Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/datasets/_lfw.py

511 lines
19 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""Labeled Faces in the Wild (LFW) dataset
This dataset is a collection of JPEG pictures of famous people collected
over the internet, all details are available on the official website:
http://vis-www.cs.umass.edu/lfw/
"""
# Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause
from os import listdir, makedirs, remove
from os.path import dirname, join, exists, isdir
import logging
import numpy as np
import joblib
from joblib import Memory
from ._base import get_data_home, _fetch_remote, RemoteFileMetadata
from ..utils import Bunch
from ..utils.validation import _deprecate_positional_args
from ..utils.fixes import parse_version
logger = logging.getLogger(__name__)
# The original data can be found in:
# http://vis-www.cs.umass.edu/lfw/lfw.tgz
ARCHIVE = RemoteFileMetadata(
filename='lfw.tgz',
url='https://ndownloader.figshare.com/files/5976018',
checksum=('055f7d9c632d7370e6fb4afc7468d40f'
'970c34a80d4c6f50ffec63f5a8d536c0'))
# The original funneled data can be found in:
# http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz
FUNNELED_ARCHIVE = RemoteFileMetadata(
filename='lfw-funneled.tgz',
url='https://ndownloader.figshare.com/files/5976015',
checksum=('b47c8422c8cded889dc5a13418c4bc2a'
'bbda121092b3533a83306f90d900100a'))
# The original target data can be found in:
# http://vis-www.cs.umass.edu/lfw/pairsDevTrain.txt',
# http://vis-www.cs.umass.edu/lfw/pairsDevTest.txt',
# http://vis-www.cs.umass.edu/lfw/pairs.txt',
TARGETS = (
RemoteFileMetadata(
filename='pairsDevTrain.txt',
url='https://ndownloader.figshare.com/files/5976012',
checksum=('1d454dada7dfeca0e7eab6f65dc4e97a'
'6312d44cf142207be28d688be92aabfa')),
RemoteFileMetadata(
filename='pairsDevTest.txt',
url='https://ndownloader.figshare.com/files/5976009',
checksum=('7cb06600ea8b2814ac26e946201cdb30'
'4296262aad67d046a16a7ec85d0ff87c')),
RemoteFileMetadata(
filename='pairs.txt',
url='https://ndownloader.figshare.com/files/5976006',
checksum=('ea42330c62c92989f9d7c03237ed5d59'
'1365e89b3e649747777b70e692dc1592')),
)
#
# Common private utilities for data fetching from the original LFW website
# local disk caching, and image decoding.
#
def _check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True):
"""Helper function to download any missing LFW data"""
data_home = get_data_home(data_home=data_home)
lfw_home = join(data_home, "lfw_home")
if not exists(lfw_home):
makedirs(lfw_home)
for target in TARGETS:
target_filepath = join(lfw_home, target.filename)
if not exists(target_filepath):
if download_if_missing:
logger.info("Downloading LFW metadata: %s", target.url)
_fetch_remote(target, dirname=lfw_home)
else:
raise IOError("%s is missing" % target_filepath)
if funneled:
data_folder_path = join(lfw_home, "lfw_funneled")
archive = FUNNELED_ARCHIVE
else:
data_folder_path = join(lfw_home, "lfw")
archive = ARCHIVE
if not exists(data_folder_path):
archive_path = join(lfw_home, archive.filename)
if not exists(archive_path):
if download_if_missing:
logger.info("Downloading LFW data (~200MB): %s",
archive.url)
_fetch_remote(archive, dirname=lfw_home)
else:
raise IOError("%s is missing" % archive_path)
import tarfile
logger.debug("Decompressing the data archive to %s", data_folder_path)
tarfile.open(archive_path, "r:gz").extractall(path=lfw_home)
remove(archive_path)
return lfw_home, data_folder_path
def _load_imgs(file_paths, slice_, color, resize):
"""Internally used to load images"""
# import PIL only when needed
from ..externals._pilutil import imread, imresize
# compute the portion of the images to load to respect the slice_ parameter
# given by the caller
default_slice = (slice(0, 250), slice(0, 250))
if slice_ is None:
slice_ = default_slice
else:
slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice))
h_slice, w_slice = slice_
h = (h_slice.stop - h_slice.start) // (h_slice.step or 1)
w = (w_slice.stop - w_slice.start) // (w_slice.step or 1)
if resize is not None:
resize = float(resize)
h = int(resize * h)
w = int(resize * w)
# allocate some contiguous memory to host the decoded image slices
n_faces = len(file_paths)
if not color:
faces = np.zeros((n_faces, h, w), dtype=np.float32)
else:
faces = np.zeros((n_faces, h, w, 3), dtype=np.float32)
# iterate over the collected file path to load the jpeg files as numpy
# arrays
for i, file_path in enumerate(file_paths):
if i % 1000 == 0:
logger.debug("Loading face #%05d / %05d", i + 1, n_faces)
# Checks if jpeg reading worked. Refer to issue #3594 for more
# details.
img = imread(file_path)
if img.ndim == 0:
raise RuntimeError("Failed to read the image file %s, "
"Please make sure that libjpeg is installed"
% file_path)
face = np.asarray(img[slice_], dtype=np.float32)
face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats
if resize is not None:
face = imresize(face, resize)
if not color:
# average the color channels to compute a gray levels
# representation
face = face.mean(axis=2)
faces[i, ...] = face
return faces
#
# Task #1: Face Identification on picture with names
#
def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None,
min_faces_per_person=0):
"""Perform the actual data loading for the lfw people dataset
This operation is meant to be cached by a joblib wrapper.
"""
# scan the data folder content to retain people with more that
# `min_faces_per_person` face pictures
person_names, file_paths = [], []
for person_name in sorted(listdir(data_folder_path)):
folder_path = join(data_folder_path, person_name)
if not isdir(folder_path):
continue
paths = [join(folder_path, f) for f in sorted(listdir(folder_path))]
n_pictures = len(paths)
if n_pictures >= min_faces_per_person:
person_name = person_name.replace('_', ' ')
person_names.extend([person_name] * n_pictures)
file_paths.extend(paths)
n_faces = len(file_paths)
if n_faces == 0:
raise ValueError("min_faces_per_person=%d is too restrictive" %
min_faces_per_person)
target_names = np.unique(person_names)
target = np.searchsorted(target_names, person_names)
faces = _load_imgs(file_paths, slice_, color, resize)
# shuffle the faces with a deterministic RNG scheme to avoid having
# all faces of the same person in a row, as it would break some
# cross validation and learning algorithms such as SGD and online
# k-means that make an IID assumption
indices = np.arange(n_faces)
np.random.RandomState(42).shuffle(indices)
faces, target = faces[indices], target[indices]
return faces, target, target_names
@_deprecate_positional_args
def fetch_lfw_people(*, data_home=None, funneled=True, resize=0.5,
min_faces_per_person=0, color=False,
slice_=(slice(70, 195), slice(78, 172)),
download_if_missing=True, return_X_y=False):
"""Load the Labeled Faces in the Wild (LFW) people dataset \
(classification).
Download it if necessary.
================= =======================
Classes 5749
Samples total 13233
Dimensionality 5828
Features real, between 0 and 255
================= =======================
Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.
Parameters
----------
data_home : optional, default: None
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
funneled : boolean, optional, default: True
Download and use the funneled variant of the dataset.
resize : float, optional, default 0.5
Ratio used to resize the each face picture.
min_faces_per_person : int, optional, default None
The extracted dataset will only retain pictures of people that have at
least `min_faces_per_person` different pictures.
color : boolean, optional, default False
Keep the 3 RGB channels instead of averaging them to a single
gray level channel. If color is True the shape of the data has
one more dimension than the shape with color = False.
slice_ : optional
Provide a custom 2D slice (height, width) to extract the
'interesting' part of the jpeg files and avoid use statistical
correlation from the background
download_if_missing : optional, True by default
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
return_X_y : boolean, default=False.
If True, returns ``(dataset.data, dataset.target)`` instead of a Bunch
object. See below for more information about the `dataset.data` and
`dataset.target` object.
.. versionadded:: 0.20
Returns
-------
dataset : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : numpy array of shape (13233, 2914)
Each row corresponds to a ravelled face image
of original size 62 x 47 pixels.
Changing the ``slice_`` or resize parameters will change the
shape of the output.
images : numpy array of shape (13233, 62, 47)
Each row is a face image corresponding to one of the 5749 people in
the dataset. Changing the ``slice_``
or resize parameters will change the shape of the output.
target : numpy array of shape (13233,)
Labels associated to each face image.
Those labels range from 0-5748 and correspond to the person IDs.
DESCR : string
Description of the Labeled Faces in the Wild (LFW) dataset.
(data, target) : tuple if ``return_X_y`` is True
.. versionadded:: 0.20
"""
lfw_home, data_folder_path = _check_fetch_lfw(
data_home=data_home, funneled=funneled,
download_if_missing=download_if_missing)
logger.debug('Loading LFW people faces from %s', lfw_home)
# wrap the loader in a memoizing function that will return memmaped data
# arrays for optimal memory usage
if parse_version(joblib.__version__) < parse_version('0.12'):
# Deal with change of API in joblib
m = Memory(cachedir=lfw_home, compress=6, verbose=0)
else:
m = Memory(location=lfw_home, compress=6, verbose=0)
load_func = m.cache(_fetch_lfw_people)
# load and memoize the pairs as np arrays
faces, target, target_names = load_func(
data_folder_path, resize=resize,
min_faces_per_person=min_faces_per_person, color=color, slice_=slice_)
X = faces.reshape(len(faces), -1)
module_path = dirname(__file__)
with open(join(module_path, 'descr', 'lfw.rst')) as rst_file:
fdescr = rst_file.read()
if return_X_y:
return X, target
# pack the results as a Bunch instance
return Bunch(data=X, images=faces,
target=target, target_names=target_names,
DESCR=fdescr)
#
# Task #2: Face Verification on pairs of face pictures
#
def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None,
color=False, resize=None):
"""Perform the actual data loading for the LFW pairs dataset
This operation is meant to be cached by a joblib wrapper.
"""
# parse the index file to find the number of pairs to be able to allocate
# the right amount of memory before starting to decode the jpeg files
with open(index_file_path, 'rb') as index_file:
split_lines = [ln.decode().strip().split('\t') for ln in index_file]
pair_specs = [sl for sl in split_lines if len(sl) > 2]
n_pairs = len(pair_specs)
# iterating over the metadata lines for each pair to find the filename to
# decode and load in memory
target = np.zeros(n_pairs, dtype=np.int)
file_paths = list()
for i, components in enumerate(pair_specs):
if len(components) == 3:
target[i] = 1
pair = (
(components[0], int(components[1]) - 1),
(components[0], int(components[2]) - 1),
)
elif len(components) == 4:
target[i] = 0
pair = (
(components[0], int(components[1]) - 1),
(components[2], int(components[3]) - 1),
)
else:
raise ValueError("invalid line %d: %r" % (i + 1, components))
for j, (name, idx) in enumerate(pair):
try:
person_folder = join(data_folder_path, name)
except TypeError:
person_folder = join(data_folder_path, str(name, 'UTF-8'))
filenames = list(sorted(listdir(person_folder)))
file_path = join(person_folder, filenames[idx])
file_paths.append(file_path)
pairs = _load_imgs(file_paths, slice_, color, resize)
shape = list(pairs.shape)
n_faces = shape.pop(0)
shape.insert(0, 2)
shape.insert(0, n_faces // 2)
pairs.shape = shape
return pairs, target, np.array(['Different persons', 'Same person'])
@_deprecate_positional_args
def fetch_lfw_pairs(*, subset='train', data_home=None, funneled=True,
resize=0.5,
color=False, slice_=(slice(70, 195), slice(78, 172)),
download_if_missing=True):
"""Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
Download it if necessary.
================= =======================
Classes 2
Samples total 13233
Dimensionality 5828
Features real, between 0 and 255
================= =======================
In the official `README.txt`_ this task is described as the
"Restricted" task. As I am not sure as to implement the
"Unrestricted" variant correctly, I left it as unsupported for now.
.. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt
The original images are 250 x 250 pixels, but the default slice and resize
arguments reduce them to 62 x 47.
Read more in the :ref:`User Guide <labeled_faces_in_the_wild_dataset>`.
Parameters
----------
subset : optional, default: 'train'
Select the dataset to load: 'train' for the development training
set, 'test' for the development test set, and '10_folds' for the
official evaluation set that is meant to be used with a 10-folds
cross validation.
data_home : optional, default: None
Specify another download and cache folder for the datasets. By
default all scikit-learn data is stored in '~/scikit_learn_data'
subfolders.
funneled : boolean, optional, default: True
Download and use the funneled variant of the dataset.
resize : float, optional, default 0.5
Ratio used to resize the each face picture.
color : boolean, optional, default False
Keep the 3 RGB channels instead of averaging them to a single
gray level channel. If color is True the shape of the data has
one more dimension than the shape with color = False.
slice_ : optional
Provide a custom 2D slice (height, width) to extract the
'interesting' part of the jpeg files and avoid use statistical
correlation from the background
download_if_missing : optional, True by default
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
Returns
-------
data : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : ndarray of shape (2200, 5828). Shape depends on ``subset``.
Each row corresponds to 2 ravel'd face images
of original size 62 x 47 pixels.
Changing the ``slice_``, ``resize`` or ``subset`` parameters
will change the shape of the output.
pairs : ndarray of shape (2200, 2, 62, 47). Shape depends on ``subset``
Each row has 2 face images corresponding
to same or different person from the dataset
containing 5749 people. Changing the ``slice_``,
``resize`` or ``subset`` parameters will change the shape of the
output.
target : numpy array of shape (2200,). Shape depends on ``subset``.
Labels associated to each pair of images.
The two label values being different persons or the same person.
DESCR : string
Description of the Labeled Faces in the Wild (LFW) dataset.
"""
lfw_home, data_folder_path = _check_fetch_lfw(
data_home=data_home, funneled=funneled,
download_if_missing=download_if_missing)
logger.debug('Loading %s LFW pairs from %s', subset, lfw_home)
# wrap the loader in a memoizing function that will return memmaped data
# arrays for optimal memory usage
if parse_version(joblib.__version__) < parse_version('0.12'):
# Deal with change of API in joblib
m = Memory(cachedir=lfw_home, compress=6, verbose=0)
else:
m = Memory(location=lfw_home, compress=6, verbose=0)
load_func = m.cache(_fetch_lfw_pairs)
# select the right metadata file according to the requested subset
label_filenames = {
'train': 'pairsDevTrain.txt',
'test': 'pairsDevTest.txt',
'10_folds': 'pairs.txt',
}
if subset not in label_filenames:
raise ValueError("subset='%s' is invalid: should be one of %r" % (
subset, list(sorted(label_filenames.keys()))))
index_file_path = join(lfw_home, label_filenames[subset])
# load and memoize the pairs as np arrays
pairs, target, target_names = load_func(
index_file_path, data_folder_path, resize=resize, color=color,
slice_=slice_)
module_path = dirname(__file__)
with open(join(module_path, 'descr', 'lfw.rst')) as rst_file:
fdescr = rst_file.read()
# pack the results as a Bunch instance
return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs,
target=target, target_names=target_names,
DESCR=fdescr)