308 lines
11 KiB
Python
308 lines
11 KiB
Python
|
# Authors: Manoj Kumar mks542@nyu.edu
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy import optimize
|
||
|
|
||
|
from ..base import BaseEstimator, RegressorMixin
|
||
|
from ._base import LinearModel
|
||
|
from ..utils import axis0_safe_slice
|
||
|
from ..utils.validation import _check_sample_weight
|
||
|
from ..utils.validation import _deprecate_positional_args
|
||
|
from ..utils.extmath import safe_sparse_dot
|
||
|
from ..utils.optimize import _check_optimize_result
|
||
|
|
||
|
|
||
|
def _huber_loss_and_gradient(w, X, y, epsilon, alpha, sample_weight=None):
|
||
|
"""Returns the Huber loss and the gradient.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
w : ndarray, shape (n_features + 1,) or (n_features + 2,)
|
||
|
Feature vector.
|
||
|
w[:n_features] gives the coefficients
|
||
|
w[-1] gives the scale factor and if the intercept is fit w[-2]
|
||
|
gives the intercept factor.
|
||
|
|
||
|
X : ndarray, shape (n_samples, n_features)
|
||
|
Input data.
|
||
|
|
||
|
y : ndarray, shape (n_samples,)
|
||
|
Target vector.
|
||
|
|
||
|
epsilon : float
|
||
|
Robustness of the Huber estimator.
|
||
|
|
||
|
alpha : float
|
||
|
Regularization parameter.
|
||
|
|
||
|
sample_weight : ndarray, shape (n_samples,), optional
|
||
|
Weight assigned to each sample.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
loss : float
|
||
|
Huber loss.
|
||
|
|
||
|
gradient : ndarray, shape (len(w))
|
||
|
Returns the derivative of the Huber loss with respect to each
|
||
|
coefficient, intercept and the scale as a vector.
|
||
|
"""
|
||
|
_, n_features = X.shape
|
||
|
fit_intercept = (n_features + 2 == w.shape[0])
|
||
|
if fit_intercept:
|
||
|
intercept = w[-2]
|
||
|
sigma = w[-1]
|
||
|
w = w[:n_features]
|
||
|
n_samples = np.sum(sample_weight)
|
||
|
|
||
|
# Calculate the values where |y - X'w -c / sigma| > epsilon
|
||
|
# The values above this threshold are outliers.
|
||
|
linear_loss = y - safe_sparse_dot(X, w)
|
||
|
if fit_intercept:
|
||
|
linear_loss -= intercept
|
||
|
abs_linear_loss = np.abs(linear_loss)
|
||
|
outliers_mask = abs_linear_loss > epsilon * sigma
|
||
|
|
||
|
# Calculate the linear loss due to the outliers.
|
||
|
# This is equal to (2 * M * |y - X'w -c / sigma| - M**2) * sigma
|
||
|
outliers = abs_linear_loss[outliers_mask]
|
||
|
num_outliers = np.count_nonzero(outliers_mask)
|
||
|
n_non_outliers = X.shape[0] - num_outliers
|
||
|
|
||
|
# n_sq_outliers includes the weight give to the outliers while
|
||
|
# num_outliers is just the number of outliers.
|
||
|
outliers_sw = sample_weight[outliers_mask]
|
||
|
n_sw_outliers = np.sum(outliers_sw)
|
||
|
outlier_loss = (2. * epsilon * np.sum(outliers_sw * outliers) -
|
||
|
sigma * n_sw_outliers * epsilon ** 2)
|
||
|
|
||
|
# Calculate the quadratic loss due to the non-outliers.-
|
||
|
# This is equal to |(y - X'w - c)**2 / sigma**2| * sigma
|
||
|
non_outliers = linear_loss[~outliers_mask]
|
||
|
weighted_non_outliers = sample_weight[~outliers_mask] * non_outliers
|
||
|
weighted_loss = np.dot(weighted_non_outliers.T, non_outliers)
|
||
|
squared_loss = weighted_loss / sigma
|
||
|
|
||
|
if fit_intercept:
|
||
|
grad = np.zeros(n_features + 2)
|
||
|
else:
|
||
|
grad = np.zeros(n_features + 1)
|
||
|
|
||
|
# Gradient due to the squared loss.
|
||
|
X_non_outliers = -axis0_safe_slice(X, ~outliers_mask, n_non_outliers)
|
||
|
grad[:n_features] = (
|
||
|
2. / sigma * safe_sparse_dot(weighted_non_outliers, X_non_outliers))
|
||
|
|
||
|
# Gradient due to the linear loss.
|
||
|
signed_outliers = np.ones_like(outliers)
|
||
|
signed_outliers_mask = linear_loss[outliers_mask] < 0
|
||
|
signed_outliers[signed_outliers_mask] = -1.0
|
||
|
X_outliers = axis0_safe_slice(X, outliers_mask, num_outliers)
|
||
|
sw_outliers = sample_weight[outliers_mask] * signed_outliers
|
||
|
grad[:n_features] -= 2. * epsilon * (
|
||
|
safe_sparse_dot(sw_outliers, X_outliers))
|
||
|
|
||
|
# Gradient due to the penalty.
|
||
|
grad[:n_features] += alpha * 2. * w
|
||
|
|
||
|
# Gradient due to sigma.
|
||
|
grad[-1] = n_samples
|
||
|
grad[-1] -= n_sw_outliers * epsilon ** 2
|
||
|
grad[-1] -= squared_loss / sigma
|
||
|
|
||
|
# Gradient due to the intercept.
|
||
|
if fit_intercept:
|
||
|
grad[-2] = -2. * np.sum(weighted_non_outliers) / sigma
|
||
|
grad[-2] -= 2. * epsilon * np.sum(sw_outliers)
|
||
|
|
||
|
loss = n_samples * sigma + squared_loss + outlier_loss
|
||
|
loss += alpha * np.dot(w, w)
|
||
|
return loss, grad
|
||
|
|
||
|
|
||
|
class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):
|
||
|
"""Linear regression model that is robust to outliers.
|
||
|
|
||
|
The Huber Regressor optimizes the squared loss for the samples where
|
||
|
``|(y - X'w) / sigma| < epsilon`` and the absolute loss for the samples
|
||
|
where ``|(y - X'w) / sigma| > epsilon``, where w and sigma are parameters
|
||
|
to be optimized. The parameter sigma makes sure that if y is scaled up
|
||
|
or down by a certain factor, one does not need to rescale epsilon to
|
||
|
achieve the same robustness. Note that this does not take into account
|
||
|
the fact that the different features of X may be of different scales.
|
||
|
|
||
|
This makes sure that the loss function is not heavily influenced by the
|
||
|
outliers while not completely ignoring their effect.
|
||
|
|
||
|
Read more in the :ref:`User Guide <huber_regression>`
|
||
|
|
||
|
.. versionadded:: 0.18
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
epsilon : float, greater than 1.0, default 1.35
|
||
|
The parameter epsilon controls the number of samples that should be
|
||
|
classified as outliers. The smaller the epsilon, the more robust it is
|
||
|
to outliers.
|
||
|
|
||
|
max_iter : int, default 100
|
||
|
Maximum number of iterations that
|
||
|
``scipy.optimize.minimize(method="L-BFGS-B")`` should run for.
|
||
|
|
||
|
alpha : float, default 0.0001
|
||
|
Regularization parameter.
|
||
|
|
||
|
warm_start : bool, default False
|
||
|
This is useful if the stored attributes of a previously used model
|
||
|
has to be reused. If set to False, then the coefficients will
|
||
|
be rewritten for every call to fit.
|
||
|
See :term:`the Glossary <warm_start>`.
|
||
|
|
||
|
fit_intercept : bool, default True
|
||
|
Whether or not to fit the intercept. This can be set to False
|
||
|
if the data is already centered around the origin.
|
||
|
|
||
|
tol : float, default 1e-5
|
||
|
The iteration will stop when
|
||
|
``max{|proj g_i | i = 1, ..., n}`` <= ``tol``
|
||
|
where pg_i is the i-th component of the projected gradient.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
coef_ : array, shape (n_features,)
|
||
|
Features got by optimizing the Huber loss.
|
||
|
|
||
|
intercept_ : float
|
||
|
Bias.
|
||
|
|
||
|
scale_ : float
|
||
|
The value by which ``|y - X'w - c|`` is scaled down.
|
||
|
|
||
|
n_iter_ : int
|
||
|
Number of iterations that
|
||
|
``scipy.optimize.minimize(method="L-BFGS-B")`` has run for.
|
||
|
|
||
|
.. versionchanged:: 0.20
|
||
|
|
||
|
In SciPy <= 1.0.0 the number of lbfgs iterations may exceed
|
||
|
``max_iter``. ``n_iter_`` will now report at most ``max_iter``.
|
||
|
|
||
|
outliers_ : array, shape (n_samples,)
|
||
|
A boolean mask which is set to True where the samples are identified
|
||
|
as outliers.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.linear_model import HuberRegressor, LinearRegression
|
||
|
>>> from sklearn.datasets import make_regression
|
||
|
>>> rng = np.random.RandomState(0)
|
||
|
>>> X, y, coef = make_regression(
|
||
|
... n_samples=200, n_features=2, noise=4.0, coef=True, random_state=0)
|
||
|
>>> X[:4] = rng.uniform(10, 20, (4, 2))
|
||
|
>>> y[:4] = rng.uniform(10, 20, 4)
|
||
|
>>> huber = HuberRegressor().fit(X, y)
|
||
|
>>> huber.score(X, y)
|
||
|
-7.284...
|
||
|
>>> huber.predict(X[:1,])
|
||
|
array([806.7200...])
|
||
|
>>> linear = LinearRegression().fit(X, y)
|
||
|
>>> print("True coefficients:", coef)
|
||
|
True coefficients: [20.4923... 34.1698...]
|
||
|
>>> print("Huber coefficients:", huber.coef_)
|
||
|
Huber coefficients: [17.7906... 31.0106...]
|
||
|
>>> print("Linear Regression coefficients:", linear.coef_)
|
||
|
Linear Regression coefficients: [-1.9221... 7.0226...]
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics
|
||
|
Concomitant scale estimates, pg 172
|
||
|
.. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression.
|
||
|
https://statweb.stanford.edu/~owen/reports/hhu.pdf
|
||
|
"""
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self, *, epsilon=1.35, max_iter=100, alpha=0.0001,
|
||
|
warm_start=False, fit_intercept=True, tol=1e-05):
|
||
|
self.epsilon = epsilon
|
||
|
self.max_iter = max_iter
|
||
|
self.alpha = alpha
|
||
|
self.warm_start = warm_start
|
||
|
self.fit_intercept = fit_intercept
|
||
|
self.tol = tol
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit the model according to the given training data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Training vector, where n_samples in the number of samples and
|
||
|
n_features is the number of features.
|
||
|
|
||
|
y : array-like, shape (n_samples,)
|
||
|
Target vector relative to X.
|
||
|
|
||
|
sample_weight : array-like, shape (n_samples,)
|
||
|
Weight given to each sample.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
X, y = self._validate_data(
|
||
|
X, y, copy=False, accept_sparse=['csr'], y_numeric=True,
|
||
|
dtype=[np.float64, np.float32])
|
||
|
|
||
|
sample_weight = _check_sample_weight(sample_weight, X)
|
||
|
|
||
|
if self.epsilon < 1.0:
|
||
|
raise ValueError(
|
||
|
"epsilon should be greater than or equal to 1.0, got %f"
|
||
|
% self.epsilon)
|
||
|
|
||
|
if self.warm_start and hasattr(self, 'coef_'):
|
||
|
parameters = np.concatenate(
|
||
|
(self.coef_, [self.intercept_, self.scale_]))
|
||
|
else:
|
||
|
if self.fit_intercept:
|
||
|
parameters = np.zeros(X.shape[1] + 2)
|
||
|
else:
|
||
|
parameters = np.zeros(X.shape[1] + 1)
|
||
|
# Make sure to initialize the scale parameter to a strictly
|
||
|
# positive value:
|
||
|
parameters[-1] = 1
|
||
|
|
||
|
# Sigma or the scale factor should be non-negative.
|
||
|
# Setting it to be zero might cause undefined bounds hence we set it
|
||
|
# to a value close to zero.
|
||
|
bounds = np.tile([-np.inf, np.inf], (parameters.shape[0], 1))
|
||
|
bounds[-1][0] = np.finfo(np.float64).eps * 10
|
||
|
|
||
|
opt_res = optimize.minimize(
|
||
|
_huber_loss_and_gradient, parameters, method="L-BFGS-B", jac=True,
|
||
|
args=(X, y, self.epsilon, self.alpha, sample_weight),
|
||
|
options={"maxiter": self.max_iter, "gtol": self.tol, "iprint": -1},
|
||
|
bounds=bounds)
|
||
|
|
||
|
parameters = opt_res.x
|
||
|
|
||
|
if opt_res.status == 2:
|
||
|
raise ValueError("HuberRegressor convergence failed:"
|
||
|
" l-BFGS-b solver terminated with %s"
|
||
|
% opt_res.message)
|
||
|
self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)
|
||
|
self.scale_ = parameters[-1]
|
||
|
if self.fit_intercept:
|
||
|
self.intercept_ = parameters[-2]
|
||
|
else:
|
||
|
self.intercept_ = 0.0
|
||
|
self.coef_ = parameters[:X.shape[1]]
|
||
|
|
||
|
residual = np.abs(
|
||
|
y - safe_sparse_dot(X, self.coef_) - self.intercept_)
|
||
|
self.outliers_ = residual > self.scale_ * self.epsilon
|
||
|
return self
|