83 lines
2.3 KiB
Python
83 lines
2.3 KiB
Python
|
r""" Computation of graph non-randomness
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for
|
||
|
|
||
|
__all__ = ["non_randomness"]
|
||
|
|
||
|
|
||
|
@not_implemented_for("directed")
|
||
|
@not_implemented_for("multigraph")
|
||
|
def non_randomness(G, k=None):
|
||
|
"""Compute the non-randomness of graph G.
|
||
|
|
||
|
The first returned value nr is the sum of non-randomness values of all
|
||
|
edges within the graph (where the non-randomness of an edge tends to be
|
||
|
small when the two nodes linked by that edge are from two different
|
||
|
communities).
|
||
|
|
||
|
The second computed value nr_rd is a relative measure that indicates
|
||
|
to what extent graph G is different from random graphs in terms
|
||
|
of probability. When it is close to 0, the graph tends to be more
|
||
|
likely generated by an Erdos Renyi model.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX graph
|
||
|
Graph must be binary, symmetric, connected, and without self-loops.
|
||
|
|
||
|
k : int
|
||
|
The number of communities in G.
|
||
|
If k is not set, the function will use a default community
|
||
|
detection algorithm to set it.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
non-randomness : (float, float) tuple
|
||
|
Non-randomness, Relative non-randomness w.r.t.
|
||
|
Erdos Renyi random graphs.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.karate_club_graph()
|
||
|
>>> nr, nr_rd = nx.non_randomness(G, 2)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This computes Eq. (4.4) and (4.5) in Ref. [1]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Xiaowei Ying and Xintao Wu,
|
||
|
On Randomness Measures for Social Networks,
|
||
|
SIAM International Conference on Data Mining. 2009
|
||
|
"""
|
||
|
|
||
|
if not nx.is_connected(G):
|
||
|
raise nx.NetworkXException("Non connected graph.")
|
||
|
if len(list(nx.selfloop_edges(G))) > 0:
|
||
|
raise nx.NetworkXError("Graph must not contain self-loops")
|
||
|
|
||
|
if k is None:
|
||
|
k = len(tuple(nx.community.label_propagation_communities(G)))
|
||
|
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ImportError as e:
|
||
|
msg = "non_randomness requires NumPy: http://numpy.org/"
|
||
|
raise ImportError(msg) from e
|
||
|
|
||
|
# eq. 4.4
|
||
|
nr = np.real(np.sum(np.linalg.eigvals(nx.to_numpy_array(G))[:k]))
|
||
|
|
||
|
n = G.number_of_nodes()
|
||
|
m = G.number_of_edges()
|
||
|
p = (2 * k * m) / (n * (n - k))
|
||
|
|
||
|
# eq. 4.5
|
||
|
nr_rd = (nr - ((n - 2 * k) * p + k)) / math.sqrt(2 * k * p * (1 - p))
|
||
|
|
||
|
return nr, nr_rd
|