465 lines
16 KiB
Python
465 lines
16 KiB
Python
|
import networkx as nx
|
||
|
from collections import defaultdict
|
||
|
|
||
|
|
||
|
__all__ = ["combinatorial_embedding_to_pos"]
|
||
|
|
||
|
|
||
|
def combinatorial_embedding_to_pos(embedding, fully_triangulate=False):
|
||
|
"""Assigns every node a (x, y) position based on the given embedding
|
||
|
|
||
|
The algorithm iteratively inserts nodes of the input graph in a certain
|
||
|
order and rearranges previously inserted nodes so that the planar drawing
|
||
|
stays valid. This is done efficiently by only maintaining relative
|
||
|
positions during the node placements and calculating the absolute positions
|
||
|
at the end. For more information see [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
embedding : nx.PlanarEmbedding
|
||
|
This defines the order of the edges
|
||
|
|
||
|
fully_triangulate : bool
|
||
|
If set to True the algorithm adds edges to a copy of the input
|
||
|
embedding and makes it chordal.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pos : dict
|
||
|
Maps each node to a tuple that defines the (x, y) position
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] M. Chrobak and T.H. Payne:
|
||
|
A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
|
||
|
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
|
||
|
|
||
|
"""
|
||
|
if len(embedding.nodes()) < 4:
|
||
|
# Position the node in any triangle
|
||
|
default_positions = [(0, 0), (2, 0), (1, 1)]
|
||
|
pos = {}
|
||
|
for i, v in enumerate(embedding.nodes()):
|
||
|
pos[v] = default_positions[i]
|
||
|
return pos
|
||
|
|
||
|
embedding, outer_face = triangulate_embedding(embedding, fully_triangulate)
|
||
|
|
||
|
# The following dicts map a node to another node
|
||
|
# If a node is not in the key set it means that the node is not yet in G_k
|
||
|
# If a node maps to None then the corresponding subtree does not exist
|
||
|
left_t_child = {}
|
||
|
right_t_child = {}
|
||
|
|
||
|
# The following dicts map a node to an integer
|
||
|
delta_x = {}
|
||
|
y_coordinate = {}
|
||
|
|
||
|
node_list = get_canonical_ordering(embedding, outer_face)
|
||
|
|
||
|
# 1. Phase: Compute relative positions
|
||
|
|
||
|
# Initialization
|
||
|
v1, v2, v3 = node_list[0][0], node_list[1][0], node_list[2][0]
|
||
|
|
||
|
delta_x[v1] = 0
|
||
|
y_coordinate[v1] = 0
|
||
|
right_t_child[v1] = v3
|
||
|
left_t_child[v1] = None
|
||
|
|
||
|
delta_x[v2] = 1
|
||
|
y_coordinate[v2] = 0
|
||
|
right_t_child[v2] = None
|
||
|
left_t_child[v2] = None
|
||
|
|
||
|
delta_x[v3] = 1
|
||
|
y_coordinate[v3] = 1
|
||
|
right_t_child[v3] = v2
|
||
|
left_t_child[v3] = None
|
||
|
|
||
|
for k in range(3, len(node_list)):
|
||
|
vk, contour_neighbors = node_list[k]
|
||
|
wp = contour_neighbors[0]
|
||
|
wp1 = contour_neighbors[1]
|
||
|
wq = contour_neighbors[-1]
|
||
|
wq1 = contour_neighbors[-2]
|
||
|
adds_mult_tri = len(contour_neighbors) > 2
|
||
|
|
||
|
# Stretch gaps:
|
||
|
delta_x[wp1] += 1
|
||
|
delta_x[wq] += 1
|
||
|
|
||
|
delta_x_wp_wq = sum(delta_x[x] for x in contour_neighbors[1:])
|
||
|
|
||
|
# Adjust offsets
|
||
|
delta_x[vk] = (-y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
|
||
|
y_coordinate[vk] = (y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
|
||
|
delta_x[wq] = delta_x_wp_wq - delta_x[vk]
|
||
|
if adds_mult_tri:
|
||
|
delta_x[wp1] -= delta_x[vk]
|
||
|
|
||
|
# Install v_k:
|
||
|
right_t_child[wp] = vk
|
||
|
right_t_child[vk] = wq
|
||
|
if adds_mult_tri:
|
||
|
left_t_child[vk] = wp1
|
||
|
right_t_child[wq1] = None
|
||
|
else:
|
||
|
left_t_child[vk] = None
|
||
|
|
||
|
# 2. Phase: Set absolute positions
|
||
|
pos = dict()
|
||
|
pos[v1] = (0, y_coordinate[v1])
|
||
|
remaining_nodes = [v1]
|
||
|
while remaining_nodes:
|
||
|
parent_node = remaining_nodes.pop()
|
||
|
|
||
|
# Calculate position for left child
|
||
|
set_position(
|
||
|
parent_node, left_t_child, remaining_nodes, delta_x, y_coordinate, pos
|
||
|
)
|
||
|
# Calculate position for right child
|
||
|
set_position(
|
||
|
parent_node, right_t_child, remaining_nodes, delta_x, y_coordinate, pos
|
||
|
)
|
||
|
return pos
|
||
|
|
||
|
|
||
|
def set_position(parent, tree, remaining_nodes, delta_x, y_coordinate, pos):
|
||
|
"""Helper method to calculate the absolute position of nodes."""
|
||
|
child = tree[parent]
|
||
|
parent_node_x = pos[parent][0]
|
||
|
if child is not None:
|
||
|
# Calculate pos of child
|
||
|
child_x = parent_node_x + delta_x[child]
|
||
|
pos[child] = (child_x, y_coordinate[child])
|
||
|
# Remember to calculate pos of its children
|
||
|
remaining_nodes.append(child)
|
||
|
|
||
|
|
||
|
def get_canonical_ordering(embedding, outer_face):
|
||
|
"""Returns a canonical ordering of the nodes
|
||
|
|
||
|
The canonical ordering of nodes (v1, ..., vn) must fulfill the following
|
||
|
conditions:
|
||
|
(See Lemma 1 in [2]_)
|
||
|
|
||
|
- For the subgraph G_k of the input graph induced by v1, ..., vk it holds:
|
||
|
- 2-connected
|
||
|
- internally triangulated
|
||
|
- the edge (v1, v2) is part of the outer face
|
||
|
- For a node v(k+1) the following holds:
|
||
|
- The node v(k+1) is part of the outer face of G_k
|
||
|
- It has at least two neighbors in G_k
|
||
|
- All neighbors of v(k+1) in G_k lie consecutively on the outer face of
|
||
|
G_k (excluding the edge (v1, v2)).
|
||
|
|
||
|
The algorithm used here starts with G_n (containing all nodes). It first
|
||
|
selects the nodes v1 and v2. And then tries to find the order of the other
|
||
|
nodes by checking which node can be removed in order to fulfill the
|
||
|
conditions mentioned above. This is done by calculating the number of
|
||
|
chords of nodes on the outer face. For more information see [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
embedding : nx.PlanarEmbedding
|
||
|
The embedding must be triangulated
|
||
|
outer_face : list
|
||
|
The nodes on the outer face of the graph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ordering : list
|
||
|
A list of tuples `(vk, wp_wq)`. Here `vk` is the node at this position
|
||
|
in the canonical ordering. The element `wp_wq` is a list of nodes that
|
||
|
make up the outer face of G_k.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Steven Chaplick.
|
||
|
Canonical Orders of Planar Graphs and (some of) Their Applications 2015
|
||
|
https://wuecampus2.uni-wuerzburg.de/moodle/pluginfile.php/545727/mod_resource/content/0/vg-ss15-vl03-canonical-orders-druckversion.pdf
|
||
|
.. [2] M. Chrobak and T.H. Payne:
|
||
|
A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
|
||
|
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
|
||
|
|
||
|
"""
|
||
|
v1 = outer_face[0]
|
||
|
v2 = outer_face[1]
|
||
|
chords = defaultdict(int) # Maps nodes to the number of their chords
|
||
|
marked_nodes = set()
|
||
|
ready_to_pick = set(outer_face)
|
||
|
|
||
|
# Initialize outer_face_ccw_nbr (do not include v1 -> v2)
|
||
|
outer_face_ccw_nbr = {}
|
||
|
prev_nbr = v2
|
||
|
for idx in range(2, len(outer_face)):
|
||
|
outer_face_ccw_nbr[prev_nbr] = outer_face[idx]
|
||
|
prev_nbr = outer_face[idx]
|
||
|
outer_face_ccw_nbr[prev_nbr] = v1
|
||
|
|
||
|
# Initialize outer_face_cw_nbr (do not include v2 -> v1)
|
||
|
outer_face_cw_nbr = {}
|
||
|
prev_nbr = v1
|
||
|
for idx in range(len(outer_face) - 1, 0, -1):
|
||
|
outer_face_cw_nbr[prev_nbr] = outer_face[idx]
|
||
|
prev_nbr = outer_face[idx]
|
||
|
|
||
|
def is_outer_face_nbr(x, y):
|
||
|
if x not in outer_face_ccw_nbr:
|
||
|
return outer_face_cw_nbr[x] == y
|
||
|
if x not in outer_face_cw_nbr:
|
||
|
return outer_face_ccw_nbr[x] == y
|
||
|
return outer_face_ccw_nbr[x] == y or outer_face_cw_nbr[x] == y
|
||
|
|
||
|
def is_on_outer_face(x):
|
||
|
return x not in marked_nodes and (x in outer_face_ccw_nbr.keys() or x == v1)
|
||
|
|
||
|
# Initialize number of chords
|
||
|
for v in outer_face:
|
||
|
for nbr in embedding.neighbors_cw_order(v):
|
||
|
if is_on_outer_face(nbr) and not is_outer_face_nbr(v, nbr):
|
||
|
chords[v] += 1
|
||
|
ready_to_pick.discard(v)
|
||
|
|
||
|
# Initialize canonical_ordering
|
||
|
canonical_ordering = [None] * len(embedding.nodes()) # type: list
|
||
|
canonical_ordering[0] = (v1, [])
|
||
|
canonical_ordering[1] = (v2, [])
|
||
|
ready_to_pick.discard(v1)
|
||
|
ready_to_pick.discard(v2)
|
||
|
|
||
|
for k in range(len(embedding.nodes()) - 1, 1, -1):
|
||
|
# 1. Pick v from ready_to_pick
|
||
|
v = ready_to_pick.pop()
|
||
|
marked_nodes.add(v)
|
||
|
|
||
|
# v has exactly two neighbors on the outer face (wp and wq)
|
||
|
wp = None
|
||
|
wq = None
|
||
|
# Iterate over neighbors of v to find wp and wq
|
||
|
nbr_iterator = iter(embedding.neighbors_cw_order(v))
|
||
|
while True:
|
||
|
nbr = next(nbr_iterator)
|
||
|
if nbr in marked_nodes:
|
||
|
# Only consider nodes that are not yet removed
|
||
|
continue
|
||
|
if is_on_outer_face(nbr):
|
||
|
# nbr is either wp or wq
|
||
|
if nbr == v1:
|
||
|
wp = v1
|
||
|
elif nbr == v2:
|
||
|
wq = v2
|
||
|
else:
|
||
|
if outer_face_cw_nbr[nbr] == v:
|
||
|
# nbr is wp
|
||
|
wp = nbr
|
||
|
else:
|
||
|
# nbr is wq
|
||
|
wq = nbr
|
||
|
if wp is not None and wq is not None:
|
||
|
# We don't need to iterate any further
|
||
|
break
|
||
|
|
||
|
# Obtain new nodes on outer face (neighbors of v from wp to wq)
|
||
|
wp_wq = [wp]
|
||
|
nbr = wp
|
||
|
while nbr != wq:
|
||
|
# Get next next neighbor (clockwise on the outer face)
|
||
|
next_nbr = embedding[v][nbr]["ccw"]
|
||
|
wp_wq.append(next_nbr)
|
||
|
# Update outer face
|
||
|
outer_face_cw_nbr[nbr] = next_nbr
|
||
|
outer_face_ccw_nbr[next_nbr] = nbr
|
||
|
# Move to next neighbor of v
|
||
|
nbr = next_nbr
|
||
|
|
||
|
if len(wp_wq) == 2:
|
||
|
# There was a chord between wp and wq, decrease number of chords
|
||
|
chords[wp] -= 1
|
||
|
if chords[wp] == 0:
|
||
|
ready_to_pick.add(wp)
|
||
|
chords[wq] -= 1
|
||
|
if chords[wq] == 0:
|
||
|
ready_to_pick.add(wq)
|
||
|
else:
|
||
|
# Update all chords involving w_(p+1) to w_(q-1)
|
||
|
new_face_nodes = set(wp_wq[1:-1])
|
||
|
for w in new_face_nodes:
|
||
|
# If we do not find a chord for w later we can pick it next
|
||
|
ready_to_pick.add(w)
|
||
|
for nbr in embedding.neighbors_cw_order(w):
|
||
|
if is_on_outer_face(nbr) and not is_outer_face_nbr(w, nbr):
|
||
|
# There is a chord involving w
|
||
|
chords[w] += 1
|
||
|
ready_to_pick.discard(w)
|
||
|
if nbr not in new_face_nodes:
|
||
|
# Also increase chord for the neighbor
|
||
|
# We only iterator over new_face_nodes
|
||
|
chords[nbr] += 1
|
||
|
ready_to_pick.discard(nbr)
|
||
|
# Set the canonical ordering node and the list of contour neighbors
|
||
|
canonical_ordering[k] = (v, wp_wq)
|
||
|
|
||
|
return canonical_ordering
|
||
|
|
||
|
|
||
|
def triangulate_face(embedding, v1, v2):
|
||
|
"""Triangulates the face given by half edge (v, w)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
embedding : nx.PlanarEmbedding
|
||
|
v1 : node
|
||
|
The half-edge (v1, v2) belongs to the face that gets triangulated
|
||
|
v2 : node
|
||
|
"""
|
||
|
_, v3 = embedding.next_face_half_edge(v1, v2)
|
||
|
_, v4 = embedding.next_face_half_edge(v2, v3)
|
||
|
if v1 == v2 or v1 == v3:
|
||
|
# The component has less than 3 nodes
|
||
|
return
|
||
|
while v1 != v4:
|
||
|
# Add edge if not already present on other side
|
||
|
if embedding.has_edge(v1, v3):
|
||
|
# Cannot triangulate at this position
|
||
|
v1, v2, v3 = v2, v3, v4
|
||
|
else:
|
||
|
# Add edge for triangulation
|
||
|
embedding.add_half_edge_cw(v1, v3, v2)
|
||
|
embedding.add_half_edge_ccw(v3, v1, v2)
|
||
|
v1, v2, v3 = v1, v3, v4
|
||
|
# Get next node
|
||
|
_, v4 = embedding.next_face_half_edge(v2, v3)
|
||
|
|
||
|
|
||
|
def triangulate_embedding(embedding, fully_triangulate=True):
|
||
|
"""Triangulates the embedding.
|
||
|
|
||
|
Traverses faces of the embedding and adds edges to a copy of the
|
||
|
embedding to triangulate it.
|
||
|
The method also ensures that the resulting graph is 2-connected by adding
|
||
|
edges if the same vertex is contained twice on a path around a face.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
embedding : nx.PlanarEmbedding
|
||
|
The input graph must contain at least 3 nodes.
|
||
|
|
||
|
fully_triangulate : bool
|
||
|
If set to False the face with the most nodes is chooses as outer face.
|
||
|
This outer face does not get triangulated.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
(embedding, outer_face) : (nx.PlanarEmbedding, list) tuple
|
||
|
The element `embedding` is a new embedding containing all edges from
|
||
|
the input embedding and the additional edges to triangulate the graph.
|
||
|
The element `outer_face` is a list of nodes that lie on the outer face.
|
||
|
If the graph is fully triangulated these are three arbitrary connected
|
||
|
nodes.
|
||
|
|
||
|
"""
|
||
|
if len(embedding.nodes) <= 1:
|
||
|
return embedding, list(embedding.nodes)
|
||
|
embedding = nx.PlanarEmbedding(embedding)
|
||
|
|
||
|
# Get a list with a node for each connected component
|
||
|
component_nodes = [next(iter(x)) for x in nx.connected_components(embedding)]
|
||
|
|
||
|
# 1. Make graph a single component (add edge between components)
|
||
|
for i in range(len(component_nodes) - 1):
|
||
|
v1 = component_nodes[i]
|
||
|
v2 = component_nodes[i + 1]
|
||
|
embedding.connect_components(v1, v2)
|
||
|
|
||
|
# 2. Calculate faces, ensure 2-connectedness and determine outer face
|
||
|
outer_face = [] # A face with the most number of nodes
|
||
|
face_list = []
|
||
|
edges_visited = set() # Used to keep track of already visited faces
|
||
|
for v in embedding.nodes():
|
||
|
for w in embedding.neighbors_cw_order(v):
|
||
|
new_face = make_bi_connected(embedding, v, w, edges_visited)
|
||
|
if new_face:
|
||
|
# Found a new face
|
||
|
face_list.append(new_face)
|
||
|
if len(new_face) > len(outer_face):
|
||
|
# The face is a candidate to be the outer face
|
||
|
outer_face = new_face
|
||
|
|
||
|
# 3. Triangulate (internal) faces
|
||
|
for face in face_list:
|
||
|
if face is not outer_face or fully_triangulate:
|
||
|
# Triangulate this face
|
||
|
triangulate_face(embedding, face[0], face[1])
|
||
|
|
||
|
if fully_triangulate:
|
||
|
v1 = outer_face[0]
|
||
|
v2 = outer_face[1]
|
||
|
v3 = embedding[v2][v1]["ccw"]
|
||
|
outer_face = [v1, v2, v3]
|
||
|
|
||
|
return embedding, outer_face
|
||
|
|
||
|
|
||
|
def make_bi_connected(embedding, starting_node, outgoing_node, edges_counted):
|
||
|
"""Triangulate a face and make it 2-connected
|
||
|
|
||
|
This method also adds all edges on the face to `edges_counted`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
embedding: nx.PlanarEmbedding
|
||
|
The embedding that defines the faces
|
||
|
starting_node : node
|
||
|
A node on the face
|
||
|
outgoing_node : node
|
||
|
A node such that the half edge (starting_node, outgoing_node) belongs
|
||
|
to the face
|
||
|
edges_counted: set
|
||
|
Set of all half-edges that belong to a face that have been visited
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
face_nodes: list
|
||
|
A list of all nodes at the border of this face
|
||
|
"""
|
||
|
|
||
|
# Check if the face has already been calculated
|
||
|
if (starting_node, outgoing_node) in edges_counted:
|
||
|
# This face was already counted
|
||
|
return []
|
||
|
edges_counted.add((starting_node, outgoing_node))
|
||
|
|
||
|
# Add all edges to edges_counted which have this face to their left
|
||
|
v1 = starting_node
|
||
|
v2 = outgoing_node
|
||
|
face_list = [starting_node] # List of nodes around the face
|
||
|
face_set = set(face_list) # Set for faster queries
|
||
|
_, v3 = embedding.next_face_half_edge(v1, v2)
|
||
|
|
||
|
# Move the nodes v1, v2, v3 around the face:
|
||
|
while v2 != starting_node or v3 != outgoing_node:
|
||
|
if v1 == v2:
|
||
|
raise nx.NetworkXException("Invalid half-edge")
|
||
|
# cycle is not completed yet
|
||
|
if v2 in face_set:
|
||
|
# v2 encountered twice: Add edge to ensure 2-connectedness
|
||
|
embedding.add_half_edge_cw(v1, v3, v2)
|
||
|
embedding.add_half_edge_ccw(v3, v1, v2)
|
||
|
edges_counted.add((v2, v3))
|
||
|
edges_counted.add((v3, v1))
|
||
|
v2 = v1
|
||
|
else:
|
||
|
face_set.add(v2)
|
||
|
face_list.append(v2)
|
||
|
|
||
|
# set next edge
|
||
|
v1 = v2
|
||
|
v2, v3 = embedding.next_face_half_edge(v2, v3)
|
||
|
|
||
|
# remember that this edge has been counted
|
||
|
edges_counted.add((v1, v2))
|
||
|
|
||
|
return face_list
|