601 lines
21 KiB
Python
601 lines
21 KiB
Python
|
"""Calibration of predicted probabilities."""
|
||
|
|
||
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
|
||
|
# Balazs Kegl <balazs.kegl@gmail.com>
|
||
|
# Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||
|
# Mathieu Blondel <mathieu@mblondel.org>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import warnings
|
||
|
from inspect import signature
|
||
|
|
||
|
from math import log
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy.special import expit
|
||
|
from scipy.special import xlogy
|
||
|
from scipy.optimize import fmin_bfgs
|
||
|
from .preprocessing import LabelEncoder
|
||
|
|
||
|
from .base import (BaseEstimator, ClassifierMixin, RegressorMixin, clone,
|
||
|
MetaEstimatorMixin)
|
||
|
from .preprocessing import label_binarize, LabelBinarizer
|
||
|
from .utils import check_array, indexable, column_or_1d
|
||
|
from .utils.validation import check_is_fitted, check_consistent_length
|
||
|
from .utils.validation import _check_sample_weight
|
||
|
from .isotonic import IsotonicRegression
|
||
|
from .svm import LinearSVC
|
||
|
from .model_selection import check_cv
|
||
|
from .utils.validation import _deprecate_positional_args
|
||
|
|
||
|
|
||
|
class CalibratedClassifierCV(BaseEstimator, ClassifierMixin,
|
||
|
MetaEstimatorMixin):
|
||
|
"""Probability calibration with isotonic regression or logistic regression.
|
||
|
|
||
|
The calibration is based on the :term:`decision_function` method of the
|
||
|
`base_estimator` if it exists, else on :term:`predict_proba`.
|
||
|
|
||
|
Read more in the :ref:`User Guide <calibration>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base_estimator : instance BaseEstimator
|
||
|
The classifier whose output need to be calibrated to provide more
|
||
|
accurate `predict_proba` outputs.
|
||
|
|
||
|
method : 'sigmoid' or 'isotonic'
|
||
|
The method to use for calibration. Can be 'sigmoid' which
|
||
|
corresponds to Platt's method (i.e. a logistic regression model) or
|
||
|
'isotonic' which is a non-parametric approach. It is not advised to
|
||
|
use isotonic calibration with too few calibration samples
|
||
|
``(<<1000)`` since it tends to overfit.
|
||
|
|
||
|
cv : integer, cross-validation generator, iterable or "prefit", optional
|
||
|
Determines the cross-validation splitting strategy.
|
||
|
Possible inputs for cv are:
|
||
|
|
||
|
- None, to use the default 5-fold cross-validation,
|
||
|
- integer, to specify the number of folds.
|
||
|
- :term:`CV splitter`,
|
||
|
- An iterable yielding (train, test) splits as arrays of indices.
|
||
|
|
||
|
For integer/None inputs, if ``y`` is binary or multiclass,
|
||
|
:class:`sklearn.model_selection.StratifiedKFold` is used. If ``y`` is
|
||
|
neither binary nor multiclass, :class:`sklearn.model_selection.KFold`
|
||
|
is used.
|
||
|
|
||
|
Refer :ref:`User Guide <cross_validation>` for the various
|
||
|
cross-validation strategies that can be used here.
|
||
|
|
||
|
If "prefit" is passed, it is assumed that `base_estimator` has been
|
||
|
fitted already and all data is used for calibration.
|
||
|
|
||
|
.. versionchanged:: 0.22
|
||
|
``cv`` default value if None changed from 3-fold to 5-fold.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
classes_ : array, shape (n_classes)
|
||
|
The class labels.
|
||
|
|
||
|
calibrated_classifiers_ : list (len() equal to cv or 1 if cv == "prefit")
|
||
|
The list of calibrated classifiers, one for each cross-validation fold,
|
||
|
which has been fitted on all but the validation fold and calibrated
|
||
|
on the validation fold.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Obtaining calibrated probability estimates from decision trees
|
||
|
and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
|
||
|
|
||
|
.. [2] Transforming Classifier Scores into Accurate Multiclass
|
||
|
Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
|
||
|
|
||
|
.. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
|
||
|
Regularized Likelihood Methods, J. Platt, (1999)
|
||
|
|
||
|
.. [4] Predicting Good Probabilities with Supervised Learning,
|
||
|
A. Niculescu-Mizil & R. Caruana, ICML 2005
|
||
|
"""
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self, base_estimator=None, *, method='sigmoid', cv=None):
|
||
|
self.base_estimator = base_estimator
|
||
|
self.method = method
|
||
|
self.cv = cv
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit the calibrated model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : array-like, shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights. If None, then samples are equally weighted.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns an instance of self.
|
||
|
"""
|
||
|
X, y = self._validate_data(X, y, accept_sparse=['csc', 'csr', 'coo'],
|
||
|
force_all_finite=False, allow_nd=True)
|
||
|
X, y = indexable(X, y)
|
||
|
le = LabelBinarizer().fit(y)
|
||
|
self.classes_ = le.classes_
|
||
|
|
||
|
# Check that each cross-validation fold can have at least one
|
||
|
# example per class
|
||
|
n_folds = self.cv if isinstance(self.cv, int) \
|
||
|
else self.cv.n_folds if hasattr(self.cv, "n_folds") else None
|
||
|
if n_folds and \
|
||
|
np.any([np.sum(y == class_) < n_folds for class_ in
|
||
|
self.classes_]):
|
||
|
raise ValueError("Requesting %d-fold cross-validation but provided"
|
||
|
" less than %d examples for at least one class."
|
||
|
% (n_folds, n_folds))
|
||
|
|
||
|
self.calibrated_classifiers_ = []
|
||
|
if self.base_estimator is None:
|
||
|
# we want all classifiers that don't expose a random_state
|
||
|
# to be deterministic (and we don't want to expose this one).
|
||
|
base_estimator = LinearSVC(random_state=0)
|
||
|
else:
|
||
|
base_estimator = self.base_estimator
|
||
|
|
||
|
if self.cv == "prefit":
|
||
|
calibrated_classifier = _CalibratedClassifier(
|
||
|
base_estimator, method=self.method)
|
||
|
calibrated_classifier.fit(X, y, sample_weight)
|
||
|
self.calibrated_classifiers_.append(calibrated_classifier)
|
||
|
else:
|
||
|
cv = check_cv(self.cv, y, classifier=True)
|
||
|
fit_parameters = signature(base_estimator.fit).parameters
|
||
|
base_estimator_supports_sw = "sample_weight" in fit_parameters
|
||
|
|
||
|
if sample_weight is not None:
|
||
|
sample_weight = _check_sample_weight(sample_weight, X)
|
||
|
|
||
|
if not base_estimator_supports_sw:
|
||
|
estimator_name = type(base_estimator).__name__
|
||
|
warnings.warn("Since %s does not support sample_weights, "
|
||
|
"sample weights will only be used for the "
|
||
|
"calibration itself." % estimator_name)
|
||
|
|
||
|
for train, test in cv.split(X, y):
|
||
|
this_estimator = clone(base_estimator)
|
||
|
|
||
|
if sample_weight is not None and base_estimator_supports_sw:
|
||
|
this_estimator.fit(X[train], y[train],
|
||
|
sample_weight=sample_weight[train])
|
||
|
else:
|
||
|
this_estimator.fit(X[train], y[train])
|
||
|
|
||
|
calibrated_classifier = _CalibratedClassifier(
|
||
|
this_estimator, method=self.method, classes=self.classes_)
|
||
|
sw = None if sample_weight is None else sample_weight[test]
|
||
|
calibrated_classifier.fit(X[test], y[test], sample_weight=sw)
|
||
|
self.calibrated_classifiers_.append(calibrated_classifier)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def predict_proba(self, X):
|
||
|
"""Posterior probabilities of classification
|
||
|
|
||
|
This function returns posterior probabilities of classification
|
||
|
according to each class on an array of test vectors X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
The samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
C : array, shape (n_samples, n_classes)
|
||
|
The predicted probas.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = check_array(X, accept_sparse=['csc', 'csr', 'coo'],
|
||
|
force_all_finite=False)
|
||
|
# Compute the arithmetic mean of the predictions of the calibrated
|
||
|
# classifiers
|
||
|
mean_proba = np.zeros((X.shape[0], len(self.classes_)))
|
||
|
for calibrated_classifier in self.calibrated_classifiers_:
|
||
|
proba = calibrated_classifier.predict_proba(X)
|
||
|
mean_proba += proba
|
||
|
|
||
|
mean_proba /= len(self.calibrated_classifiers_)
|
||
|
|
||
|
return mean_proba
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Predict the target of new samples. The predicted class is the
|
||
|
class that has the highest probability, and can thus be different
|
||
|
from the prediction of the uncalibrated classifier.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
The samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
C : array, shape (n_samples,)
|
||
|
The predicted class.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
return self.classes_[np.argmax(self.predict_proba(X), axis=1)]
|
||
|
|
||
|
|
||
|
class _CalibratedClassifier:
|
||
|
"""Probability calibration with isotonic regression or sigmoid.
|
||
|
|
||
|
It assumes that base_estimator has already been fit, and trains the
|
||
|
calibration on the input set of the fit function. Note that this class
|
||
|
should not be used as an estimator directly. Use CalibratedClassifierCV
|
||
|
with cv="prefit" instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base_estimator : instance BaseEstimator
|
||
|
The classifier whose output decision function needs to be calibrated
|
||
|
to offer more accurate predict_proba outputs. No default value since
|
||
|
it has to be an already fitted estimator.
|
||
|
|
||
|
method : 'sigmoid' | 'isotonic'
|
||
|
The method to use for calibration. Can be 'sigmoid' which
|
||
|
corresponds to Platt's method or 'isotonic' which is a
|
||
|
non-parametric approach based on isotonic regression.
|
||
|
|
||
|
classes : array-like, shape (n_classes,), optional
|
||
|
Contains unique classes used to fit the base estimator.
|
||
|
if None, then classes is extracted from the given target values
|
||
|
in fit().
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
CalibratedClassifierCV
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Obtaining calibrated probability estimates from decision trees
|
||
|
and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
|
||
|
|
||
|
.. [2] Transforming Classifier Scores into Accurate Multiclass
|
||
|
Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
|
||
|
|
||
|
.. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
|
||
|
Regularized Likelihood Methods, J. Platt, (1999)
|
||
|
|
||
|
.. [4] Predicting Good Probabilities with Supervised Learning,
|
||
|
A. Niculescu-Mizil & R. Caruana, ICML 2005
|
||
|
"""
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self, base_estimator, *, method='sigmoid', classes=None):
|
||
|
self.base_estimator = base_estimator
|
||
|
self.method = method
|
||
|
self.classes = classes
|
||
|
|
||
|
def _preproc(self, X):
|
||
|
n_classes = len(self.classes_)
|
||
|
if hasattr(self.base_estimator, "decision_function"):
|
||
|
df = self.base_estimator.decision_function(X)
|
||
|
if df.ndim == 1:
|
||
|
df = df[:, np.newaxis]
|
||
|
elif hasattr(self.base_estimator, "predict_proba"):
|
||
|
df = self.base_estimator.predict_proba(X)
|
||
|
if n_classes == 2:
|
||
|
df = df[:, 1:]
|
||
|
else:
|
||
|
raise RuntimeError('classifier has no decision_function or '
|
||
|
'predict_proba method.')
|
||
|
|
||
|
idx_pos_class = self.label_encoder_.\
|
||
|
transform(self.base_estimator.classes_)
|
||
|
|
||
|
return df, idx_pos_class
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Calibrate the fitted model
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : array-like, shape (n_samples,)
|
||
|
Target values.
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights. If None, then samples are equally weighted.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns an instance of self.
|
||
|
"""
|
||
|
|
||
|
self.label_encoder_ = LabelEncoder()
|
||
|
if self.classes is None:
|
||
|
self.label_encoder_.fit(y)
|
||
|
else:
|
||
|
self.label_encoder_.fit(self.classes)
|
||
|
|
||
|
self.classes_ = self.label_encoder_.classes_
|
||
|
Y = label_binarize(y, classes=self.classes_)
|
||
|
|
||
|
df, idx_pos_class = self._preproc(X)
|
||
|
self.calibrators_ = []
|
||
|
|
||
|
for k, this_df in zip(idx_pos_class, df.T):
|
||
|
if self.method == 'isotonic':
|
||
|
calibrator = IsotonicRegression(out_of_bounds='clip')
|
||
|
elif self.method == 'sigmoid':
|
||
|
calibrator = _SigmoidCalibration()
|
||
|
else:
|
||
|
raise ValueError('method should be "sigmoid" or '
|
||
|
'"isotonic". Got %s.' % self.method)
|
||
|
calibrator.fit(this_df, Y[:, k], sample_weight)
|
||
|
self.calibrators_.append(calibrator)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def predict_proba(self, X):
|
||
|
"""Posterior probabilities of classification
|
||
|
|
||
|
This function returns posterior probabilities of classification
|
||
|
according to each class on an array of test vectors X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
The samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
C : array, shape (n_samples, n_classes)
|
||
|
The predicted probas. Can be exact zeros.
|
||
|
"""
|
||
|
n_classes = len(self.classes_)
|
||
|
proba = np.zeros((X.shape[0], n_classes))
|
||
|
|
||
|
df, idx_pos_class = self._preproc(X)
|
||
|
|
||
|
for k, this_df, calibrator in \
|
||
|
zip(idx_pos_class, df.T, self.calibrators_):
|
||
|
if n_classes == 2:
|
||
|
k += 1
|
||
|
proba[:, k] = calibrator.predict(this_df)
|
||
|
|
||
|
# Normalize the probabilities
|
||
|
if n_classes == 2:
|
||
|
proba[:, 0] = 1. - proba[:, 1]
|
||
|
else:
|
||
|
proba /= np.sum(proba, axis=1)[:, np.newaxis]
|
||
|
|
||
|
# XXX : for some reason all probas can be 0
|
||
|
proba[np.isnan(proba)] = 1. / n_classes
|
||
|
|
||
|
# Deal with cases where the predicted probability minimally exceeds 1.0
|
||
|
proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0
|
||
|
|
||
|
return proba
|
||
|
|
||
|
|
||
|
def _sigmoid_calibration(df, y, sample_weight=None):
|
||
|
"""Probability Calibration with sigmoid method (Platt 2000)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : ndarray, shape (n_samples,)
|
||
|
The decision function or predict proba for the samples.
|
||
|
|
||
|
y : ndarray, shape (n_samples,)
|
||
|
The targets.
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights. If None, then samples are equally weighted.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
a : float
|
||
|
The slope.
|
||
|
|
||
|
b : float
|
||
|
The intercept.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Platt, "Probabilistic Outputs for Support Vector Machines"
|
||
|
"""
|
||
|
df = column_or_1d(df)
|
||
|
y = column_or_1d(y)
|
||
|
|
||
|
F = df # F follows Platt's notations
|
||
|
|
||
|
# Bayesian priors (see Platt end of section 2.2)
|
||
|
prior0 = float(np.sum(y <= 0))
|
||
|
prior1 = y.shape[0] - prior0
|
||
|
T = np.zeros(y.shape)
|
||
|
T[y > 0] = (prior1 + 1.) / (prior1 + 2.)
|
||
|
T[y <= 0] = 1. / (prior0 + 2.)
|
||
|
T1 = 1. - T
|
||
|
|
||
|
def objective(AB):
|
||
|
# From Platt (beginning of Section 2.2)
|
||
|
P = expit(-(AB[0] * F + AB[1]))
|
||
|
loss = -(xlogy(T, P) + xlogy(T1, 1. - P))
|
||
|
if sample_weight is not None:
|
||
|
return (sample_weight * loss).sum()
|
||
|
else:
|
||
|
return loss.sum()
|
||
|
|
||
|
def grad(AB):
|
||
|
# gradient of the objective function
|
||
|
P = expit(-(AB[0] * F + AB[1]))
|
||
|
TEP_minus_T1P = T - P
|
||
|
if sample_weight is not None:
|
||
|
TEP_minus_T1P *= sample_weight
|
||
|
dA = np.dot(TEP_minus_T1P, F)
|
||
|
dB = np.sum(TEP_minus_T1P)
|
||
|
return np.array([dA, dB])
|
||
|
|
||
|
AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))])
|
||
|
AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False)
|
||
|
return AB_[0], AB_[1]
|
||
|
|
||
|
|
||
|
class _SigmoidCalibration(RegressorMixin, BaseEstimator):
|
||
|
"""Sigmoid regression model.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
a_ : float
|
||
|
The slope.
|
||
|
|
||
|
b_ : float
|
||
|
The intercept.
|
||
|
"""
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Fit the model using X, y as training data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples,)
|
||
|
Training data.
|
||
|
|
||
|
y : array-like, shape (n_samples,)
|
||
|
Training target.
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights. If None, then samples are equally weighted.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns an instance of self.
|
||
|
"""
|
||
|
X = column_or_1d(X)
|
||
|
y = column_or_1d(y)
|
||
|
X, y = indexable(X, y)
|
||
|
|
||
|
self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight)
|
||
|
return self
|
||
|
|
||
|
def predict(self, T):
|
||
|
"""Predict new data by linear interpolation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
T : array-like, shape (n_samples,)
|
||
|
Data to predict from.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
T_ : array, shape (n_samples,)
|
||
|
The predicted data.
|
||
|
"""
|
||
|
T = column_or_1d(T)
|
||
|
return expit(-(self.a_ * T + self.b_))
|
||
|
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def calibration_curve(y_true, y_prob, *, normalize=False, n_bins=5,
|
||
|
strategy='uniform'):
|
||
|
"""Compute true and predicted probabilities for a calibration curve.
|
||
|
|
||
|
The method assumes the inputs come from a binary classifier, and
|
||
|
discretize the [0, 1] interval into bins.
|
||
|
|
||
|
Calibration curves may also be referred to as reliability diagrams.
|
||
|
|
||
|
Read more in the :ref:`User Guide <calibration>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y_true : array-like of shape (n_samples,)
|
||
|
True targets.
|
||
|
|
||
|
y_prob : array-like of shape (n_samples,)
|
||
|
Probabilities of the positive class.
|
||
|
|
||
|
normalize : bool, default=False
|
||
|
Whether y_prob needs to be normalized into the [0, 1] interval, i.e.
|
||
|
is not a proper probability. If True, the smallest value in y_prob
|
||
|
is linearly mapped onto 0 and the largest one onto 1.
|
||
|
|
||
|
n_bins : int, default=5
|
||
|
Number of bins to discretize the [0, 1] interval. A bigger number
|
||
|
requires more data. Bins with no samples (i.e. without
|
||
|
corresponding values in `y_prob`) will not be returned, thus the
|
||
|
returned arrays may have less than `n_bins` values.
|
||
|
|
||
|
strategy : {'uniform', 'quantile'}, default='uniform'
|
||
|
Strategy used to define the widths of the bins.
|
||
|
|
||
|
uniform
|
||
|
The bins have identical widths.
|
||
|
quantile
|
||
|
The bins have the same number of samples and depend on `y_prob`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
prob_true : ndarray of shape (n_bins,) or smaller
|
||
|
The proportion of samples whose class is the positive class, in each
|
||
|
bin (fraction of positives).
|
||
|
|
||
|
prob_pred : ndarray of shape (n_bins,) or smaller
|
||
|
The mean predicted probability in each bin.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good
|
||
|
Probabilities With Supervised Learning, in Proceedings of the 22nd
|
||
|
International Conference on Machine Learning (ICML).
|
||
|
See section 4 (Qualitative Analysis of Predictions).
|
||
|
"""
|
||
|
y_true = column_or_1d(y_true)
|
||
|
y_prob = column_or_1d(y_prob)
|
||
|
check_consistent_length(y_true, y_prob)
|
||
|
|
||
|
if normalize: # Normalize predicted values into interval [0, 1]
|
||
|
y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min())
|
||
|
elif y_prob.min() < 0 or y_prob.max() > 1:
|
||
|
raise ValueError("y_prob has values outside [0, 1] and normalize is "
|
||
|
"set to False.")
|
||
|
|
||
|
labels = np.unique(y_true)
|
||
|
if len(labels) > 2:
|
||
|
raise ValueError("Only binary classification is supported. "
|
||
|
"Provided labels %s." % labels)
|
||
|
y_true = label_binarize(y_true, classes=labels)[:, 0]
|
||
|
|
||
|
if strategy == 'quantile': # Determine bin edges by distribution of data
|
||
|
quantiles = np.linspace(0, 1, n_bins + 1)
|
||
|
bins = np.percentile(y_prob, quantiles * 100)
|
||
|
bins[-1] = bins[-1] + 1e-8
|
||
|
elif strategy == 'uniform':
|
||
|
bins = np.linspace(0., 1. + 1e-8, n_bins + 1)
|
||
|
else:
|
||
|
raise ValueError("Invalid entry to 'strategy' input. Strategy "
|
||
|
"must be either 'quantile' or 'uniform'.")
|
||
|
|
||
|
binids = np.digitize(y_prob, bins) - 1
|
||
|
|
||
|
bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins))
|
||
|
bin_true = np.bincount(binids, weights=y_true, minlength=len(bins))
|
||
|
bin_total = np.bincount(binids, minlength=len(bins))
|
||
|
|
||
|
nonzero = bin_total != 0
|
||
|
prob_true = bin_true[nonzero] / bin_total[nonzero]
|
||
|
prob_pred = bin_sums[nonzero] / bin_total[nonzero]
|
||
|
|
||
|
return prob_true, prob_pred
|