Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/future/graph/_ncut.py

69 lines
1.8 KiB
Python
Raw Normal View History

try:
import networkx as nx
except ImportError:
from ..._shared.utils import warn
warn('RAGs require networkx')
import numpy as np
from scipy import sparse
from . import _ncut_cy
def DW_matrices(graph):
"""Returns the diagonal and weight matrices of a graph.
Parameters
----------
graph : RAG
A Region Adjacency Graph.
Returns
-------
D : csc_matrix
The diagonal matrix of the graph. ``D[i, i]`` is the sum of weights of
all edges incident on `i`. All other entries are `0`.
W : csc_matrix
The weight matrix of the graph. ``W[i, j]`` is the weight of the edge
joining `i` to `j`.
"""
# sparse.eighsh is most efficient with CSC-formatted input
W = nx.to_scipy_sparse_matrix(graph, format='csc')
entries = W.sum(axis=0)
D = sparse.dia_matrix((entries, 0), shape=W.shape).tocsc()
return D, W
def ncut_cost(cut, D, W):
"""Returns the N-cut cost of a bi-partition of a graph.
Parameters
----------
cut : ndarray
The mask for the nodes in the graph. Nodes corresponding to a `True`
value are in one set.
D : csc_matrix
The diagonal matrix of the graph.
W : csc_matrix
The weight matrix of the graph.
Returns
-------
cost : float
The cost of performing the N-cut.
References
----------
.. [1] Normalized Cuts and Image Segmentation, Jianbo Shi and
Jitendra Malik, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Page 889, Equation 2.
"""
cut = np.array(cut)
cut_cost = _ncut_cy.cut_cost(cut, W)
# D has elements only along the diagonal, one per node, so we can directly
# index the data attribute with cut.
assoc_a = D.data[cut].sum()
assoc_b = D.data[~cut].sum()
return (cut_cost / assoc_a) + (cut_cost / assoc_b)