Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/matplotlib/tri/trirefine.py

308 lines
13 KiB
Python
Raw Normal View History

"""
Mesh refinement for triangular grids.
"""
import numpy as np
from matplotlib import cbook
from matplotlib.tri.triangulation import Triangulation
import matplotlib.tri.triinterpolate
class TriRefiner:
"""
Abstract base class for classes implementing mesh refinement.
A TriRefiner encapsulates a Triangulation object and provides tools for
mesh refinement and interpolation.
Derived classes must implement:
- ``refine_triangulation(return_tri_index=False, **kwargs)`` , where
the optional keyword arguments *kwargs* are defined in each
TriRefiner concrete implementation, and which returns:
- a refined triangulation,
- optionally (depending on *return_tri_index*), for each
point of the refined triangulation: the index of
the initial triangulation triangle to which it belongs.
- ``refine_field(z, triinterpolator=None, **kwargs)``, where:
- *z* array of field values (to refine) defined at the base
triangulation nodes,
- *triinterpolator* is an optional `~matplotlib.tri.TriInterpolator`,
- the other optional keyword arguments *kwargs* are defined in
each TriRefiner concrete implementation;
and which returns (as a tuple) a refined triangular mesh and the
interpolated values of the field at the refined triangulation nodes.
"""
def __init__(self, triangulation):
cbook._check_isinstance(Triangulation, triangulation=triangulation)
self._triangulation = triangulation
class UniformTriRefiner(TriRefiner):
"""
Uniform mesh refinement by recursive subdivisions.
Parameters
----------
triangulation : `~matplotlib.tri.Triangulation`
The encapsulated triangulation (to be refined)
"""
# See Also
# --------
# :class:`~matplotlib.tri.CubicTriInterpolator` and
# :class:`~matplotlib.tri.TriAnalyzer`.
# """
def __init__(self, triangulation):
TriRefiner.__init__(self, triangulation)
def refine_triangulation(self, return_tri_index=False, subdiv=3):
"""
Compute an uniformly refined triangulation *refi_triangulation* of
the encapsulated :attr:`triangulation`.
This function refines the encapsulated triangulation by splitting each
father triangle into 4 child sub-triangles built on the edges midside
nodes, recursing *subdiv* times. In the end, each triangle is hence
divided into ``4**subdiv`` child triangles.
Parameters
----------
return_tri_index : bool, default: False
Whether an index table indicating the father triangle index of each
point is returned.
subdiv : int, default: 3
Recursion level for the subdivision.
Each triangle is divided into ``4**subdiv`` child triangles;
hence, the default results in 64 refined subtriangles for each
triangle of the initial triangulation.
Returns
-------
refi_triangulation : `~matplotlib.tri.Triangulation`
The refined triangulation.
found_index : int array
Index of the initial triangulation containing triangle, for each
point of *refi_triangulation*.
Returned only if *return_tri_index* is set to True.
"""
refi_triangulation = self._triangulation
ntri = refi_triangulation.triangles.shape[0]
# Computes the triangulation ancestors numbers in the reference
# triangulation.
ancestors = np.arange(ntri, dtype=np.int32)
for _ in range(subdiv):
refi_triangulation, ancestors = self._refine_triangulation_once(
refi_triangulation, ancestors)
refi_npts = refi_triangulation.x.shape[0]
refi_triangles = refi_triangulation.triangles
# Now we compute found_index table if needed
if return_tri_index:
# We have to initialize found_index with -1 because some nodes
# may very well belong to no triangle at all, e.g., in case of
# Delaunay Triangulation with DuplicatePointWarning.
found_index = np.full(refi_npts, -1, dtype=np.int32)
tri_mask = self._triangulation.mask
if tri_mask is None:
found_index[refi_triangles] = np.repeat(ancestors,
3).reshape(-1, 3)
else:
# There is a subtlety here: we want to avoid whenever possible
# that refined points container is a masked triangle (which
# would result in artifacts in plots).
# So we impose the numbering from masked ancestors first,
# then overwrite it with unmasked ancestor numbers.
ancestor_mask = tri_mask[ancestors]
found_index[refi_triangles[ancestor_mask, :]
] = np.repeat(ancestors[ancestor_mask],
3).reshape(-1, 3)
found_index[refi_triangles[~ancestor_mask, :]
] = np.repeat(ancestors[~ancestor_mask],
3).reshape(-1, 3)
return refi_triangulation, found_index
else:
return refi_triangulation
def refine_field(self, z, triinterpolator=None, subdiv=3):
"""
Refine a field defined on the encapsulated triangulation.
Parameters
----------
z : 1d-array-like of length ``n_points``
Values of the field to refine, defined at the nodes of the
encapsulated triangulation. (``n_points`` is the number of points
in the initial triangulation)
triinterpolator : `~matplotlib.tri.TriInterpolator`, optional
Interpolator used for field interpolation. If not specified,
a `~matplotlib.tri.CubicTriInterpolator` will be used.
subdiv : int, default: 3
Recursion level for the subdivision.
Each triangle is divided into ``4**subdiv`` child triangles.
Returns
-------
refi_tri : `~matplotlib.tri.Triangulation`
The returned refined triangulation.
refi_z : 1d array of length: *refi_tri* node count.
The returned interpolated field (at *refi_tri* nodes).
"""
if triinterpolator is None:
interp = matplotlib.tri.CubicTriInterpolator(
self._triangulation, z)
else:
cbook._check_isinstance(matplotlib.tri.TriInterpolator,
triinterpolator=triinterpolator)
interp = triinterpolator
refi_tri, found_index = self.refine_triangulation(
subdiv=subdiv, return_tri_index=True)
refi_z = interp._interpolate_multikeys(
refi_tri.x, refi_tri.y, tri_index=found_index)[0]
return refi_tri, refi_z
@staticmethod
def _refine_triangulation_once(triangulation, ancestors=None):
"""
Refine a `.Triangulation` by splitting each triangle into 4
child-masked_triangles built on the edges midside nodes.
Masked triangles, if present, are also split, but their children
returned masked.
If *ancestors* is not provided, returns only a new triangulation:
child_triangulation.
If the array-like key table *ancestor* is given, it shall be of shape
(ntri,) where ntri is the number of *triangulation* masked_triangles.
In this case, the function returns
(child_triangulation, child_ancestors)
child_ancestors is defined so that the 4 child masked_triangles share
the same index as their father: child_ancestors.shape = (4 * ntri,).
"""
x = triangulation.x
y = triangulation.y
# According to tri.triangulation doc:
# neighbors[i, j] is the triangle that is the neighbor
# to the edge from point index masked_triangles[i, j] to point
# index masked_triangles[i, (j+1)%3].
neighbors = triangulation.neighbors
triangles = triangulation.triangles
npts = np.shape(x)[0]
ntri = np.shape(triangles)[0]
if ancestors is not None:
ancestors = np.asarray(ancestors)
if np.shape(ancestors) != (ntri,):
raise ValueError(
"Incompatible shapes provide for triangulation"
".masked_triangles and ancestors: {0} and {1}".format(
np.shape(triangles), np.shape(ancestors)))
# Initiating tables refi_x and refi_y of the refined triangulation
# points
# hint: each apex is shared by 2 masked_triangles except the borders.
borders = np.sum(neighbors == -1)
added_pts = (3*ntri + borders) // 2
refi_npts = npts + added_pts
refi_x = np.zeros(refi_npts)
refi_y = np.zeros(refi_npts)
# First part of refi_x, refi_y is just the initial points
refi_x[:npts] = x
refi_y[:npts] = y
# Second part contains the edge midside nodes.
# Each edge belongs to 1 triangle (if border edge) or is shared by 2
# masked_triangles (interior edge).
# We first build 2 * ntri arrays of edge starting nodes (edge_elems,
# edge_apexes); we then extract only the masters to avoid overlaps.
# The so-called 'master' is the triangle with biggest index
# The 'slave' is the triangle with lower index
# (can be -1 if border edge)
# For slave and master we will identify the apex pointing to the edge
# start
edge_elems = np.tile(np.arange(ntri, dtype=np.int32), 3)
edge_apexes = np.repeat(np.arange(3, dtype=np.int32), ntri)
edge_neighbors = neighbors[edge_elems, edge_apexes]
mask_masters = (edge_elems > edge_neighbors)
# Identifying the "masters" and adding to refi_x, refi_y vec
masters = edge_elems[mask_masters]
apex_masters = edge_apexes[mask_masters]
x_add = (x[triangles[masters, apex_masters]] +
x[triangles[masters, (apex_masters+1) % 3]]) * 0.5
y_add = (y[triangles[masters, apex_masters]] +
y[triangles[masters, (apex_masters+1) % 3]]) * 0.5
refi_x[npts:] = x_add
refi_y[npts:] = y_add
# Building the new masked_triangles; each old masked_triangles hosts
# 4 new masked_triangles
# there are 6 pts to identify per 'old' triangle, 3 new_pt_corner and
# 3 new_pt_midside
new_pt_corner = triangles
# What is the index in refi_x, refi_y of point at middle of apex iapex
# of elem ielem ?
# If ielem is the apex master: simple count, given the way refi_x was
# built.
# If ielem is the apex slave: yet we do not know; but we will soon
# using the neighbors table.
new_pt_midside = np.empty([ntri, 3], dtype=np.int32)
cum_sum = npts
for imid in range(3):
mask_st_loc = (imid == apex_masters)
n_masters_loc = np.sum(mask_st_loc)
elem_masters_loc = masters[mask_st_loc]
new_pt_midside[:, imid][elem_masters_loc] = np.arange(
n_masters_loc, dtype=np.int32) + cum_sum
cum_sum += n_masters_loc
# Now dealing with slave elems.
# for each slave element we identify the master and then the inode
# once slave_masters is identified, slave_masters_apex is such that:
# neighbors[slaves_masters, slave_masters_apex] == slaves
mask_slaves = np.logical_not(mask_masters)
slaves = edge_elems[mask_slaves]
slaves_masters = edge_neighbors[mask_slaves]
diff_table = np.abs(neighbors[slaves_masters, :] -
np.outer(slaves, np.ones(3, dtype=np.int32)))
slave_masters_apex = np.argmin(diff_table, axis=1)
slaves_apex = edge_apexes[mask_slaves]
new_pt_midside[slaves, slaves_apex] = new_pt_midside[
slaves_masters, slave_masters_apex]
# Builds the 4 child masked_triangles
child_triangles = np.empty([ntri*4, 3], dtype=np.int32)
child_triangles[0::4, :] = np.vstack([
new_pt_corner[:, 0], new_pt_midside[:, 0],
new_pt_midside[:, 2]]).T
child_triangles[1::4, :] = np.vstack([
new_pt_corner[:, 1], new_pt_midside[:, 1],
new_pt_midside[:, 0]]).T
child_triangles[2::4, :] = np.vstack([
new_pt_corner[:, 2], new_pt_midside[:, 2],
new_pt_midside[:, 1]]).T
child_triangles[3::4, :] = np.vstack([
new_pt_midside[:, 0], new_pt_midside[:, 1],
new_pt_midside[:, 2]]).T
child_triangulation = Triangulation(refi_x, refi_y, child_triangles)
# Builds the child mask
if triangulation.mask is not None:
child_triangulation.set_mask(np.repeat(triangulation.mask, 4))
if ancestors is None:
return child_triangulation
else:
return child_triangulation, np.repeat(ancestors, 4)