173 lines
7.2 KiB
Python
173 lines
7.2 KiB
Python
|
import pytest
|
||
|
|
||
|
from sklearn.base import clone
|
||
|
from sklearn.base import ClassifierMixin
|
||
|
from sklearn.base import is_classifier
|
||
|
|
||
|
from sklearn.datasets import make_classification
|
||
|
from sklearn.datasets import make_regression
|
||
|
|
||
|
from sklearn.linear_model import LogisticRegression, LinearRegression
|
||
|
from sklearn.svm import LinearSVC, LinearSVR, SVC, SVR
|
||
|
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
||
|
|
||
|
from sklearn.ensemble import StackingClassifier, StackingRegressor
|
||
|
from sklearn.ensemble import VotingClassifier, VotingRegressor
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X, y, estimator",
|
||
|
[(*make_classification(n_samples=10),
|
||
|
StackingClassifier(estimators=[('lr', LogisticRegression()),
|
||
|
('svm', LinearSVC()),
|
||
|
('rf', RandomForestClassifier())])),
|
||
|
(*make_classification(n_samples=10),
|
||
|
VotingClassifier(estimators=[('lr', LogisticRegression()),
|
||
|
('svm', LinearSVC()),
|
||
|
('rf', RandomForestClassifier())])),
|
||
|
(*make_regression(n_samples=10),
|
||
|
StackingRegressor(estimators=[('lr', LinearRegression()),
|
||
|
('svm', LinearSVR()),
|
||
|
('rf', RandomForestRegressor())])),
|
||
|
(*make_regression(n_samples=10),
|
||
|
VotingRegressor(estimators=[('lr', LinearRegression()),
|
||
|
('svm', LinearSVR()),
|
||
|
('rf', RandomForestRegressor())]))],
|
||
|
ids=['stacking-classifier', 'voting-classifier',
|
||
|
'stacking-regressor', 'voting-regressor']
|
||
|
)
|
||
|
def test_ensemble_heterogeneous_estimators_behavior(X, y, estimator):
|
||
|
# check that the behavior of `estimators`, `estimators_`,
|
||
|
# `named_estimators`, `named_estimators_` is consistent across all
|
||
|
# ensemble classes and when using `set_params()`.
|
||
|
|
||
|
# before fit
|
||
|
assert 'svm' in estimator.named_estimators
|
||
|
assert estimator.named_estimators.svm is estimator.estimators[1][1]
|
||
|
assert estimator.named_estimators.svm is estimator.named_estimators['svm']
|
||
|
|
||
|
# check fitted attributes
|
||
|
estimator.fit(X, y)
|
||
|
assert len(estimator.named_estimators) == 3
|
||
|
assert len(estimator.named_estimators_) == 3
|
||
|
assert (sorted(list(estimator.named_estimators_.keys())) ==
|
||
|
sorted(['lr', 'svm', 'rf']))
|
||
|
|
||
|
# check that set_params() does not add a new attribute
|
||
|
estimator_new_params = clone(estimator)
|
||
|
svm_estimator = SVC() if is_classifier(estimator) else SVR()
|
||
|
estimator_new_params.set_params(svm=svm_estimator).fit(X, y)
|
||
|
assert not hasattr(estimator_new_params, 'svm')
|
||
|
assert (estimator_new_params.named_estimators.lr.get_params() ==
|
||
|
estimator.named_estimators.lr.get_params())
|
||
|
assert (estimator_new_params.named_estimators.rf.get_params() ==
|
||
|
estimator.named_estimators.rf.get_params())
|
||
|
|
||
|
# check the behavior when setting an dropping an estimator
|
||
|
estimator_dropped = clone(estimator)
|
||
|
estimator_dropped.set_params(svm='drop')
|
||
|
estimator_dropped.fit(X, y)
|
||
|
assert len(estimator_dropped.named_estimators) == 3
|
||
|
assert estimator_dropped.named_estimators.svm == 'drop'
|
||
|
assert len(estimator_dropped.named_estimators_) == 3
|
||
|
assert (sorted(list(estimator_dropped.named_estimators_.keys())) ==
|
||
|
sorted(['lr', 'svm', 'rf']))
|
||
|
for sub_est in estimator_dropped.named_estimators_:
|
||
|
# check that the correspondence is correct
|
||
|
assert not isinstance(sub_est, type(estimator.named_estimators.svm))
|
||
|
|
||
|
# check that we can set the parameters of the underlying classifier
|
||
|
estimator.set_params(svm__C=10.0)
|
||
|
estimator.set_params(rf__max_depth=5)
|
||
|
assert (estimator.get_params()['svm__C'] ==
|
||
|
estimator.get_params()['svm'].get_params()['C'])
|
||
|
assert (estimator.get_params()['rf__max_depth'] ==
|
||
|
estimator.get_params()['rf'].get_params()['max_depth'])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"Ensemble",
|
||
|
[StackingClassifier, VotingClassifier, StackingRegressor, VotingRegressor]
|
||
|
)
|
||
|
def test_ensemble_heterogeneous_estimators_type(Ensemble):
|
||
|
# check that ensemble will fail during validation if the underlying
|
||
|
# estimators are not of the same type (i.e. classifier or regressor)
|
||
|
if issubclass(Ensemble, ClassifierMixin):
|
||
|
X, y = make_classification(n_samples=10)
|
||
|
estimators = [('lr', LinearRegression())]
|
||
|
ensemble_type = 'classifier'
|
||
|
else:
|
||
|
X, y = make_regression(n_samples=10)
|
||
|
estimators = [('lr', LogisticRegression())]
|
||
|
ensemble_type = 'regressor'
|
||
|
ensemble = Ensemble(estimators=estimators)
|
||
|
|
||
|
err_msg = "should be a {}".format(ensemble_type)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
ensemble.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X, y, Ensemble",
|
||
|
[(*make_classification(n_samples=10), StackingClassifier),
|
||
|
(*make_classification(n_samples=10), VotingClassifier),
|
||
|
(*make_regression(n_samples=10), StackingRegressor),
|
||
|
(*make_regression(n_samples=10), VotingRegressor)]
|
||
|
)
|
||
|
def test_ensemble_heterogeneous_estimators_name_validation(X, y, Ensemble):
|
||
|
# raise an error when the name contains dunder
|
||
|
if issubclass(Ensemble, ClassifierMixin):
|
||
|
estimators = [('lr__', LogisticRegression())]
|
||
|
else:
|
||
|
estimators = [('lr__', LinearRegression())]
|
||
|
ensemble = Ensemble(estimators=estimators)
|
||
|
|
||
|
err_msg = r"Estimator names must not contain __: got \['lr__'\]"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
ensemble.fit(X, y)
|
||
|
|
||
|
# raise an error when the name is not unique
|
||
|
if issubclass(Ensemble, ClassifierMixin):
|
||
|
estimators = [('lr', LogisticRegression()),
|
||
|
('lr', LogisticRegression())]
|
||
|
else:
|
||
|
estimators = [('lr', LinearRegression()),
|
||
|
('lr', LinearRegression())]
|
||
|
ensemble = Ensemble(estimators=estimators)
|
||
|
|
||
|
err_msg = r"Names provided are not unique: \['lr', 'lr'\]"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
ensemble.fit(X, y)
|
||
|
|
||
|
# raise an error when the name conflicts with the parameters
|
||
|
if issubclass(Ensemble, ClassifierMixin):
|
||
|
estimators = [('estimators', LogisticRegression())]
|
||
|
else:
|
||
|
estimators = [('estimators', LinearRegression())]
|
||
|
ensemble = Ensemble(estimators=estimators)
|
||
|
|
||
|
err_msg = "Estimator names conflict with constructor arguments"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
ensemble.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X, y, estimator",
|
||
|
[(*make_classification(n_samples=10),
|
||
|
StackingClassifier(estimators=[('lr', LogisticRegression())])),
|
||
|
(*make_classification(n_samples=10),
|
||
|
VotingClassifier(estimators=[('lr', LogisticRegression())])),
|
||
|
(*make_regression(n_samples=10),
|
||
|
StackingRegressor(estimators=[('lr', LinearRegression())])),
|
||
|
(*make_regression(n_samples=10),
|
||
|
VotingRegressor(estimators=[('lr', LinearRegression())]))],
|
||
|
ids=['stacking-classifier', 'voting-classifier',
|
||
|
'stacking-regressor', 'voting-regressor']
|
||
|
)
|
||
|
def test_ensemble_heterogeneous_estimators_all_dropped(X, y, estimator):
|
||
|
# check that we raise a consistent error when all estimators are
|
||
|
# dropped
|
||
|
estimator.set_params(lr='drop')
|
||
|
with pytest.raises(ValueError, match="All estimators are dropped."):
|
||
|
estimator.fit(X, y)
|