Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/linear_model/_ridge.py

1912 lines
73 KiB
Python
Raw Normal View History

2020-11-12 16:05:57 +00:00
"""
Ridge regression
"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
# Fabian Pedregosa <fabian@fseoane.net>
# Michael Eickenberg <michael.eickenberg@nsup.org>
# License: BSD 3 clause
from abc import ABCMeta, abstractmethod
import warnings
import numpy as np
from scipy import linalg
from scipy import sparse
from scipy.sparse import linalg as sp_linalg
from ._base import LinearClassifierMixin, LinearModel, _rescale_data
from ._sag import sag_solver
from ..base import RegressorMixin, MultiOutputMixin, is_classifier
from ..utils.extmath import safe_sparse_dot
from ..utils.extmath import row_norms
from ..utils import check_array
from ..utils import check_consistent_length
from ..utils import compute_sample_weight
from ..utils import column_or_1d
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args
from ..preprocessing import LabelBinarizer
from ..model_selection import GridSearchCV
from ..metrics import check_scoring
from ..exceptions import ConvergenceWarning
from ..utils.sparsefuncs import mean_variance_axis
def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0,
X_offset=None, X_scale=None):
def _get_rescaled_operator(X):
X_offset_scale = X_offset / X_scale
def matvec(b):
return X.dot(b) - b.dot(X_offset_scale)
def rmatvec(b):
return X.T.dot(b) - X_offset_scale * np.sum(b)
X1 = sparse.linalg.LinearOperator(shape=X.shape,
matvec=matvec,
rmatvec=rmatvec)
return X1
n_samples, n_features = X.shape
if X_offset is None or X_scale is None:
X1 = sp_linalg.aslinearoperator(X)
else:
X1 = _get_rescaled_operator(X)
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
if n_features > n_samples:
def create_mv(curr_alpha):
def _mv(x):
return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
return _mv
else:
def create_mv(curr_alpha):
def _mv(x):
return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
return _mv
for i in range(y.shape[1]):
y_column = y[:, i]
mv = create_mv(alpha[i])
if n_features > n_samples:
# kernel ridge
# w = X.T * inv(X X^t + alpha*Id) y
C = sp_linalg.LinearOperator(
(n_samples, n_samples), matvec=mv, dtype=X.dtype)
# FIXME atol
try:
coef, info = sp_linalg.cg(C, y_column, tol=tol, atol='legacy')
except TypeError:
# old scipy
coef, info = sp_linalg.cg(C, y_column, tol=tol)
coefs[i] = X1.rmatvec(coef)
else:
# linear ridge
# w = inv(X^t X + alpha*Id) * X.T y
y_column = X1.rmatvec(y_column)
C = sp_linalg.LinearOperator(
(n_features, n_features), matvec=mv, dtype=X.dtype)
# FIXME atol
try:
coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
tol=tol, atol='legacy')
except TypeError:
# old scipy
coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
tol=tol)
if info < 0:
raise ValueError("Failed with error code %d" % info)
if max_iter is None and info > 0 and verbose:
warnings.warn("sparse_cg did not converge after %d iterations." %
info, ConvergenceWarning)
return coefs
def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3):
n_samples, n_features = X.shape
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
n_iter = np.empty(y.shape[1], dtype=np.int32)
# According to the lsqr documentation, alpha = damp^2.
sqrt_alpha = np.sqrt(alpha)
for i in range(y.shape[1]):
y_column = y[:, i]
info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i],
atol=tol, btol=tol, iter_lim=max_iter)
coefs[i] = info[0]
n_iter[i] = info[2]
return coefs, n_iter
def _solve_cholesky(X, y, alpha):
# w = inv(X^t X + alpha*Id) * X.T y
n_features = X.shape[1]
n_targets = y.shape[1]
A = safe_sparse_dot(X.T, X, dense_output=True)
Xy = safe_sparse_dot(X.T, y, dense_output=True)
one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])
if one_alpha:
A.flat[::n_features + 1] += alpha[0]
return linalg.solve(A, Xy, sym_pos=True,
overwrite_a=True).T
else:
coefs = np.empty([n_targets, n_features], dtype=X.dtype)
for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
A.flat[::n_features + 1] += current_alpha
coef[:] = linalg.solve(A, target, sym_pos=True,
overwrite_a=False).ravel()
A.flat[::n_features + 1] -= current_alpha
return coefs
def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
# dual_coef = inv(X X^t + alpha*Id) y
n_samples = K.shape[0]
n_targets = y.shape[1]
if copy:
K = K.copy()
alpha = np.atleast_1d(alpha)
one_alpha = (alpha == alpha[0]).all()
has_sw = isinstance(sample_weight, np.ndarray) \
or sample_weight not in [1.0, None]
if has_sw:
# Unlike other solvers, we need to support sample_weight directly
# because K might be a pre-computed kernel.
sw = np.sqrt(np.atleast_1d(sample_weight))
y = y * sw[:, np.newaxis]
K *= np.outer(sw, sw)
if one_alpha:
# Only one penalty, we can solve multi-target problems in one time.
K.flat[::n_samples + 1] += alpha[0]
try:
# Note: we must use overwrite_a=False in order to be able to
# use the fall-back solution below in case a LinAlgError
# is raised
dual_coef = linalg.solve(K, y, sym_pos=True,
overwrite_a=False)
except np.linalg.LinAlgError:
warnings.warn("Singular matrix in solving dual problem. Using "
"least-squares solution instead.")
dual_coef = linalg.lstsq(K, y)[0]
# K is expensive to compute and store in memory so change it back in
# case it was user-given.
K.flat[::n_samples + 1] -= alpha[0]
if has_sw:
dual_coef *= sw[:, np.newaxis]
return dual_coef
else:
# One penalty per target. We need to solve each target separately.
dual_coefs = np.empty([n_targets, n_samples], K.dtype)
for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
K.flat[::n_samples + 1] += current_alpha
dual_coef[:] = linalg.solve(K, target, sym_pos=True,
overwrite_a=False).ravel()
K.flat[::n_samples + 1] -= current_alpha
if has_sw:
dual_coefs *= sw[np.newaxis, :]
return dual_coefs.T
def _solve_svd(X, y, alpha):
U, s, Vt = linalg.svd(X, full_matrices=False)
idx = s > 1e-15 # same default value as scipy.linalg.pinv
s_nnz = s[idx][:, np.newaxis]
UTy = np.dot(U.T, y)
d = np.zeros((s.size, alpha.size), dtype=X.dtype)
d[idx] = s_nnz / (s_nnz ** 2 + alpha)
d_UT_y = d * UTy
return np.dot(Vt.T, d_UT_y).T
def _get_valid_accept_sparse(is_X_sparse, solver):
if is_X_sparse and solver in ['auto', 'sag', 'saga']:
return 'csr'
else:
return ['csr', 'csc', 'coo']
@_deprecate_positional_args
def ridge_regression(X, y, alpha, *, sample_weight=None, solver='auto',
max_iter=None, tol=1e-3, verbose=0, random_state=None,
return_n_iter=False, return_intercept=False,
check_input=True):
"""Solve the ridge equation by the method of normal equations.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
X : {ndarray, sparse matrix, LinearOperator} of shape \
(n_samples, n_features)
Training data
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values
alpha : float or array-like of shape (n_targets,)
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in
number.
sample_weight : float or array-like of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight. If sample_weight is not None and
solver='auto', the solver will be set to 'cholesky'.
.. versionadded:: 0.17
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. More stable for singular matrices than 'cholesky'.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution via a Cholesky decomposition of
dot(X.T, X)
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its improved, unbiased version named SAGA. Both methods also use an
iterative procedure, and are often faster than other solvers when
both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
All last five solvers support both dense and sparse data. However, only
'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
1000.
tol : float, default=1e-3
Precision of the solution.
verbose : int, default=0
Verbosity level. Setting verbose > 0 will display additional
information depending on the solver used.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
return_n_iter : bool, default=False
If True, the method also returns `n_iter`, the actual number of
iteration performed by the solver.
.. versionadded:: 0.17
return_intercept : bool, default=False
If True and if X is sparse, the method also returns the intercept,
and the solver is automatically changed to 'sag'. This is only a
temporary fix for fitting the intercept with sparse data. For dense
data, use sklearn.linear_model._preprocess_data before your regression.
.. versionadded:: 0.17
check_input : bool, default=True
If False, the input arrays X and y will not be checked.
.. versionadded:: 0.21
Returns
-------
coef : ndarray of shape (n_features,) or (n_targets, n_features)
Weight vector(s).
n_iter : int, optional
The actual number of iteration performed by the solver.
Only returned if `return_n_iter` is True.
intercept : float or ndarray of shape (n_targets,)
The intercept of the model. Only returned if `return_intercept`
is True and if X is a scipy sparse array.
Notes
-----
This function won't compute the intercept.
"""
return _ridge_regression(X, y, alpha,
sample_weight=sample_weight,
solver=solver,
max_iter=max_iter,
tol=tol,
verbose=verbose,
random_state=random_state,
return_n_iter=return_n_iter,
return_intercept=return_intercept,
X_scale=None,
X_offset=None,
check_input=check_input)
def _ridge_regression(X, y, alpha, sample_weight=None, solver='auto',
max_iter=None, tol=1e-3, verbose=0, random_state=None,
return_n_iter=False, return_intercept=False,
X_scale=None, X_offset=None, check_input=True):
has_sw = sample_weight is not None
if solver == 'auto':
if return_intercept:
# only sag supports fitting intercept directly
solver = "sag"
elif not sparse.issparse(X):
solver = "cholesky"
else:
solver = "sparse_cg"
if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag', 'saga'):
raise ValueError("Known solvers are 'sparse_cg', 'cholesky', 'svd'"
" 'lsqr', 'sag' or 'saga'. Got %s." % solver)
if return_intercept and solver != 'sag':
raise ValueError("In Ridge, only 'sag' solver can directly fit the "
"intercept. Please change solver to 'sag' or set "
"return_intercept=False.")
if check_input:
_dtype = [np.float64, np.float32]
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver)
X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype,
order="C")
y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None)
check_consistent_length(X, y)
n_samples, n_features = X.shape
if y.ndim > 2:
raise ValueError("Target y has the wrong shape %s" % str(y.shape))
ravel = False
if y.ndim == 1:
y = y.reshape(-1, 1)
ravel = True
n_samples_, n_targets = y.shape
if n_samples != n_samples_:
raise ValueError("Number of samples in X and y does not correspond:"
" %d != %d" % (n_samples, n_samples_))
if has_sw:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
if solver not in ['sag', 'saga']:
# SAG supports sample_weight directly. For other solvers,
# we implement sample_weight via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
# There should be either 1 or n_targets penalties
alpha = np.asarray(alpha, dtype=X.dtype).ravel()
if alpha.size not in [1, n_targets]:
raise ValueError("Number of targets and number of penalties "
"do not correspond: %d != %d"
% (alpha.size, n_targets))
if alpha.size == 1 and n_targets > 1:
alpha = np.repeat(alpha, n_targets)
n_iter = None
if solver == 'sparse_cg':
coef = _solve_sparse_cg(X, y, alpha,
max_iter=max_iter,
tol=tol,
verbose=verbose,
X_offset=X_offset,
X_scale=X_scale)
elif solver == 'lsqr':
coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol)
elif solver == 'cholesky':
if n_features > n_samples:
K = safe_sparse_dot(X, X.T, dense_output=True)
try:
dual_coef = _solve_cholesky_kernel(K, y, alpha)
coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
except linalg.LinAlgError:
# use SVD solver if matrix is singular
solver = 'svd'
else:
try:
coef = _solve_cholesky(X, y, alpha)
except linalg.LinAlgError:
# use SVD solver if matrix is singular
solver = 'svd'
elif solver in ['sag', 'saga']:
# precompute max_squared_sum for all targets
max_squared_sum = row_norms(X, squared=True).max()
coef = np.empty((y.shape[1], n_features), dtype=X.dtype)
n_iter = np.empty(y.shape[1], dtype=np.int32)
intercept = np.zeros((y.shape[1], ), dtype=X.dtype)
for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
init = {'coef': np.zeros((n_features + int(return_intercept), 1),
dtype=X.dtype)}
coef_, n_iter_, _ = sag_solver(
X, target.ravel(), sample_weight, 'squared', alpha_i, 0,
max_iter, tol, verbose, random_state, False, max_squared_sum,
init, is_saga=solver == 'saga')
if return_intercept:
coef[i] = coef_[:-1]
intercept[i] = coef_[-1]
else:
coef[i] = coef_
n_iter[i] = n_iter_
if intercept.shape[0] == 1:
intercept = intercept[0]
coef = np.asarray(coef)
if solver == 'svd':
if sparse.issparse(X):
raise TypeError('SVD solver does not support sparse'
' inputs currently')
coef = _solve_svd(X, y, alpha)
if ravel:
# When y was passed as a 1d-array, we flatten the coefficients.
coef = coef.ravel()
if return_n_iter and return_intercept:
return coef, n_iter, intercept
elif return_intercept:
return coef, intercept
elif return_n_iter:
return coef, n_iter
else:
return coef
class _BaseRidge(LinearModel, metaclass=ABCMeta):
@abstractmethod
@_deprecate_positional_args
def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=1e-3, solver="auto",
random_state=None):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.max_iter = max_iter
self.tol = tol
self.solver = solver
self.random_state = random_state
def fit(self, X, y, sample_weight=None):
# all other solvers work at both float precision levels
_dtype = [np.float64, np.float32]
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X),
self.solver)
X, y = self._validate_data(X, y,
accept_sparse=_accept_sparse,
dtype=_dtype,
multi_output=True, y_numeric=True)
if sparse.issparse(X) and self.fit_intercept:
if self.solver not in ['auto', 'sparse_cg', 'sag']:
raise ValueError(
"solver='{}' does not support fitting the intercept "
"on sparse data. Please set the solver to 'auto' or "
"'sparse_cg', 'sag', or set `fit_intercept=False`"
.format(self.solver))
if (self.solver == 'sag' and self.max_iter is None and
self.tol > 1e-4):
warnings.warn(
'"sag" solver requires many iterations to fit '
'an intercept with sparse inputs. Either set the '
'solver to "auto" or "sparse_cg", or set a low '
'"tol" and a high "max_iter" (especially if inputs are '
'not standardized).')
solver = 'sag'
else:
solver = 'sparse_cg'
else:
solver = self.solver
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
# when X is sparse we only remove offset from y
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X,
sample_weight=sample_weight, return_mean=True)
if solver == 'sag' and sparse.issparse(X) and self.fit_intercept:
self.coef_, self.n_iter_, self.intercept_ = _ridge_regression(
X, y, alpha=self.alpha, sample_weight=sample_weight,
max_iter=self.max_iter, tol=self.tol, solver='sag',
random_state=self.random_state, return_n_iter=True,
return_intercept=True, check_input=False)
# add the offset which was subtracted by _preprocess_data
self.intercept_ += y_offset
else:
if sparse.issparse(X) and self.fit_intercept:
# required to fit intercept with sparse_cg solver
params = {'X_offset': X_offset, 'X_scale': X_scale}
else:
# for dense matrices or when intercept is set to 0
params = {}
self.coef_, self.n_iter_ = _ridge_regression(
X, y, alpha=self.alpha, sample_weight=sample_weight,
max_iter=self.max_iter, tol=self.tol, solver=solver,
random_state=self.random_state, return_n_iter=True,
return_intercept=False, check_input=False, **params)
self._set_intercept(X_offset, y_offset, X_scale)
return self
class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
"""Linear least squares with l2 regularization.
Minimizes the objective function::
||y - Xw||^2_2 + alpha * ||w||^2_2
This model solves a regression model where the loss function is
the linear least squares function and regularization is given by
the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
This estimator has built-in support for multi-variate regression
(i.e., when y is a 2d-array of shape (n_samples, n_targets)).
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alpha : {float, ndarray of shape (n_targets,)}, default=1.0
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in
number.
fit_intercept : bool, default=True
Whether to fit the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. ``X`` and ``y`` are expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
For 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.
tol : float, default=1e-3
Precision of the solution.
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. More stable for singular matrices than 'cholesky'.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution.
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its improved, unbiased version named SAGA. Both methods also use an
iterative procedure, and are often faster than other solvers when
both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
All last five solvers support both dense and sparse data. However, only
'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
.. versionadded:: 0.17
`random_state` to support Stochastic Average Gradient.
Attributes
----------
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
Weight vector(s).
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
n_iter_ : None or ndarray of shape (n_targets,)
Actual number of iterations for each target. Available only for
sag and lsqr solvers. Other solvers will return None.
.. versionadded:: 0.17
See also
--------
RidgeClassifier : Ridge classifier
RidgeCV : Ridge regression with built-in cross validation
:class:`sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
combines ridge regression with the kernel trick
Examples
--------
>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge()
"""
@_deprecate_positional_args
def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=1e-3, solver="auto",
random_state=None):
super().__init__(
alpha=alpha, fit_intercept=fit_intercept,
normalize=normalize, copy_X=copy_X,
max_iter=max_iter, tol=tol, solver=solver,
random_state=random_state)
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : returns an instance of self.
"""
return super().fit(X, y, sample_weight=sample_weight)
class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
"""Classifier using Ridge regression.
This classifier first converts the target values into ``{-1, 1}`` and
then treats the problem as a regression task (multi-output regression in
the multiclass case).
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alpha : float, default=1.0
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set to false, no
intercept will be used in calculations (e.g. data is expected to be
already centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
The default value is determined by scipy.sparse.linalg.
tol : float, default=1e-3
Precision of the solution.
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``.
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. More stable for singular matrices than 'cholesky'.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution.
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its unbiased and more flexible version named SAGA. Both methods
use an iterative procedure, and are often faster than other solvers
when both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
Attributes
----------
coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
Coefficient of the features in the decision function.
``coef_`` is of shape (1, n_features) when the given problem is binary.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
n_iter_ : None or ndarray of shape (n_targets,)
Actual number of iterations for each target. Available only for
sag and lsqr solvers. Other solvers will return None.
classes_ : ndarray of shape (n_classes,)
The classes labels.
See Also
--------
Ridge : Ridge regression.
RidgeClassifierCV : Ridge classifier with built-in cross validation.
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifier
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifier().fit(X, y)
>>> clf.score(X, y)
0.9595...
"""
@_deprecate_positional_args
def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=1e-3, class_weight=None,
solver="auto", random_state=None):
super().__init__(
alpha=alpha, fit_intercept=fit_intercept, normalize=normalize,
copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver,
random_state=random_state)
self.class_weight = class_weight
def fit(self, X, y, sample_weight=None):
"""Fit Ridge classifier model.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target values.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
.. versionadded:: 0.17
*sample_weight* support to Classifier.
Returns
-------
self : object
Instance of the estimator.
"""
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X),
self.solver)
X, y = self._validate_data(X, y, accept_sparse=_accept_sparse,
multi_output=True, y_numeric=False)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
Y = self._label_binarizer.fit_transform(y)
if not self._label_binarizer.y_type_.startswith('multilabel'):
y = column_or_1d(y, warn=True)
else:
# we don't (yet) support multi-label classification in Ridge
raise ValueError(
"%s doesn't support multi-label classification" % (
self.__class__.__name__))
if self.class_weight:
# modify the sample weights with the corresponding class weight
sample_weight = (sample_weight *
compute_sample_weight(self.class_weight, y))
super().fit(X, Y, sample_weight=sample_weight)
return self
@property
def classes_(self):
return self._label_binarizer.classes_
def _check_gcv_mode(X, gcv_mode):
possible_gcv_modes = [None, 'auto', 'svd', 'eigen']
if gcv_mode not in possible_gcv_modes:
raise ValueError(
"Unknown value for 'gcv_mode'. "
"Got {} instead of one of {}" .format(
gcv_mode, possible_gcv_modes))
if gcv_mode in ['eigen', 'svd']:
return gcv_mode
# if X has more rows than columns, use decomposition of X^T.X,
# otherwise X.X^T
if X.shape[0] > X.shape[1]:
return 'svd'
return 'eigen'
def _find_smallest_angle(query, vectors):
"""Find the column of vectors that is most aligned with the query.
Both query and the columns of vectors must have their l2 norm equal to 1.
Parameters
----------
query : ndarray of shape (n_samples,)
Normalized query vector.
vectors : ndarray of shape (n_samples, n_features)
Vectors to which we compare query, as columns. Must be normalized.
"""
abs_cosine = np.abs(query.dot(vectors))
index = np.argmax(abs_cosine)
return index
class _X_CenterStackOp(sparse.linalg.LinearOperator):
"""Behaves as centered and scaled X with an added intercept column.
This operator behaves as
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]])
"""
def __init__(self, X, X_mean, sqrt_sw):
n_samples, n_features = X.shape
super().__init__(X.dtype, (n_samples, n_features + 1))
self.X = X
self.X_mean = X_mean
self.sqrt_sw = sqrt_sw
def _matvec(self, v):
v = v.ravel()
return safe_sparse_dot(
self.X, v[:-1], dense_output=True
) - self.sqrt_sw * self.X_mean.dot(v[:-1]) + v[-1] * self.sqrt_sw
def _matmat(self, v):
return (
safe_sparse_dot(self.X, v[:-1], dense_output=True) -
self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1]) + v[-1] *
self.sqrt_sw[:, None])
def _transpose(self):
return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw)
class _XT_CenterStackOp(sparse.linalg.LinearOperator):
"""Behaves as transposed centered and scaled X with an intercept column.
This operator behaves as
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T
"""
def __init__(self, X, X_mean, sqrt_sw):
n_samples, n_features = X.shape
super().__init__(X.dtype, (n_features + 1, n_samples))
self.X = X
self.X_mean = X_mean
self.sqrt_sw = sqrt_sw
def _matvec(self, v):
v = v.ravel()
n_features = self.shape[0]
res = np.empty(n_features, dtype=self.X.dtype)
res[:-1] = (
safe_sparse_dot(self.X.T, v, dense_output=True) -
(self.X_mean * self.sqrt_sw.dot(v))
)
res[-1] = np.dot(v, self.sqrt_sw)
return res
def _matmat(self, v):
n_features = self.shape[0]
res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype)
res[:-1] = (
safe_sparse_dot(self.X.T, v, dense_output=True) -
self.X_mean[:, None] * self.sqrt_sw.dot(v)
)
res[-1] = np.dot(self.sqrt_sw, v)
return res
class _IdentityRegressor:
"""Fake regressor which will directly output the prediction."""
def decision_function(self, y_predict):
return y_predict
def predict(self, y_predict):
return y_predict
class _IdentityClassifier(LinearClassifierMixin):
"""Fake classifier which will directly output the prediction.
We inherit from LinearClassifierMixin to get the proper shape for the
output `y`.
"""
def __init__(self, classes):
self.classes_ = classes
def decision_function(self, y_predict):
return y_predict
class _RidgeGCV(LinearModel):
"""Ridge regression with built-in Generalized Cross-Validation.
It allows efficient Leave-One-Out cross-validation.
This class is not intended to be used directly. Use RidgeCV instead.
Notes
-----
We want to solve (K + alpha*Id)c = y,
where K = X X^T is the kernel matrix.
Let G = (K + alpha*Id).
Dual solution: c = G^-1y
Primal solution: w = X^T c
Compute eigendecomposition K = Q V Q^T.
Then G^-1 = Q (V + alpha*Id)^-1 Q^T,
where (V + alpha*Id) is diagonal.
It is thus inexpensive to inverse for many alphas.
Let loov be the vector of prediction values for each example
when the model was fitted with all examples but this example.
loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1)
Let looe be the vector of prediction errors for each example
when the model was fitted with all examples but this example.
looe = y - loov = c / diag(G^-1)
The best score (negative mean squared error or user-provided scoring) is
stored in the `best_score_` attribute, and the selected hyperparameter in
`alpha_`.
References
----------
http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
"""
@_deprecate_positional_args
def __init__(self, alphas=(0.1, 1.0, 10.0), *,
fit_intercept=True, normalize=False,
scoring=None, copy_X=True,
gcv_mode=None, store_cv_values=False,
is_clf=False):
self.alphas = np.asarray(alphas)
self.fit_intercept = fit_intercept
self.normalize = normalize
self.scoring = scoring
self.copy_X = copy_X
self.gcv_mode = gcv_mode
self.store_cv_values = store_cv_values
self.is_clf = is_clf
@staticmethod
def _decomp_diag(v_prime, Q):
# compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
return (v_prime * Q ** 2).sum(axis=-1)
@staticmethod
def _diag_dot(D, B):
# compute dot(diag(D), B)
if len(B.shape) > 1:
# handle case where B is > 1-d
D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)]
return D * B
def _compute_gram(self, X, sqrt_sw):
"""Computes the Gram matrix XX^T with possible centering.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The preprocessed design matrix.
sqrt_sw : ndarray of shape (n_samples,)
square roots of sample weights
Returns
-------
gram : ndarray of shape (n_samples, n_samples)
The Gram matrix.
X_mean : ndarray of shape (n_feature,)
The weighted mean of ``X`` for each feature.
Notes
-----
When X is dense the centering has been done in preprocessing
so the mean is 0 and we just compute XX^T.
When X is sparse it has not been centered in preprocessing, but it has
been scaled by sqrt(sample weights).
When self.fit_intercept is False no centering is done.
The centered X is never actually computed because centering would break
the sparsity of X.
"""
center = self.fit_intercept and sparse.issparse(X)
if not center:
# in this case centering has been done in preprocessing
# or we are not fitting an intercept.
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
return safe_sparse_dot(X, X.T, dense_output=True), X_mean
# X is sparse
n_samples = X.shape[0]
sample_weight_matrix = sparse.dia_matrix(
(sqrt_sw, 0), shape=(n_samples, n_samples))
X_weighted = sample_weight_matrix.dot(X)
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)
X_mX = sqrt_sw[:, None] * safe_sparse_dot(
X_mean, X.T, dense_output=True)
X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)
return (safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m
- X_mX - X_mX.T, X_mean)
def _compute_covariance(self, X, sqrt_sw):
"""Computes covariance matrix X^TX with possible centering.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
The preprocessed design matrix.
sqrt_sw : ndarray of shape (n_samples,)
square roots of sample weights
Returns
-------
covariance : ndarray of shape (n_features, n_features)
The covariance matrix.
X_mean : ndarray of shape (n_feature,)
The weighted mean of ``X`` for each feature.
Notes
-----
Since X is sparse it has not been centered in preprocessing, but it has
been scaled by sqrt(sample weights).
When self.fit_intercept is False no centering is done.
The centered X is never actually computed because centering would break
the sparsity of X.
"""
if not self.fit_intercept:
# in this case centering has been done in preprocessing
# or we are not fitting an intercept.
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
return safe_sparse_dot(X.T, X, dense_output=True), X_mean
# this function only gets called for sparse X
n_samples = X.shape[0]
sample_weight_matrix = sparse.dia_matrix(
(sqrt_sw, 0), shape=(n_samples, n_samples))
X_weighted = sample_weight_matrix.dot(X)
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)
weight_sum = sqrt_sw.dot(sqrt_sw)
return (safe_sparse_dot(X.T, X, dense_output=True) -
weight_sum * np.outer(X_mean, X_mean),
X_mean)
def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):
"""Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)
without explicitely centering X nor computing X.dot(A)
when X is sparse.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
A : ndarray of shape (n_features, n_features)
X_mean : ndarray of shape (n_features,)
sqrt_sw : ndarray of shape (n_features,)
square roots of sample weights
Returns
-------
diag : np.ndarray, shape (n_samples,)
The computed diagonal.
"""
intercept_col = scale = sqrt_sw
batch_size = X.shape[1]
diag = np.empty(X.shape[0], dtype=X.dtype)
for start in range(0, X.shape[0], batch_size):
batch = slice(start, min(X.shape[0], start + batch_size), 1)
X_batch = np.empty(
(X[batch].shape[0], X.shape[1] + self.fit_intercept),
dtype=X.dtype
)
if self.fit_intercept:
X_batch[:, :-1] = X[batch].A - X_mean * scale[batch][:, None]
X_batch[:, -1] = intercept_col[batch]
else:
X_batch = X[batch].A
diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1)
return diag
def _eigen_decompose_gram(self, X, y, sqrt_sw):
"""Eigendecomposition of X.X^T, used when n_samples <= n_features."""
# if X is dense it has already been centered in preprocessing
K, X_mean = self._compute_gram(X, sqrt_sw)
if self.fit_intercept:
# to emulate centering X with sample weights,
# ie removing the weighted average, we add a column
# containing the square roots of the sample weights.
# by centering, it is orthogonal to the other columns
K += np.outer(sqrt_sw, sqrt_sw)
eigvals, Q = linalg.eigh(K)
QT_y = np.dot(Q.T, y)
return X_mean, eigvals, Q, QT_y
def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X.X^T (n_samples <= n_features).
"""
w = 1. / (eigvals + alpha)
if self.fit_intercept:
# the vector containing the square roots of the sample weights (1
# when no sample weights) is the eigenvector of XX^T which
# corresponds to the intercept; we cancel the regularization on
# this dimension. the corresponding eigenvalue is
# sum(sample_weight).
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
intercept_dim = _find_smallest_angle(normalized_sw, Q)
w[intercept_dim] = 0 # cancel regularization for the intercept
c = np.dot(Q, self._diag_dot(w, QT_y))
G_inverse_diag = self._decomp_diag(w, Q)
# handle case where y is 2-d
if len(y.shape) != 1:
G_inverse_diag = G_inverse_diag[:, np.newaxis]
return G_inverse_diag, c
def _eigen_decompose_covariance(self, X, y, sqrt_sw):
"""Eigendecomposition of X^T.X, used when n_samples > n_features
and X is sparse.
"""
n_samples, n_features = X.shape
cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype)
cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw)
if not self.fit_intercept:
cov = cov[:-1, :-1]
# to emulate centering X with sample weights,
# ie removing the weighted average, we add a column
# containing the square roots of the sample weights.
# by centering, it is orthogonal to the other columns
# when all samples have the same weight we add a column of 1
else:
cov[-1] = 0
cov[:, -1] = 0
cov[-1, -1] = sqrt_sw.dot(sqrt_sw)
nullspace_dim = max(0, n_features - n_samples)
eigvals, V = linalg.eigh(cov)
# remove eigenvalues and vectors in the null space of X^T.X
eigvals = eigvals[nullspace_dim:]
V = V[:, nullspace_dim:]
return X_mean, eigvals, V, X
def _solve_eigen_covariance_no_intercept(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse), and not fitting an intercept.
"""
w = 1 / (eigvals + alpha)
A = (V * w).dot(V.T)
AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True))
y_hat = safe_sparse_dot(X, AXy, dense_output=True)
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
if len(y.shape) != 1:
# handle case where y is 2-d
hat_diag = hat_diag[:, np.newaxis]
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
def _solve_eigen_covariance_intercept(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse),
and we are fitting an intercept.
"""
# the vector [0, 0, ..., 0, 1]
# is the eigenvector of X^TX which
# corresponds to the intercept; we cancel the regularization on
# this dimension. the corresponding eigenvalue is
# sum(sample_weight), e.g. n when uniform sample weights.
intercept_sv = np.zeros(V.shape[0])
intercept_sv[-1] = 1
intercept_dim = _find_smallest_angle(intercept_sv, V)
w = 1 / (eigvals + alpha)
w[intercept_dim] = 1 / eigvals[intercept_dim]
A = (V * w).dot(V.T)
# add a column to X containing the square roots of sample weights
X_op = _X_CenterStackOp(X, X_mean, sqrt_sw)
AXy = A.dot(X_op.T.dot(y))
y_hat = X_op.dot(AXy)
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
# return (1 - hat_diag), (y - y_hat)
if len(y.shape) != 1:
# handle case where y is 2-d
hat_diag = hat_diag[:, np.newaxis]
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
def _solve_eigen_covariance(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse).
"""
if self.fit_intercept:
return self._solve_eigen_covariance_intercept(
alpha, y, sqrt_sw, X_mean, eigvals, V, X)
return self._solve_eigen_covariance_no_intercept(
alpha, y, sqrt_sw, X_mean, eigvals, V, X)
def _svd_decompose_design_matrix(self, X, y, sqrt_sw):
# X already centered
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
if self.fit_intercept:
# to emulate fit_intercept=True situation, add a column
# containing the square roots of the sample weights
# by centering, the other columns are orthogonal to that one
intercept_column = sqrt_sw[:, None]
X = np.hstack((X, intercept_column))
U, singvals, _ = linalg.svd(X, full_matrices=0)
singvals_sq = singvals ** 2
UT_y = np.dot(U.T, y)
return X_mean, singvals_sq, U, UT_y
def _solve_svd_design_matrix(
self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have an SVD decomposition of X
(n_samples > n_features and X is dense).
"""
w = ((singvals_sq + alpha) ** -1) - (alpha ** -1)
if self.fit_intercept:
# detect intercept column
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
intercept_dim = _find_smallest_angle(normalized_sw, U)
# cancel the regularization for the intercept
w[intercept_dim] = - (alpha ** -1)
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
G_inverse_diag = self._decomp_diag(w, U) + (alpha ** -1)
if len(y.shape) != 1:
# handle case where y is 2-d
G_inverse_diag = G_inverse_diag[:, np.newaxis]
return G_inverse_diag, c
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model with gcv.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data. Will be cast to float64 if necessary.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to float64 if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : object
"""
X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
dtype=[np.float64],
multi_output=True, y_numeric=True)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
if np.any(self.alphas <= 0):
raise ValueError(
"alphas must be positive. Got {} containing some "
"negative or null value instead.".format(self.alphas))
X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X,
sample_weight=sample_weight)
gcv_mode = _check_gcv_mode(X, self.gcv_mode)
if gcv_mode == 'eigen':
decompose = self._eigen_decompose_gram
solve = self._solve_eigen_gram
elif gcv_mode == 'svd':
if sparse.issparse(X):
decompose = self._eigen_decompose_covariance
solve = self._solve_eigen_covariance
else:
decompose = self._svd_decompose_design_matrix
solve = self._solve_svd_design_matrix
n_samples = X.shape[0]
if sample_weight is not None:
X, y = _rescale_data(X, y, sample_weight)
sqrt_sw = np.sqrt(sample_weight)
else:
sqrt_sw = np.ones(n_samples, dtype=X.dtype)
X_mean, *decomposition = decompose(X, y, sqrt_sw)
scorer = check_scoring(self, scoring=self.scoring, allow_none=True)
error = scorer is None
n_y = 1 if len(y.shape) == 1 else y.shape[1]
if self.store_cv_values:
self.cv_values_ = np.empty(
(n_samples * n_y, len(self.alphas)), dtype=X.dtype)
best_coef, best_score, best_alpha = None, None, None
for i, alpha in enumerate(self.alphas):
G_inverse_diag, c = solve(
float(alpha), y, sqrt_sw, X_mean, *decomposition)
if error:
squared_errors = (c / G_inverse_diag) ** 2
alpha_score = -squared_errors.mean()
if self.store_cv_values:
self.cv_values_[:, i] = squared_errors.ravel()
else:
predictions = y - (c / G_inverse_diag)
if self.store_cv_values:
self.cv_values_[:, i] = predictions.ravel()
if self.is_clf:
identity_estimator = _IdentityClassifier(
classes=np.arange(n_y)
)
predictions_, y_ = predictions, y.argmax(axis=1)
else:
identity_estimator = _IdentityRegressor()
predictions_, y_ = predictions.ravel(), y.ravel()
alpha_score = scorer(identity_estimator, predictions_, y_)
if (best_score is None) or (alpha_score > best_score):
best_coef, best_score, best_alpha = c, alpha_score, alpha
self.alpha_ = best_alpha
self.best_score_ = best_score
self.dual_coef_ = best_coef
self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)
X_offset += X_mean * X_scale
self._set_intercept(X_offset, y_offset, X_scale)
if self.store_cv_values:
if len(y.shape) == 1:
cv_values_shape = n_samples, len(self.alphas)
else:
cv_values_shape = n_samples, n_y, len(self.alphas)
self.cv_values_ = self.cv_values_.reshape(cv_values_shape)
return self
class _BaseRidgeCV(LinearModel):
@_deprecate_positional_args
def __init__(self, alphas=(0.1, 1.0, 10.0), *,
fit_intercept=True, normalize=False, scoring=None,
cv=None, gcv_mode=None,
store_cv_values=False):
self.alphas = np.asarray(alphas)
self.fit_intercept = fit_intercept
self.normalize = normalize
self.scoring = scoring
self.cv = cv
self.gcv_mode = gcv_mode
self.store_cv_values = store_cv_values
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model with cv.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data. If using GCV, will be cast to float64
if necessary.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : object
Notes
-----
When sample_weight is provided, the selected hyperparameter may depend
on whether we use generalized cross-validation (cv=None or cv='auto')
or another form of cross-validation, because only generalized
cross-validation takes the sample weights into account when computing
the validation score.
"""
cv = self.cv
if cv is None:
estimator = _RidgeGCV(self.alphas,
fit_intercept=self.fit_intercept,
normalize=self.normalize,
scoring=self.scoring,
gcv_mode=self.gcv_mode,
store_cv_values=self.store_cv_values,
is_clf=is_classifier(self))
estimator.fit(X, y, sample_weight=sample_weight)
self.alpha_ = estimator.alpha_
self.best_score_ = estimator.best_score_
if self.store_cv_values:
self.cv_values_ = estimator.cv_values_
else:
if self.store_cv_values:
raise ValueError("cv!=None and store_cv_values=True "
" are incompatible")
parameters = {'alpha': self.alphas}
solver = 'sparse_cg' if sparse.issparse(X) else 'auto'
model = RidgeClassifier if is_classifier(self) else Ridge
gs = GridSearchCV(model(fit_intercept=self.fit_intercept,
normalize=self.normalize,
solver=solver),
parameters, cv=cv, scoring=self.scoring)
gs.fit(X, y, sample_weight=sample_weight)
estimator = gs.best_estimator_
self.alpha_ = gs.best_estimator_.alpha
self.best_score_ = gs.best_score_
self.coef_ = estimator.coef_
self.intercept_ = estimator.intercept_
self.n_features_in_ = estimator.n_features_in_
return self
class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
"""Ridge regression with built-in cross-validation.
See glossary entry for :term:`cross-validation estimator`.
By default, it performs Generalized Cross-Validation, which is a form of
efficient Leave-One-Out cross-validation.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try.
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`.
If using generalized cross-validation, alphas must be positive.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
scoring : string, callable, default=None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
If None, the negative mean squared error if cv is 'auto' or None
(i.e. when using generalized cross-validation), and r2 score otherwise.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
(also known as Generalized Cross-Validation).
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`sklearn.model_selection.StratifiedKFold` is used, else,
:class:`sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
gcv_mode : {'auto', 'svd', eigen'}, default='auto'
Flag indicating which strategy to use when performing
Generalized Cross-Validation. Options are::
'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen'
'svd' : force use of singular value decomposition of X when X is
dense, eigenvalue decomposition of X^T.X when X is sparse.
'eigen' : force computation via eigendecomposition of X.X^T
The 'auto' mode is the default and is intended to pick the cheaper
option of the two depending on the shape of the training data.
store_cv_values : bool, default=False
Flag indicating if the cross-validation values corresponding to
each alpha should be stored in the ``cv_values_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Generalized Cross-Validation).
Attributes
----------
cv_values_ : ndarray of shape (n_samples, n_alphas) or \
shape (n_samples, n_targets, n_alphas), optional
Cross-validation values for each alpha (only available if \
``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been \
called, this attribute will contain the mean squared errors \
(by default) or the values of the ``{loss,score}_func`` function \
(if provided in the constructor).
coef_ : ndarray of shape (n_features) or (n_targets, n_features)
Weight vector(s).
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float
Estimated regularization parameter.
best_score_ : float
Score of base estimator with best alpha.
Examples
--------
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.linear_model import RidgeCV
>>> X, y = load_diabetes(return_X_y=True)
>>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.5166...
See also
--------
Ridge : Ridge regression
RidgeClassifier : Ridge classifier
RidgeClassifierCV : Ridge classifier with built-in cross validation
"""
class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
"""Ridge classifier with built-in cross-validation.
See glossary entry for :term:`cross-validation estimator`.
By default, it performs Generalized Cross-Validation, which is a form of
efficient Leave-One-Out cross-validation. Currently, only the n_features >
n_samples case is handled efficiently.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try.
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
scoring : string, callable, default=None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
store_cv_values : bool, default=False
Flag indicating if the cross-validation values corresponding to
each alpha should be stored in the ``cv_values_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Generalized Cross-Validation).
Attributes
----------
cv_values_ : ndarray of shape (n_samples, n_targets, n_alphas), optional
Cross-validation values for each alpha (if ``store_cv_values=True`` and
``cv=None``). After ``fit()`` has been called, this attribute will
contain the mean squared errors (by default) or the values of the
``{loss,score}_func`` function (if provided in the constructor). This
attribute exists only when ``store_cv_values`` is True.
coef_ : ndarray of shape (1, n_features) or (n_targets, n_features)
Coefficient of the features in the decision function.
``coef_`` is of shape (1, n_features) when the given problem is binary.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float
Estimated regularization parameter.
best_score_ : float
Score of base estimator with best alpha.
classes_ : ndarray of shape (n_classes,)
The classes labels.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifierCV
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.9630...
See also
--------
Ridge : Ridge regression
RidgeClassifier : Ridge classifier
RidgeCV : Ridge regression with built-in cross validation
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
"""
@_deprecate_positional_args
def __init__(self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True,
normalize=False, scoring=None, cv=None, class_weight=None,
store_cv_values=False):
super().__init__(
alphas=alphas, fit_intercept=fit_intercept, normalize=normalize,
scoring=scoring, cv=cv, store_cv_values=store_cv_values)
self.class_weight = class_weight
def fit(self, X, y, sample_weight=None):
"""Fit Ridge classifier with cv.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples
and n_features is the number of features. When using GCV,
will be cast to float64 if necessary.
y : ndarray of shape (n_samples,)
Target values. Will be cast to X's dtype if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : object
"""
X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
multi_output=True, y_numeric=False)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
Y = self._label_binarizer.fit_transform(y)
if not self._label_binarizer.y_type_.startswith('multilabel'):
y = column_or_1d(y, warn=True)
if self.class_weight:
# modify the sample weights with the corresponding class weight
sample_weight = (sample_weight *
compute_sample_weight(self.class_weight, y))
target = Y if self.cv is None else y
_BaseRidgeCV.fit(self, X, target, sample_weight=sample_weight)
return self
@property
def classes_(self):
return self._label_binarizer.classes_