Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/cluster/_feature_agglomeration.py

78 lines
2.5 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""
Feature agglomeration. Base classes and functions for performing feature
agglomeration.
"""
# Author: V. Michel, A. Gramfort
# License: BSD 3 clause
import numpy as np
from ..base import TransformerMixin
from ..utils import check_array
from ..utils.validation import check_is_fitted
from scipy.sparse import issparse
###############################################################################
# Mixin class for feature agglomeration.
class AgglomerationTransform(TransformerMixin):
"""
A class for feature agglomeration via the transform interface
"""
def transform(self, X):
"""
Transform a new matrix using the built clustering
Parameters
----------
X : array-like of shape (n_samples, n_features) or (n_samples,)
A M by N array of M observations in N dimensions or a length
M array of M one-dimensional observations.
Returns
-------
Y : array, shape = [n_samples, n_clusters] or [n_clusters]
The pooled values for each feature cluster.
"""
check_is_fitted(self)
X = check_array(X)
if len(self.labels_) != X.shape[1]:
raise ValueError("X has a different number of features than "
"during fitting.")
if self.pooling_func == np.mean and not issparse(X):
size = np.bincount(self.labels_)
n_samples = X.shape[0]
# a fast way to compute the mean of grouped features
nX = np.array([np.bincount(self.labels_, X[i, :]) / size
for i in range(n_samples)])
else:
nX = [self.pooling_func(X[:, self.labels_ == l], axis=1)
for l in np.unique(self.labels_)]
nX = np.array(nX).T
return nX
def inverse_transform(self, Xred):
"""
Inverse the transformation.
Return a vector of size nb_features with the values of Xred assigned
to each group of features
Parameters
----------
Xred : array-like of shape (n_samples, n_clusters) or (n_clusters,)
The values to be assigned to each cluster of samples
Returns
-------
X : array, shape=[n_samples, n_features] or [n_features]
A vector of size n_samples with the values of Xred assigned to
each of the cluster of samples.
"""
check_is_fitted(self)
unil, inverse = np.unique(self.labels_, return_inverse=True)
return Xred[..., inverse]