Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/util/tests/test_invert.py

78 lines
2.4 KiB
Python
Raw Normal View History

import numpy as np
from skimage import dtype_limits
from skimage.util.dtype import dtype_range
from skimage.util import invert
from skimage._shared.testing import assert_array_equal
def test_invert_bool():
dtype = 'bool'
image = np.zeros((3, 3), dtype=dtype)
upper_dtype_limit = dtype_limits(image, clip_negative=False)[1]
image[1, :] = upper_dtype_limit
expected = np.zeros((3, 3), dtype=dtype) + upper_dtype_limit
expected[1, :] = 0
result = invert(image)
assert_array_equal(expected, result)
def test_invert_uint8():
dtype = 'uint8'
image = np.zeros((3, 3), dtype=dtype)
upper_dtype_limit = dtype_limits(image, clip_negative=False)[1]
image[1, :] = upper_dtype_limit
expected = np.zeros((3, 3), dtype=dtype) + upper_dtype_limit
expected[1, :] = 0
result = invert(image)
assert_array_equal(expected, result)
def test_invert_int8():
dtype = 'int8'
image = np.zeros((3, 3), dtype=dtype)
lower_dtype_limit, upper_dtype_limit = \
dtype_limits(image, clip_negative=False)
image[1, :] = lower_dtype_limit
image[2, :] = upper_dtype_limit
expected = np.zeros((3, 3), dtype=dtype)
expected[2, :] = lower_dtype_limit
expected[1, :] = upper_dtype_limit
expected[0, :] = -1
result = invert(image)
assert_array_equal(expected, result)
def test_invert_float64_signed():
dtype = 'float64'
image = np.zeros((3, 3), dtype=dtype)
lower_dtype_limit, upper_dtype_limit = \
dtype_limits(image, clip_negative=False)
image[1, :] = lower_dtype_limit
image[2, :] = upper_dtype_limit
expected = np.zeros((3, 3), dtype=dtype)
expected[2, :] = lower_dtype_limit
expected[1, :] = upper_dtype_limit
result = invert(image, signed_float=True)
assert_array_equal(expected, result)
def test_invert_float64_unsigned():
dtype = 'float64'
image = np.zeros((3, 3), dtype=dtype)
lower_dtype_limit, upper_dtype_limit = \
dtype_limits(image, clip_negative=True)
image[2, :] = upper_dtype_limit
expected = np.zeros((3, 3), dtype=dtype)
expected[0, :] = upper_dtype_limit
expected[1, :] = upper_dtype_limit
result = invert(image)
assert_array_equal(expected, result)
def test_invert_roundtrip():
for t, limits in dtype_range.items():
image = np.array(limits, dtype=t)
expected = invert(invert(image))
assert_array_equal(image, expected)