156 lines
4 KiB
Python
156 lines
4 KiB
Python
|
"""
|
||
|
Utilities for generating random numbers, random sequences, and
|
||
|
random selections.
|
||
|
"""
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.utils import py_random_state
|
||
|
|
||
|
|
||
|
# The same helpers for choosing random sequences from distributions
|
||
|
# uses Python's random module
|
||
|
# https://docs.python.org/3/library/random.html
|
||
|
|
||
|
|
||
|
@py_random_state(2)
|
||
|
def powerlaw_sequence(n, exponent=2.0, seed=None):
|
||
|
"""
|
||
|
Return sample sequence of length n from a power law distribution.
|
||
|
"""
|
||
|
return [seed.paretovariate(exponent - 1) for i in range(n)]
|
||
|
|
||
|
|
||
|
@py_random_state(2)
|
||
|
def zipf_rv(alpha, xmin=1, seed=None):
|
||
|
r"""Returns a random value chosen from the Zipf distribution.
|
||
|
|
||
|
The return value is an integer drawn from the probability distribution
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
p(x)=\frac{x^{-\alpha}}{\zeta(\alpha, x_{\min})},
|
||
|
|
||
|
where $\zeta(\alpha, x_{\min})$ is the Hurwitz zeta function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alpha : float
|
||
|
Exponent value of the distribution
|
||
|
xmin : int
|
||
|
Minimum value
|
||
|
seed : integer, random_state, or None (default)
|
||
|
Indicator of random number generation state.
|
||
|
See :ref:`Randomness<randomness>`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : int
|
||
|
Random value from Zipf distribution
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError:
|
||
|
If xmin < 1 or
|
||
|
If alpha <= 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The rejection algorithm generates random values for a the power-law
|
||
|
distribution in uniformly bounded expected time dependent on
|
||
|
parameters. See [1]_ for details on its operation.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> nx.utils.zipf_rv(alpha=2, xmin=3, seed=42)
|
||
|
8
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Luc Devroye, Non-Uniform Random Variate Generation,
|
||
|
Springer-Verlag, New York, 1986.
|
||
|
"""
|
||
|
if xmin < 1:
|
||
|
raise ValueError("xmin < 1")
|
||
|
if alpha <= 1:
|
||
|
raise ValueError("a <= 1.0")
|
||
|
a1 = alpha - 1.0
|
||
|
b = 2 ** a1
|
||
|
while True:
|
||
|
u = 1.0 - seed.random() # u in (0,1]
|
||
|
v = seed.random() # v in [0,1)
|
||
|
x = int(xmin * u ** -(1.0 / a1))
|
||
|
t = (1.0 + (1.0 / x)) ** a1
|
||
|
if v * x * (t - 1.0) / (b - 1.0) <= t / b:
|
||
|
break
|
||
|
return x
|
||
|
|
||
|
|
||
|
def cumulative_distribution(distribution):
|
||
|
"""Returns normalized cumulative distribution from discrete distribution."""
|
||
|
|
||
|
cdf = [0.0]
|
||
|
psum = float(sum(distribution))
|
||
|
for i in range(0, len(distribution)):
|
||
|
cdf.append(cdf[i] + distribution[i] / psum)
|
||
|
return cdf
|
||
|
|
||
|
|
||
|
@py_random_state(3)
|
||
|
def discrete_sequence(n, distribution=None, cdistribution=None, seed=None):
|
||
|
"""
|
||
|
Return sample sequence of length n from a given discrete distribution
|
||
|
or discrete cumulative distribution.
|
||
|
|
||
|
One of the following must be specified.
|
||
|
|
||
|
distribution = histogram of values, will be normalized
|
||
|
|
||
|
cdistribution = normalized discrete cumulative distribution
|
||
|
|
||
|
"""
|
||
|
import bisect
|
||
|
|
||
|
if cdistribution is not None:
|
||
|
cdf = cdistribution
|
||
|
elif distribution is not None:
|
||
|
cdf = cumulative_distribution(distribution)
|
||
|
else:
|
||
|
raise nx.NetworkXError(
|
||
|
"discrete_sequence: distribution or cdistribution missing"
|
||
|
)
|
||
|
|
||
|
# get a uniform random number
|
||
|
inputseq = [seed.random() for i in range(n)]
|
||
|
|
||
|
# choose from CDF
|
||
|
seq = [bisect.bisect_left(cdf, s) - 1 for s in inputseq]
|
||
|
return seq
|
||
|
|
||
|
|
||
|
@py_random_state(2)
|
||
|
def random_weighted_sample(mapping, k, seed=None):
|
||
|
"""Returns k items without replacement from a weighted sample.
|
||
|
|
||
|
The input is a dictionary of items with weights as values.
|
||
|
"""
|
||
|
if k > len(mapping):
|
||
|
raise ValueError("sample larger than population")
|
||
|
sample = set()
|
||
|
while len(sample) < k:
|
||
|
sample.add(weighted_choice(mapping, seed))
|
||
|
return list(sample)
|
||
|
|
||
|
|
||
|
@py_random_state(1)
|
||
|
def weighted_choice(mapping, seed=None):
|
||
|
"""Returns a single element from a weighted sample.
|
||
|
|
||
|
The input is a dictionary of items with weights as values.
|
||
|
"""
|
||
|
# use roulette method
|
||
|
rnd = seed.random() * sum(mapping.values())
|
||
|
for k, w in mapping.items():
|
||
|
rnd -= w
|
||
|
if rnd < 0:
|
||
|
return k
|