDeprecationWarning]
if len(w) > 0:
raise AssertionError("Got warnings when calling %s: [%s]"
% (func.__name__,
', '.join(str(warning) for warning in w)))
return result
def ignore_warnings(obj=None, category=Warning):
"""Context manager and decorator to ignore warnings.
Note: Using this (in both variants) will clear all warnings
from all python modules loaded. In case you need to test
cross-module-warning-logging, this is not your tool of choice.
Parameters
----------
obj : callable or None
callable where you want to ignore the warnings.
category : warning class, defaults to Warning.
The category to filter. If Warning, all categories will be muted.
Examples
--------
>>> with ignore_warnings():
... warnings.warn('buhuhuhu')
>>> def nasty_warn():
... warnings.warn('buhuhuhu')
... print(42)
>>> ignore_warnings(nasty_warn)()
42
"""
if isinstance(obj, type) and issubclass(obj, Warning):
# Avoid common pitfall of passing category as the first positional
# argument which result in the test not being run
warning_name = obj.__name__
raise ValueError(
"'obj' should be a callable where you want to ignore warnings. "
"You passed a warning class instead: 'obj={warning_name}'. "
"If you want to pass a warning class to ignore_warnings, "
"you should use 'category={warning_name}'".format(
warning_name=warning_name))
elif callable(obj):
return _IgnoreWarnings(category=category)(obj)
else:
return _IgnoreWarnings(category=category)
class _IgnoreWarnings:
"""Improved and simplified Python warnings context manager and decorator.
This class allows the user to ignore the warnings raised by a function.
Copied from Python 2.7.5 and modified as required.
Parameters
----------
category : tuple of warning class, default to Warning
The category to filter. By default, all the categories will be muted.
"""
def __init__(self, category):
self._record = True
self._module = sys.modules['warnings']
self._entered = False
self.log = []
self.category = category
def __call__(self, fn):
"""Decorator to catch and hide warnings without visual nesting."""
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore", self.category)
return fn(*args, **kwargs)
return wrapper
def __repr__(self):
args = []
if self._record:
args.append("record=True")
if self._module is not sys.modules['warnings']:
args.append("module=%r" % self._module)
name = type(self).__name__
return "%s(%s)" % (name, ", ".join(args))
def __enter__(self):
if self._entered:
raise RuntimeError("Cannot enter %r twice" % self)
self._entered = True
self._filters = self._module.filters
self._module.filters = self._filters[:]
self._showwarning = self._module.showwarning
warnings.simplefilter("ignore", self.category)
def __exit__(self, *exc_info):
if not self._entered:
raise RuntimeError("Cannot exit %r without entering first" % self)
self._module.filters = self._filters
self._module.showwarning = self._showwarning
self.log[:] = []
def assert_raise_message(exceptions, message, function, *args, **kwargs):
"""Helper function to test the message raised in an exception.
Given an exception, a callable to raise the exception, and
a message string, tests that the correct exception is raised and
that the message is a substring of the error thrown. Used to test
that the specific message thrown during an exception is correct.
Parameters
----------
exceptions : exception or tuple of exception
An Exception object.
message : str
The error message or a substring of the error message.
function : callable
Callable object to raise error.
*args : the positional arguments to `function`.
**kwargs : the keyword arguments to `function`.
"""
try:
function(*args, **kwargs)
except exceptions as e:
error_message = str(e)
if message not in error_message:
raise AssertionError("Error message does not include the expected"
" string: %r. Observed error message: %r" %
(message, error_message))
else:
# concatenate exception names
if isinstance(exceptions, tuple):
names = " or ".join(e.__name__ for e in exceptions)
else:
names = exceptions.__name__
raise AssertionError("%s not raised by %s" %
(names, function.__name__))
def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=''):
"""Assert allclose for sparse and dense data.
Both x and y need to be either sparse or dense, they
can't be mixed.
Parameters
----------
x : array-like or sparse matrix
First array to compare.
y : array-like or sparse matrix
Second array to compare.
rtol : float, optional
relative tolerance; see numpy.allclose
atol : float, optional
absolute tolerance; see numpy.allclose. Note that the default here is
more tolerant than the default for numpy.testing.assert_allclose, where
atol=0.
err_msg : string, default=''
Error message to raise.
"""
if sp.sparse.issparse(x) and sp.sparse.issparse(y):
x = x.tocsr()
y = y.tocsr()
x.sum_duplicates()
y.sum_duplicates()
assert_array_equal(x.indices, y.indices, err_msg=err_msg)
assert_array_equal(x.indptr, y.indptr, err_msg=err_msg)
assert_allclose(x.data, y.data, rtol=rtol, atol=atol, err_msg=err_msg)
elif not sp.sparse.issparse(x) and not sp.sparse.issparse(y):
# both dense
assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg)
else:
raise ValueError("Can only compare two sparse matrices,"
" not a sparse matrix and an array.")
# TODO: Remove in 0.24. This class is now in utils.__init__.
def all_estimators(type_filter=None):
"""Get a list of all estimators from sklearn.
This function crawls the module and gets all classes that inherit
from BaseEstimator. Classes that are defined in test-modules are not
included.
By default meta_estimators such as GridSearchCV are also not included.
Parameters
----------
type_filter : string, list of string, or None, default=None
Which kind of estimators should be returned. If None, no filter is
applied and all estimators are returned. Possible values are
'classifier', 'regressor', 'cluster' and 'transformer' to get
estimators only of these specific types, or a list of these to
get the estimators that fit at least one of the types.
Returns
-------
estimators : list of tuples
List of (name, class), where ``name`` is the class name as string
and ``class`` is the actual type of the class.
"""
def is_abstract(c):
if not(hasattr(c, '__abstractmethods__')):
return False
if not len(c.__abstractmethods__):
return False
return True
all_classes = []
# get parent folder
path = sklearn.__path__
for importer, modname, ispkg in pkgutil.walk_packages(
path=path, prefix='sklearn.', onerror=lambda x: None):
if ".tests." in modname or "externals" in modname:
continue
if IS_PYPY and ('_svmlight_format_io' in modname or
'feature_extraction._hashing_fast' in modname):
continue
# Ignore deprecation warnings triggered at import time.
with ignore_warnings(category=FutureWarning):
module = __import__(modname, fromlist="dummy")
classes = inspect.getmembers(module, inspect.isclass)
all_classes.extend(classes)
all_classes = set(all_classes)
estimators = [c for c in all_classes
if (issubclass(c[1], BaseEstimator) and
c[0] != 'BaseEstimator')]
# get rid of abstract base classes
estimators = [c for c in estimators if not is_abstract(c[1])]
if type_filter is not None:
if not isinstance(type_filter, list):
type_filter = [type_filter]
else:
type_filter = list(type_filter) # copy
filtered_estimators = []
filters = {'classifier': ClassifierMixin,
'regressor': RegressorMixin,
'transformer': TransformerMixin,
'cluster': ClusterMixin}
for name, mixin in filters.items():
if name in type_filter:
type_filter.remove(name)
filtered_estimators.extend([est for est in estimators
if issubclass(est[1], mixin)])
estimators = filtered_estimators
if type_filter:
raise ValueError("Parameter type_filter must be 'classifier', "
"'regressor', 'transformer', 'cluster' or "
"None, got"
" %s." % repr(type_filter))
# drop duplicates, sort for reproducibility
# itemgetter is used to ensure the sort does not extend to the 2nd item of
# the tuple
return sorted(set(estimators), key=itemgetter(0))
def set_random_state(estimator, random_state=0):
"""Set random state of an estimator if it has the `random_state` param.
Parameters
----------
estimator : object
The estimator
random_state : int, RandomState instance or None, optional, default=0
Pseudo random number generator state.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
"""
if "random_state" in estimator.get_params():
estimator.set_params(random_state=random_state)
try:
import pytest
skip_if_32bit = pytest.mark.skipif(_IS_32BIT,
reason='skipped on 32bit platforms')
skip_travis = pytest.mark.skipif(os.environ.get('TRAVIS') == 'true',
reason='skip on travis')
fails_if_pypy = pytest.mark.xfail(IS_PYPY,
reason='not compatible with PyPy')
skip_if_no_parallel = pytest.mark.skipif(not joblib.parallel.mp,
reason="joblib is in serial mode")
# Decorator for tests involving both BLAS calls and multiprocessing.
#
# Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction
# with some implementation of BLAS (or other libraries that manage an
# internal posix thread pool) can cause a crash or a freeze of the Python
# process.
#
# In practice all known packaged distributions (from Linux distros or
# Anaconda) of BLAS under Linux seems to be safe. So we this problem seems
# to only impact OSX users.
#
# This wrapper makes it possible to skip tests that can possibly cause
# this crash under OS X with.
#
# Under Python 3.4+ it is possible to use the `forkserver` start method
# for multiprocessing to avoid this issue. However it can cause pickling
# errors on interactively defined functions. It therefore not enabled by
# default.
if_safe_multiprocessing_with_blas = pytest.mark.skipif(
sys.platform == 'darwin',
reason="Possible multi-process bug with some BLAS")
except ImportError:
pass
def check_skip_network():
if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)):
raise SkipTest("Text tutorial requires large dataset download")
def _delete_folder(folder_path, warn=False):
"""Utility function to cleanup a temporary folder if still existing.
Copy from joblib.pool (for independence).
"""
try:
if os.path.exists(folder_path):
# This can fail under windows,
# but will succeed when called by atexit
shutil.rmtree(folder_path)
except WindowsError:
if warn:
warnings.warn("Could not delete temporary folder %s" % folder_path)
class TempMemmap:
"""
Parameters
----------
data
mmap_mode
"""
def __init__(self, data, mmap_mode='r'):
self.mmap_mode = mmap_mode
self.data = data
def __enter__(self):
data_read_only, self.temp_folder = create_memmap_backed_data(
self.data, mmap_mode=self.mmap_mode, return_folder=True)
return data_read_only
def __exit__(self, exc_type, exc_val, exc_tb):
_delete_folder(self.temp_folder)
def create_memmap_backed_data(data, mmap_mode='r', return_folder=False):
"""
Parameters
----------
data
mmap_mode
return_folder
"""
temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_')
atexit.register(functools.partial(_delete_folder, temp_folder, warn=True))
filename = op.join(temp_folder, 'data.pkl')
joblib.dump(data, filename)
memmap_backed_data = joblib.load(filename, mmap_mode=mmap_mode)
result = (memmap_backed_data if not return_folder
else (memmap_backed_data, temp_folder))
return result
# Utils to test docstrings
def _get_args(function, varargs=False):
"""Helper to get function arguments"""
try:
params = signature(function).parameters
except ValueError:
# Error on builtin C function
return []
args = [key for key, param in params.items()
if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)]
if varargs:
varargs = [param.name for param in params.values()
if param.kind == param.VAR_POSITIONAL]
if len(varargs) == 0:
varargs = None
return args, varargs
else:
return args
def _get_func_name(func):
"""Get function full name
Parameters
----------
func : callable
The function object.
Returns
-------
name : str
The function name.
"""
parts = []
module = inspect.getmodule(func)
if module:
parts.append(module.__name__)
qualname = func.__qualname__
if qualname != func.__name__:
parts.append(qualname[:qualname.find('.')])
parts.append(func.__name__)
return '.'.join(parts)
def check_docstring_parameters(func, doc=None, ignore=None):
"""Helper to check docstring
Parameters
----------
func : callable
The function object to test.
doc : str, optional (default: None)
Docstring if it is passed manually to the test.
ignore : None | list
Parameters to ignore.
Returns
-------
incorrect : list
A list of string describing the incorrect results.
"""
from numpydoc import docscrape
incorrect = []
ignore = [] if ignore is None else ignore
func_name = _get_func_name(func)
if (not func_name.startswith('sklearn.') or
func_name.startswith('sklearn.externals')):
return incorrect
# Don't check docstring for property-functions
if inspect.isdatadescriptor(func):
return incorrect
# Don't check docstring for setup / teardown pytest functions
if func_name.split('.')[-1] in ('setup_module', 'teardown_module'):
return incorrect
# Dont check estimator_checks module
if func_name.split('.')[2] == 'estimator_checks':
return incorrect
# Get the arguments from the function signature
param_signature = list(filter(lambda x: x not in ignore, _get_args(func)))
# drop self
if len(param_signature) > 0 and param_signature[0] == 'self':
param_signature.remove('self')
# Analyze function's docstring
if doc is None:
with warnings.catch_warnings(record=True) as w:
try:
doc = docscrape.FunctionDoc(func)
except Exception as exp:
incorrect += [func_name + ' parsing error: ' + str(exp)]
return incorrect
if len(w):
raise RuntimeError('Error for %s:\n%s' % (func_name, w[0]))
param_docs = []
for name, type_definition, param_doc in doc['Parameters']:
# Type hints are empty only if parameter name ended with :
if not type_definition.strip():
if ':' in name and name[:name.index(':')][-1:].strip():
incorrect += [func_name +
' There was no space between the param name and '
'colon (%r)' % name]
elif name.rstrip().endswith(':'):
incorrect += [func_name +
' Parameter %r has an empty type spec. '
'Remove the colon' % (name.lstrip())]
# Create a list of parameters to compare with the parameters gotten
# from the func signature
if '*' not in name:
param_docs.append(name.split(':')[0].strip('` '))
# If one of the docstring's parameters had an error then return that
# incorrect message
if len(incorrect) > 0:
return incorrect
# Remove the parameters that should be ignored from list
param_docs = list(filter(lambda x: x not in ignore, param_docs))
# The following is derived from pytest, Copyright (c) 2004-2017 Holger
# Krekel and others, Licensed under MIT License. See
# https://github.com/pytest-dev/pytest
message = []
for i in range(min(len(param_docs), len(param_signature))):
if param_signature[i] != param_docs[i]:
message += ["There's a parameter name mismatch in function"
" docstring w.r.t. function signature, at index %s"
" diff: %r != %r" %
(i, param_signature[i], param_docs[i])]
break
if len(param_signature) > len(param_docs):
message += ["Parameters in function docstring have less items w.r.t."
" function signature, first missing item: %s" %
param_signature[len(param_docs)]]
elif len(param_signature) < len(param_docs):
message += ["Parameters in function docstring have more items w.r.t."
" function signature, first extra item: %s" %
param_docs[len(param_signature)]]
# If there wasn't any difference in the parameters themselves between
# docstring and signature including having the same length then return
# empty list
if len(message) == 0:
return []
import difflib
import pprint
param_docs_formatted = pprint.pformat(param_docs).splitlines()
param_signature_formatted = pprint.pformat(param_signature).splitlines()
message += ["Full diff:"]
message.extend(
line.strip() for line in difflib.ndiff(param_signature_formatted,
param_docs_formatted)
)
incorrect.extend(message)
# Prepend function name
incorrect = ['In function: ' + func_name] + incorrect
return incorrect
def assert_run_python_script(source_code, timeout=60):
"""Utility to check assertions in an independent Python subprocess.
The script provided in the source code should return 0 and not print
anything on stderr or stdout.
This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle
Parameters
----------
source_code : str
The Python source code to execute.
timeout : int
Time in seconds before timeout.
"""
fd, source_file = tempfile.mkstemp(suffix='_src_test_sklearn.py')
os.close(fd)
try:
with open(source_file, 'wb') as f:
f.write(source_code.encode('utf-8'))
cmd = [sys.executable, source_file]
cwd = op.normpath(op.join(op.dirname(sklearn.__file__), '..'))
env = os.environ.copy()
try:
env["PYTHONPATH"] = os.pathsep.join([cwd, env["PYTHONPATH"]])
except KeyError:
env["PYTHONPATH"] = cwd
kwargs = {
'cwd': cwd,
'stderr': STDOUT,
'env': env
}
# If coverage is running, pass the config file to the subprocess
coverage_rc = os.environ.get("COVERAGE_PROCESS_START")
if coverage_rc:
kwargs['env']['COVERAGE_PROCESS_START'] = coverage_rc
kwargs['timeout'] = timeout
try:
try:
out = check_output(cmd, **kwargs)
except CalledProcessError as e:
raise RuntimeError(u"script errored with output:\n%s"
% e.output.decode('utf-8'))
if out != b"":
raise AssertionError(out.decode('utf-8'))
except TimeoutExpired as e:
raise RuntimeError(u"script timeout, output so far:\n%s"
% e.output.decode('utf-8'))
finally:
os.unlink(source_file)
def _convert_container(container, constructor_name, columns_name=None):
if constructor_name == 'list':
return list(container)
elif constructor_name == 'tuple':
return tuple(container)
elif constructor_name == 'array':
return np.asarray(container)
elif constructor_name == 'sparse':
return sp.sparse.csr_matrix(container)
elif constructor_name == 'dataframe':
pd = pytest.importorskip('pandas')
return pd.DataFrame(container, columns=columns_name)
elif constructor_name == 'series':
pd = pytest.importorskip('pandas')
return pd.Series(container)
elif constructor_name == 'index':
pd = pytest.importorskip('pandas')
return pd.Index(container)
elif constructor_name == 'slice':
return slice(container[0], container[1])