Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/morphology/tests/test_util.py

128 lines
4.4 KiB
Python
Raw Normal View History

"""Tests for `_util`."""
import pytest
import numpy as np
from numpy.testing import assert_array_equal
from skimage.morphology import _util
@pytest.mark.parametrize("image_shape", [
(111,), (33, 44), (22, 55, 11), (6, 5, 4, 3)
])
@pytest.mark.parametrize("order", ["C", "F"])
def test_offsets_to_raveled_neighbors_highest_connectivity(image_shape, order):
"""
Check scenarios where selem is always of the highest connectivity
and all dimensions are > 2.
"""
selem = np.ones((3,) * len(image_shape), dtype=bool)
center = (1,) * len(image_shape)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, selem, center, order
)
# Assert only neighbors are present, center was removed
assert len(offsets) == selem.sum() - 1
assert 0 not in offsets
# Assert uniqueness
assert len(set(offsets)) == offsets.size
# offsets form pairs of with same value but different signs
# if selem is symmetric around center
assert all(-x in offsets for x in offsets)
# Construct image whose values are the Manhattan distance to its center
image_center = tuple(s // 2 for s in image_shape)
coords = [
np.abs(np.arange(s, dtype=np.intp) - c)
for s, c in zip(image_shape, image_center)
]
grid = np.meshgrid(*coords, indexing="ij")
image = np.sum(grid, axis=0)
image_raveled = image.ravel(order)
image_center_raveled = np.ravel_multi_index(
image_center, image_shape, order=order
)
# Sample raveled image around its center
samples = []
for offset in offsets:
index = image_center_raveled + offset
samples.append(image_raveled[index])
# Assert that center with value 0 wasn't selected
assert np.min(samples) == 1
# Assert that only neighbors where selected
# (highest value == connectivity)
assert np.max(samples) == len(image_shape)
# Assert that nearest neighbors are selected first
assert list(sorted(samples)) == samples
@pytest.mark.parametrize("image_shape", [
(2,), (2, 2), (2, 1, 2), (2, 2, 1, 2), (0, 2, 1, 2)
])
@pytest.mark.parametrize("order", ["C", "F"])
def test_offsets_to_raveled_neighbors_selem_smaller_image(image_shape, order):
"""
Test if a dimension indicated by `image_shape` is smaller than in
`selem`.
"""
selem = np.ones((3,) * len(image_shape), dtype=bool)
center = (1,) * len(image_shape)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, selem, center, order
)
# Assert only neighbors are present, center and duplicates (possible
# for this scenario) where removed
assert len(offsets) <= selem.sum() - 1
assert 0 not in offsets
# Assert uniqueness
assert len(set(offsets)) == offsets.size
# offsets form pairs of with same value but different signs
# if selem is symmetric around center
assert all(-x in offsets for x in offsets)
def test_offsets_to_raveled_neighbors_explicit_0():
"""Check reviewed example."""
image_shape = (100, 200, 3)
selem = np.ones((3, 3, 3), dtype=bool)
center = (1, 1, 1)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, selem, center
)
desired = np.array([
3, -600, 1, -1, 600, -3, 4, 2, 603, -2, -4,
-597, 601, -599, -601, -603, 599, 597, 602, -604, 596, -596,
-598, -602, 598, 604
])
assert_array_equal(offsets, desired)
def test_offsets_to_raveled_neighbors_explicit_1():
"""Check reviewed example where selem is larger in last dimension."""
image_shape = (10, 9, 8, 3)
selem = np.ones((3, 3, 3, 4), dtype=bool)
center = (1, 1, 1, 1)
offsets = _util._offsets_to_raveled_neighbors(
image_shape, selem, center
)
desired = np.array([
24, 3, 1, -1, -3, -24, -216, 216, -192, 215, -2,
-21, -23, 2, -25, -27, 4, 217, 21, 219, -4, 23,
25, -240, 240, 192, 27, -213, -219, 213, -215, -217, -243,
191, -241, 195, 189, 212, 26, 5, 20, 28, 22, 214,
243, -237, -22, 241, -214, -212, 237, -218, -195, -20, 220,
-193, -191, 218, -189, -28, -26, 193, -239, -220, 239, 196,
221, 242, 236, 238, 194, -244, -188, -238, -211, -196, -194,
-190, -236, -19, 244, 29, 188, -242, 190, -187, 197, -235,
245
])
assert_array_equal(offsets, desired)