Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/skimage/registration/_optical_flow_utils.py

128 lines
3.3 KiB
Python
Raw Normal View History

# coding: utf-8
"""Common tools to optical flow algorithms.
"""
import numpy as np
from skimage.transform import pyramid_reduce
from skimage.util.dtype import _convert
from scipy import ndimage as ndi
def resize_flow(flow, shape):
"""Rescale the values of the vector field (u, v) to the desired shape.
The values of the output vector field are scaled to the new
resolution.
Parameters
----------
flow : ndarray
The motion field to be processed.
shape : iterable
Couple of integers representing the output shape.
Returns
-------
rflow : ndarray
The resized and rescaled motion field.
"""
scale = [n / o for n, o in zip(shape, flow.shape[1:])]
scale_factor = np.array(scale, dtype=flow.dtype)
for _ in shape:
scale_factor = scale_factor[..., np.newaxis]
rflow = scale_factor*ndi.zoom(flow, [1] + scale, order=0,
mode='nearest', prefilter=False)
return rflow
def get_pyramid(I, downscale=2.0, nlevel=10, min_size=16):
"""Construct image pyramid.
Parameters
----------
I : ndarray
The image to be preprocessed (Gray scale or RGB).
downscale : float
The pyramid downscale factor.
nlevel : int
The maximum number of pyramid levels.
min_size : int
The minimum size for any dimension of the pyramid levels.
Returns
-------
pyramid : list[ndarray]
The coarse to fine images pyramid.
"""
pyramid = [I]
size = min(I.shape)
count = 1
while (count < nlevel) and (size > downscale * min_size):
J = pyramid_reduce(pyramid[-1], downscale, multichannel=False)
pyramid.append(J)
size = min(J.shape)
count += 1
return pyramid[::-1]
def coarse_to_fine(I0, I1, solver, downscale=2, nlevel=10, min_size=16,
dtype=np.float32):
"""Generic coarse to fine solver.
Parameters
----------
I0 : ndarray
The first gray scale image of the sequence.
I1 : ndarray
The second gray scale image of the sequence.
solver : callable
The solver applyed at each pyramid level.
downscale : float
The pyramid downscale factor.
nlevel : int
The maximum number of pyramid levels.
min_size : int
The minimum size for any dimension of the pyramid levels.
dtype : dtype
Output data type.
Returns
-------
flow : ndarray
The estimated optical flow components for each axis.
"""
if I0.shape != I1.shape:
raise ValueError("Input images should have the same shape")
if np.dtype(dtype).char not in 'efdg':
raise ValueError("Only floating point data type are valid"
" for optical flow")
pyramid = list(zip(get_pyramid(_convert(I0, dtype),
downscale, nlevel, min_size),
get_pyramid(_convert(I1, dtype),
downscale, nlevel, min_size)))
# Initialization to 0 at coarsest level.
flow = np.zeros((pyramid[0][0].ndim, ) + pyramid[0][0].shape,
dtype=dtype)
flow = solver(pyramid[0][0], pyramid[0][1], flow)
for J0, J1 in pyramid[1:]:
flow = solver(J0, J1, resize_flow(flow, J0.shape))
return flow