Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/prompt_toolkit/layout/processors.py

1030 lines
33 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""
Processors are little transformation blocks that transform the fragments list
from a buffer before the BufferControl will render it to the screen.
They can insert fragments before or after, or highlight fragments by replacing the
fragment types.
"""
import re
from abc import ABCMeta, abstractmethod
from typing import (
TYPE_CHECKING,
Callable,
Hashable,
List,
Optional,
Tuple,
Type,
Union,
cast,
)
from prompt_toolkit.application.current import get_app
from prompt_toolkit.cache import SimpleCache
from prompt_toolkit.document import Document
from prompt_toolkit.filters import FilterOrBool, to_filter, vi_insert_multiple_mode
from prompt_toolkit.formatted_text import (
AnyFormattedText,
StyleAndTextTuples,
to_formatted_text,
)
from prompt_toolkit.formatted_text.utils import fragment_list_len, fragment_list_to_text
from prompt_toolkit.search import SearchDirection
from prompt_toolkit.utils import to_int, to_str
from .utils import explode_text_fragments
if TYPE_CHECKING:
from .controls import BufferControl, UIContent
__all__ = [
"Processor",
"TransformationInput",
"Transformation",
"DummyProcessor",
"HighlightSearchProcessor",
"HighlightIncrementalSearchProcessor",
"HighlightSelectionProcessor",
"PasswordProcessor",
"HighlightMatchingBracketProcessor",
"DisplayMultipleCursors",
"BeforeInput",
"ShowArg",
"AfterInput",
"AppendAutoSuggestion",
"ConditionalProcessor",
"ShowLeadingWhiteSpaceProcessor",
"ShowTrailingWhiteSpaceProcessor",
"TabsProcessor",
"ReverseSearchProcessor",
"DynamicProcessor",
"merge_processors",
]
class Processor(metaclass=ABCMeta):
"""
Manipulate the fragments for a given line in a
:class:`~prompt_toolkit.layout.controls.BufferControl`.
"""
@abstractmethod
def apply_transformation(
self, transformation_input: "TransformationInput"
) -> "Transformation":
"""
Apply transformation. Returns a :class:`.Transformation` instance.
:param transformation_input: :class:`.TransformationInput` object.
"""
return Transformation(transformation_input.fragments)
SourceToDisplay = Callable[[int], int]
DisplayToSource = Callable[[int], int]
class TransformationInput:
"""
:param control: :class:`.BufferControl` instance.
:param lineno: The number of the line to which we apply the processor.
:param source_to_display: A function that returns the position in the
`fragments` for any position in the source string. (This takes
previous processors into account.)
:param fragments: List of fragments that we can transform. (Received from the
previous processor.)
"""
def __init__(
self,
buffer_control: "BufferControl",
document: Document,
lineno: int,
source_to_display: SourceToDisplay,
fragments: StyleAndTextTuples,
width: int,
height: int,
) -> None:
self.buffer_control = buffer_control
self.document = document
self.lineno = lineno
self.source_to_display = source_to_display
self.fragments = fragments
self.width = width
self.height = height
def unpack(
self,
) -> Tuple[
"BufferControl", Document, int, SourceToDisplay, StyleAndTextTuples, int, int
]:
return (
self.buffer_control,
self.document,
self.lineno,
self.source_to_display,
self.fragments,
self.width,
self.height,
)
class Transformation:
"""
Transformation result, as returned by :meth:`.Processor.apply_transformation`.
Important: Always make sure that the length of `document.text` is equal to
the length of all the text in `fragments`!
:param fragments: The transformed fragments. To be displayed, or to pass to
the next processor.
:param source_to_display: Cursor position transformation from original
string to transformed string.
:param display_to_source: Cursor position transformed from source string to
original string.
"""
def __init__(
self,
fragments: StyleAndTextTuples,
source_to_display: Optional[SourceToDisplay] = None,
display_to_source: Optional[DisplayToSource] = None,
) -> None:
self.fragments = fragments
self.source_to_display = source_to_display or (lambda i: i)
self.display_to_source = display_to_source or (lambda i: i)
class DummyProcessor(Processor):
"""
A `Processor` that doesn't do anything.
"""
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
return Transformation(transformation_input.fragments)
class HighlightSearchProcessor(Processor):
"""
Processor that highlights search matches in the document.
Note that this doesn't support multiline search matches yet.
The style classes 'search' and 'search.current' will be applied to the
content.
"""
_classname = "search"
_classname_current = "search.current"
def _get_search_text(self, buffer_control: "BufferControl") -> str:
"""
The text we are searching for.
"""
return buffer_control.search_state.text
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
search_text = self._get_search_text(buffer_control)
searchmatch_fragment = " class:%s " % (self._classname,)
searchmatch_current_fragment = " class:%s " % (self._classname_current,)
if search_text and not get_app().is_done:
# For each search match, replace the style string.
line_text = fragment_list_to_text(fragments)
fragments = explode_text_fragments(fragments)
if buffer_control.search_state.ignore_case():
flags = re.IGNORECASE
else:
flags = re.RegexFlag(0)
# Get cursor column.
cursor_column: Optional[int]
if document.cursor_position_row == lineno:
cursor_column = source_to_display(document.cursor_position_col)
else:
cursor_column = None
for match in re.finditer(re.escape(search_text), line_text, flags=flags):
if cursor_column is not None:
on_cursor = match.start() <= cursor_column < match.end()
else:
on_cursor = False
for i in range(match.start(), match.end()):
old_fragment, text, *_ = fragments[i]
if on_cursor:
fragments[i] = (
old_fragment + searchmatch_current_fragment,
fragments[i][1],
)
else:
fragments[i] = (
old_fragment + searchmatch_fragment,
fragments[i][1],
)
return Transformation(fragments)
class HighlightIncrementalSearchProcessor(HighlightSearchProcessor):
"""
Highlight the search terms that are used for highlighting the incremental
search. The style class 'incsearch' will be applied to the content.
Important: this requires the `preview_search=True` flag to be set for the
`BufferControl`. Otherwise, the cursor position won't be set to the search
match while searching, and nothing happens.
"""
_classname = "incsearch"
_classname_current = "incsearch.current"
def _get_search_text(self, buffer_control: "BufferControl") -> str:
"""
The text we are searching for.
"""
# When the search buffer has focus, take that text.
search_buffer = buffer_control.search_buffer
if search_buffer is not None and search_buffer.text:
return search_buffer.text
return ""
class HighlightSelectionProcessor(Processor):
"""
Processor that highlights the selection in the document.
"""
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
selected_fragment = " class:selected "
# In case of selection, highlight all matches.
selection_at_line = document.selection_range_at_line(lineno)
if selection_at_line:
from_, to = selection_at_line
from_ = source_to_display(from_)
to = source_to_display(to)
fragments = explode_text_fragments(fragments)
if from_ == 0 and to == 0 and len(fragments) == 0:
# When this is an empty line, insert a space in order to
# visualise the selection.
return Transformation([(selected_fragment, " ")])
else:
for i in range(from_, to):
if i < len(fragments):
old_fragment, old_text, *_ = fragments[i]
fragments[i] = (old_fragment + selected_fragment, old_text)
elif i == len(fragments):
fragments.append((selected_fragment, " "))
return Transformation(fragments)
class PasswordProcessor(Processor):
"""
Processor that turns masks the input. (For passwords.)
:param char: (string) Character to be used. "*" by default.
"""
def __init__(self, char: str = "*") -> None:
self.char = char
def apply_transformation(self, ti: TransformationInput) -> Transformation:
fragments: StyleAndTextTuples = cast(
StyleAndTextTuples,
[
(style, self.char * len(text), *handler)
for style, text, *handler in ti.fragments
],
)
return Transformation(fragments)
class HighlightMatchingBracketProcessor(Processor):
"""
When the cursor is on or right after a bracket, it highlights the matching
bracket.
:param max_cursor_distance: Only highlight matching brackets when the
cursor is within this distance. (From inside a `Processor`, we can't
know which lines will be visible on the screen. But we also don't want
to scan the whole document for matching brackets on each key press, so
we limit to this value.)
"""
_closing_braces = "])}>"
def __init__(
self, chars: str = "[](){}<>", max_cursor_distance: int = 1000
) -> None:
self.chars = chars
self.max_cursor_distance = max_cursor_distance
self._positions_cache: SimpleCache[
Hashable, List[Tuple[int, int]]
] = SimpleCache(maxsize=8)
def _get_positions_to_highlight(self, document: Document) -> List[Tuple[int, int]]:
"""
Return a list of (row, col) tuples that need to be highlighted.
"""
pos: Optional[int]
# Try for the character under the cursor.
if document.current_char and document.current_char in self.chars:
pos = document.find_matching_bracket_position(
start_pos=document.cursor_position - self.max_cursor_distance,
end_pos=document.cursor_position + self.max_cursor_distance,
)
# Try for the character before the cursor.
elif (
document.char_before_cursor
and document.char_before_cursor in self._closing_braces
and document.char_before_cursor in self.chars
):
document = Document(document.text, document.cursor_position - 1)
pos = document.find_matching_bracket_position(
start_pos=document.cursor_position - self.max_cursor_distance,
end_pos=document.cursor_position + self.max_cursor_distance,
)
else:
pos = None
# Return a list of (row, col) tuples that need to be highlighted.
if pos:
pos += document.cursor_position # pos is relative.
row, col = document.translate_index_to_position(pos)
return [
(row, col),
(document.cursor_position_row, document.cursor_position_col),
]
else:
return []
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
# When the application is in the 'done' state, don't highlight.
if get_app().is_done:
return Transformation(fragments)
# Get the highlight positions.
key = (get_app().render_counter, document.text, document.cursor_position)
positions = self._positions_cache.get(
key, lambda: self._get_positions_to_highlight(document)
)
# Apply if positions were found at this line.
if positions:
for row, col in positions:
if row == lineno:
col = source_to_display(col)
fragments = explode_text_fragments(fragments)
style, text, *_ = fragments[col]
if col == document.cursor_position_col:
style += " class:matching-bracket.cursor "
else:
style += " class:matching-bracket.other "
fragments[col] = (style, text)
return Transformation(fragments)
class DisplayMultipleCursors(Processor):
"""
When we're in Vi block insert mode, display all the cursors.
"""
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
(
buffer_control,
document,
lineno,
source_to_display,
fragments,
_,
_,
) = transformation_input.unpack()
buff = buffer_control.buffer
if vi_insert_multiple_mode():
cursor_positions = buff.multiple_cursor_positions
fragments = explode_text_fragments(fragments)
# If any cursor appears on the current line, highlight that.
start_pos = document.translate_row_col_to_index(lineno, 0)
end_pos = start_pos + len(document.lines[lineno])
fragment_suffix = " class:multiple-cursors"
for p in cursor_positions:
if start_pos <= p <= end_pos:
column = source_to_display(p - start_pos)
# Replace fragment.
try:
style, text, *_ = fragments[column]
except IndexError:
# Cursor needs to be displayed after the current text.
fragments.append((fragment_suffix, " "))
else:
style += fragment_suffix
fragments[column] = (style, text)
return Transformation(fragments)
else:
return Transformation(fragments)
class BeforeInput(Processor):
"""
Insert text before the input.
:param text: This can be either plain text or formatted text
(or a callable that returns any of those).
:param style: style to be applied to this prompt/prefix.
"""
def __init__(self, text: AnyFormattedText, style: str = "") -> None:
self.text = text
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
source_to_display: Optional[SourceToDisplay]
display_to_source: Optional[DisplayToSource]
if ti.lineno == 0:
# Get fragments.
fragments_before = to_formatted_text(self.text, self.style)
fragments = fragments_before + ti.fragments
shift_position = fragment_list_len(fragments_before)
source_to_display = lambda i: i + shift_position
display_to_source = lambda i: i - shift_position
else:
fragments = ti.fragments
source_to_display = None
display_to_source = None
return Transformation(
fragments,
source_to_display=source_to_display,
display_to_source=display_to_source,
)
def __repr__(self) -> str:
return "BeforeInput(%r, %r)" % (self.text, self.style)
class ShowArg(BeforeInput):
"""
Display the 'arg' in front of the input.
This was used by the `PromptSession`, but now it uses the
`Window.get_line_prefix` function instead.
"""
def __init__(self) -> None:
super().__init__(self._get_text_fragments)
def _get_text_fragments(self) -> StyleAndTextTuples:
app = get_app()
if app.key_processor.arg is None:
return []
else:
arg = app.key_processor.arg
return [
("class:prompt.arg", "(arg: "),
("class:prompt.arg.text", str(arg)),
("class:prompt.arg", ") "),
]
def __repr__(self) -> str:
return "ShowArg()"
class AfterInput(Processor):
"""
Insert text after the input.
:param text: This can be either plain text or formatted text
(or a callable that returns any of those).
:param style: style to be applied to this prompt/prefix.
"""
def __init__(self, text: AnyFormattedText, style: str = "") -> None:
self.text = text
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
# Insert fragments after the last line.
if ti.lineno == ti.document.line_count - 1:
# Get fragments.
fragments_after = to_formatted_text(self.text, self.style)
return Transformation(fragments=ti.fragments + fragments_after)
else:
return Transformation(fragments=ti.fragments)
def __repr__(self) -> str:
return "%s(%r, style=%r)" % (self.__class__.__name__, self.text, self.style)
class AppendAutoSuggestion(Processor):
"""
Append the auto suggestion to the input.
(The user can then press the right arrow the insert the suggestion.)
"""
def __init__(self, style: str = "class:auto-suggestion") -> None:
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
# Insert fragments after the last line.
if ti.lineno == ti.document.line_count - 1:
buffer = ti.buffer_control.buffer
if buffer.suggestion and ti.document.is_cursor_at_the_end:
suggestion = buffer.suggestion.text
else:
suggestion = ""
return Transformation(fragments=ti.fragments + [(self.style, suggestion)])
else:
return Transformation(fragments=ti.fragments)
class ShowLeadingWhiteSpaceProcessor(Processor):
"""
Make leading whitespace visible.
:param get_char: Callable that returns one character.
"""
def __init__(
self,
get_char: Optional[Callable[[], str]] = None,
style: str = "class:leading-whitespace",
) -> None:
def default_get_char() -> str:
if "\xb7".encode(get_app().output.encoding(), "replace") == b"?":
return "."
else:
return "\xb7"
self.style = style
self.get_char = get_char or default_get_char
def apply_transformation(self, ti: TransformationInput) -> Transformation:
fragments = ti.fragments
# Walk through all te fragments.
if fragments and fragment_list_to_text(fragments).startswith(" "):
t = (self.style, self.get_char())
fragments = explode_text_fragments(fragments)
for i in range(len(fragments)):
if fragments[i][1] == " ":
fragments[i] = t
else:
break
return Transformation(fragments)
class ShowTrailingWhiteSpaceProcessor(Processor):
"""
Make trailing whitespace visible.
:param get_char: Callable that returns one character.
"""
def __init__(
self,
get_char: Optional[Callable[[], str]] = None,
style: str = "class:training-whitespace",
) -> None:
def default_get_char() -> str:
if "\xb7".encode(get_app().output.encoding(), "replace") == b"?":
return "."
else:
return "\xb7"
self.style = style
self.get_char = get_char or default_get_char
def apply_transformation(self, ti: TransformationInput) -> Transformation:
fragments = ti.fragments
if fragments and fragments[-1][1].endswith(" "):
t = (self.style, self.get_char())
fragments = explode_text_fragments(fragments)
# Walk backwards through all te fragments and replace whitespace.
for i in range(len(fragments) - 1, -1, -1):
char = fragments[i][1]
if char == " ":
fragments[i] = t
else:
break
return Transformation(fragments)
class TabsProcessor(Processor):
"""
Render tabs as spaces (instead of ^I) or make them visible (for instance,
by replacing them with dots.)
:param tabstop: Horizontal space taken by a tab. (`int` or callable that
returns an `int`).
:param char1: Character or callable that returns a character (text of
length one). This one is used for the first space taken by the tab.
:param char2: Like `char1`, but for the rest of the space.
"""
def __init__(
self,
tabstop: Union[int, Callable[[], int]] = 4,
char1: Union[str, Callable[[], str]] = "|",
char2: Union[str, Callable[[], str]] = "\u2508",
style: str = "class:tab",
) -> None:
self.char1 = char1
self.char2 = char2
self.tabstop = tabstop
self.style = style
def apply_transformation(self, ti: TransformationInput) -> Transformation:
tabstop = to_int(self.tabstop)
style = self.style
# Create separator for tabs.
separator1 = to_str(self.char1)
separator2 = to_str(self.char2)
# Transform fragments.
fragments = explode_text_fragments(ti.fragments)
position_mappings = {}
result_fragments: StyleAndTextTuples = []
pos = 0
for i, fragment_and_text in enumerate(fragments):
position_mappings[i] = pos
if fragment_and_text[1] == "\t":
# Calculate how many characters we have to insert.
count = tabstop - (pos % tabstop)
if count == 0:
count = tabstop
# Insert tab.
result_fragments.append((style, separator1))
result_fragments.append((style, separator2 * (count - 1)))
pos += count
else:
result_fragments.append(fragment_and_text)
pos += 1
position_mappings[len(fragments)] = pos
# Add `pos+1` to mapping, because the cursor can be right after the
# line as well.
position_mappings[len(fragments) + 1] = pos + 1
def source_to_display(from_position: int) -> int:
" Maps original cursor position to the new one. "
return position_mappings[from_position]
def display_to_source(display_pos: int) -> int:
" Maps display cursor position to the original one. "
position_mappings_reversed = {v: k for k, v in position_mappings.items()}
while display_pos >= 0:
try:
return position_mappings_reversed[display_pos]
except KeyError:
display_pos -= 1
return 0
return Transformation(
result_fragments,
source_to_display=source_to_display,
display_to_source=display_to_source,
)
class ReverseSearchProcessor(Processor):
"""
Process to display the "(reverse-i-search)`...`:..." stuff around
the search buffer.
Note: This processor is meant to be applied to the BufferControl that
contains the search buffer, it's not meant for the original input.
"""
_excluded_input_processors: List[Type[Processor]] = [
HighlightSearchProcessor,
HighlightSelectionProcessor,
BeforeInput,
AfterInput,
]
def _get_main_buffer(
self, buffer_control: "BufferControl"
) -> Optional["BufferControl"]:
from prompt_toolkit.layout.controls import BufferControl
prev_control = get_app().layout.search_target_buffer_control
if (
isinstance(prev_control, BufferControl)
and prev_control.search_buffer_control == buffer_control
):
return prev_control
return None
def _content(
self, main_control: "BufferControl", ti: TransformationInput
) -> "UIContent":
from prompt_toolkit.layout.controls import BufferControl
# Emulate the BufferControl through which we are searching.
# For this we filter out some of the input processors.
excluded_processors = tuple(self._excluded_input_processors)
def filter_processor(item: Processor) -> Optional[Processor]:
"""Filter processors from the main control that we want to disable
here. This returns either an accepted processor or None."""
# For a `_MergedProcessor`, check each individual processor, recursively.
if isinstance(item, _MergedProcessor):
accepted_processors = [filter_processor(p) for p in item.processors]
return merge_processors(
[p for p in accepted_processors if p is not None]
)
# For a `ConditionalProcessor`, check the body.
elif isinstance(item, ConditionalProcessor):
p = filter_processor(item.processor)
if p:
return ConditionalProcessor(p, item.filter)
# Otherwise, check the processor itself.
else:
if not isinstance(item, excluded_processors):
return item
return None
filtered_processor = filter_processor(
merge_processors(main_control.input_processors or [])
)
highlight_processor = HighlightIncrementalSearchProcessor()
if filtered_processor:
new_processors = [filtered_processor, highlight_processor]
else:
new_processors = [highlight_processor]
from .controls import SearchBufferControl
assert isinstance(ti.buffer_control, SearchBufferControl)
buffer_control = BufferControl(
buffer=main_control.buffer,
input_processors=new_processors,
include_default_input_processors=False,
lexer=main_control.lexer,
preview_search=True,
search_buffer_control=cast(SearchBufferControl, ti.buffer_control),
)
return buffer_control.create_content(ti.width, ti.height, preview_search=True)
def apply_transformation(self, ti: TransformationInput) -> Transformation:
from .controls import SearchBufferControl
assert isinstance(
ti.buffer_control, SearchBufferControl
), "`ReverseSearchProcessor` should be applied to a `SearchBufferControl` only."
source_to_display: Optional[SourceToDisplay]
display_to_source: Optional[DisplayToSource]
main_control = self._get_main_buffer(ti.buffer_control)
if ti.lineno == 0 and main_control:
content = self._content(main_control, ti)
# Get the line from the original document for this search.
line_fragments = content.get_line(content.cursor_position.y)
if main_control.search_state.direction == SearchDirection.FORWARD:
direction_text = "i-search"
else:
direction_text = "reverse-i-search"
fragments_before: StyleAndTextTuples = [
("class:prompt.search", "("),
("class:prompt.search", direction_text),
("class:prompt.search", ")`"),
]
fragments = (
fragments_before
+ [
("class:prompt.search.text", fragment_list_to_text(ti.fragments)),
("", "': "),
]
+ line_fragments
)
shift_position = fragment_list_len(fragments_before)
source_to_display = lambda i: i + shift_position
display_to_source = lambda i: i - shift_position
else:
source_to_display = None
display_to_source = None
fragments = ti.fragments
return Transformation(
fragments,
source_to_display=source_to_display,
display_to_source=display_to_source,
)
class ConditionalProcessor(Processor):
"""
Processor that applies another processor, according to a certain condition.
Example::
# Create a function that returns whether or not the processor should
# currently be applied.
def highlight_enabled():
return true_or_false
# Wrapped it in a `ConditionalProcessor` for usage in a `BufferControl`.
BufferControl(input_processors=[
ConditionalProcessor(HighlightSearchProcessor(),
Condition(highlight_enabled))])
:param processor: :class:`.Processor` instance.
:param filter: :class:`~prompt_toolkit.filters.Filter` instance.
"""
def __init__(self, processor: Processor, filter: FilterOrBool) -> None:
self.processor = processor
self.filter = to_filter(filter)
def apply_transformation(
self, transformation_input: TransformationInput
) -> Transformation:
# Run processor when enabled.
if self.filter():
return self.processor.apply_transformation(transformation_input)
else:
return Transformation(transformation_input.fragments)
def __repr__(self) -> str:
return "%s(processor=%r, filter=%r)" % (
self.__class__.__name__,
self.processor,
self.filter,
)
class DynamicProcessor(Processor):
"""
Processor class that can dynamically returns any Processor.
:param get_processor: Callable that returns a :class:`.Processor` instance.
"""
def __init__(self, get_processor: Callable[[], Optional[Processor]]) -> None:
self.get_processor = get_processor
def apply_transformation(self, ti: TransformationInput) -> Transformation:
processor = self.get_processor() or DummyProcessor()
return processor.apply_transformation(ti)
def merge_processors(processors: List[Processor]) -> Processor:
"""
Merge multiple `Processor` objects into one.
"""
if len(processors) == 0:
return DummyProcessor()
if len(processors) == 1:
return processors[0] # Nothing to merge.
return _MergedProcessor(processors)
class _MergedProcessor(Processor):
"""
Processor that groups multiple other `Processor` objects, but exposes an
API as if it is one `Processor`.
"""
def __init__(self, processors: List[Processor]):
self.processors = processors
def apply_transformation(self, ti: TransformationInput) -> Transformation:
source_to_display_functions = [ti.source_to_display]
display_to_source_functions = []
fragments = ti.fragments
def source_to_display(i: int) -> int:
"""Translate x position from the buffer to the x position in the
processor fragments list."""
for f in source_to_display_functions:
i = f(i)
return i
for p in self.processors:
transformation = p.apply_transformation(
TransformationInput(
ti.buffer_control,
ti.document,
ti.lineno,
source_to_display,
fragments,
ti.width,
ti.height,
)
)
fragments = transformation.fragments
display_to_source_functions.append(transformation.display_to_source)
source_to_display_functions.append(transformation.source_to_display)
def display_to_source(i: int) -> int:
for f in reversed(display_to_source_functions):
i = f(i)
return i
# In the case of a nested _MergedProcessor, each processor wants to
# receive a 'source_to_display' function (as part of the
# TransformationInput) that has everything in the chain before
# included, because it can be called as part of the
# `apply_transformation` function. However, this first
# `source_to_display` should not be part of the output that we are
# returning. (This is the most consistent with `display_to_source`.)
del source_to_display_functions[:1]
return Transformation(fragments, source_to_display, display_to_source)