Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/neighbors/_kde.py

277 lines
10 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""
Kernel Density Estimation
-------------------------
"""
# Author: Jake Vanderplas <jakevdp@cs.washington.edu>
import numpy as np
from scipy.special import gammainc
from ..base import BaseEstimator
from ..utils import check_array, check_random_state
from ..utils.validation import _check_sample_weight, check_is_fitted
from ..utils.validation import _deprecate_positional_args
from ..utils.extmath import row_norms
from ._ball_tree import BallTree, DTYPE
from ._kd_tree import KDTree
VALID_KERNELS = ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear',
'cosine']
TREE_DICT = {'ball_tree': BallTree, 'kd_tree': KDTree}
# TODO: implement a brute force version for testing purposes
# TODO: bandwidth estimation
# TODO: create a density estimation base class?
class KernelDensity(BaseEstimator):
"""Kernel Density Estimation.
Read more in the :ref:`User Guide <kernel_density>`.
Parameters
----------
bandwidth : float
The bandwidth of the kernel.
algorithm : str
The tree algorithm to use. Valid options are
['kd_tree'|'ball_tree'|'auto']. Default is 'auto'.
kernel : str
The kernel to use. Valid kernels are
['gaussian'|'tophat'|'epanechnikov'|'exponential'|'linear'|'cosine']
Default is 'gaussian'.
metric : str
The distance metric to use. Note that not all metrics are
valid with all algorithms. Refer to the documentation of
:class:`BallTree` and :class:`KDTree` for a description of
available algorithms. Note that the normalization of the density
output is correct only for the Euclidean distance metric. Default
is 'euclidean'.
atol : float
The desired absolute tolerance of the result. A larger tolerance will
generally lead to faster execution. Default is 0.
rtol : float
The desired relative tolerance of the result. A larger tolerance will
generally lead to faster execution. Default is 1E-8.
breadth_first : bool
If true (default), use a breadth-first approach to the problem.
Otherwise use a depth-first approach.
leaf_size : int
Specify the leaf size of the underlying tree. See :class:`BallTree`
or :class:`KDTree` for details. Default is 40.
metric_params : dict
Additional parameters to be passed to the tree for use with the
metric. For more information, see the documentation of
:class:`BallTree` or :class:`KDTree`.
See Also
--------
sklearn.neighbors.KDTree : K-dimensional tree for fast generalized N-point
problems.
sklearn.neighbors.BallTree : Ball tree for fast generalized N-point
problems.
Examples
--------
Compute a gaussian kernel density estimate with a fixed bandwidth.
>>> import numpy as np
>>> rng = np.random.RandomState(42)
>>> X = rng.random_sample((100, 3))
>>> kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(X)
>>> log_density = kde.score_samples(X[:3])
>>> log_density
array([-1.52955942, -1.51462041, -1.60244657])
"""
@_deprecate_positional_args
def __init__(self, *, bandwidth=1.0, algorithm='auto',
kernel='gaussian', metric="euclidean", atol=0, rtol=0,
breadth_first=True, leaf_size=40, metric_params=None):
self.algorithm = algorithm
self.bandwidth = bandwidth
self.kernel = kernel
self.metric = metric
self.atol = atol
self.rtol = rtol
self.breadth_first = breadth_first
self.leaf_size = leaf_size
self.metric_params = metric_params
# run the choose algorithm code so that exceptions will happen here
# we're using clone() in the GenerativeBayes classifier,
# so we can't do this kind of logic in __init__
self._choose_algorithm(self.algorithm, self.metric)
if bandwidth <= 0:
raise ValueError("bandwidth must be positive")
if kernel not in VALID_KERNELS:
raise ValueError("invalid kernel: '{0}'".format(kernel))
def _choose_algorithm(self, algorithm, metric):
# given the algorithm string + metric string, choose the optimal
# algorithm to compute the result.
if algorithm == 'auto':
# use KD Tree if possible
if metric in KDTree.valid_metrics:
return 'kd_tree'
elif metric in BallTree.valid_metrics:
return 'ball_tree'
else:
raise ValueError("invalid metric: '{0}'".format(metric))
elif algorithm in TREE_DICT:
if metric not in TREE_DICT[algorithm].valid_metrics:
raise ValueError("invalid metric for {0}: "
"'{1}'".format(TREE_DICT[algorithm],
metric))
return algorithm
else:
raise ValueError("invalid algorithm: '{0}'".format(algorithm))
def fit(self, X, y=None, sample_weight=None):
"""Fit the Kernel Density model on the data.
Parameters
----------
X : array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
y : None
Ignored. This parameter exists only for compatibility with
:class:`sklearn.pipeline.Pipeline`.
sample_weight : array_like, shape (n_samples,), optional
List of sample weights attached to the data X.
.. versionadded:: 0.20
Returns
-------
self : object
Returns instance of object.
"""
algorithm = self._choose_algorithm(self.algorithm, self.metric)
X = self._validate_data(X, order='C', dtype=DTYPE)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X, DTYPE)
if sample_weight.min() <= 0:
raise ValueError("sample_weight must have positive values")
kwargs = self.metric_params
if kwargs is None:
kwargs = {}
self.tree_ = TREE_DICT[algorithm](X, metric=self.metric,
leaf_size=self.leaf_size,
sample_weight=sample_weight,
**kwargs)
return self
def score_samples(self, X):
"""Evaluate the log density model on the data.
Parameters
----------
X : array_like, shape (n_samples, n_features)
An array of points to query. Last dimension should match dimension
of training data (n_features).
Returns
-------
density : ndarray, shape (n_samples,)
The array of log(density) evaluations. These are normalized to be
probability densities, so values will be low for high-dimensional
data.
"""
check_is_fitted(self)
# The returned density is normalized to the number of points.
# For it to be a probability, we must scale it. For this reason
# we'll also scale atol.
X = check_array(X, order='C', dtype=DTYPE)
if self.tree_.sample_weight is None:
N = self.tree_.data.shape[0]
else:
N = self.tree_.sum_weight
atol_N = self.atol * N
log_density = self.tree_.kernel_density(
X, h=self.bandwidth, kernel=self.kernel, atol=atol_N,
rtol=self.rtol, breadth_first=self.breadth_first, return_log=True)
log_density -= np.log(N)
return log_density
def score(self, X, y=None):
"""Compute the total log probability density under the model.
Parameters
----------
X : array_like, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
y : None
Ignored. This parameter exists only for compatibility with
:class:`sklearn.pipeline.Pipeline`.
Returns
-------
logprob : float
Total log-likelihood of the data in X. This is normalized to be a
probability density, so the value will be low for high-dimensional
data.
"""
return np.sum(self.score_samples(X))
def sample(self, n_samples=1, random_state=None):
"""Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
Parameters
----------
n_samples : int, optional
Number of samples to generate. Defaults to 1.
random_state : int, RandomState instance, default=None
Determines random number generation used to generate
random samples. Pass an int for reproducible results
across multiple function calls.
See :term: `Glossary <random_state>`.
Returns
-------
X : array_like, shape (n_samples, n_features)
List of samples.
"""
check_is_fitted(self)
# TODO: implement sampling for other valid kernel shapes
if self.kernel not in ['gaussian', 'tophat']:
raise NotImplementedError()
data = np.asarray(self.tree_.data)
rng = check_random_state(random_state)
u = rng.uniform(0, 1, size=n_samples)
if self.tree_.sample_weight is None:
i = (u * data.shape[0]).astype(np.int64)
else:
cumsum_weight = np.cumsum(np.asarray(self.tree_.sample_weight))
sum_weight = cumsum_weight[-1]
i = np.searchsorted(cumsum_weight, u * sum_weight)
if self.kernel == 'gaussian':
return np.atleast_2d(rng.normal(data[i], self.bandwidth))
elif self.kernel == 'tophat':
# we first draw points from a d-dimensional normal distribution,
# then use an incomplete gamma function to map them to a uniform
# d-dimensional tophat distribution.
dim = data.shape[1]
X = rng.normal(size=(n_samples, dim))
s_sq = row_norms(X, squared=True)
correction = (gammainc(0.5 * dim, 0.5 * s_sq) ** (1. / dim)
* self.bandwidth / np.sqrt(s_sq))
return data[i] + X * correction[:, np.newaxis]