887 lines
35 KiB
Python
887 lines
35 KiB
Python
|
import itertools
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from skimage import restoration, data, color, img_as_float
|
||
|
from skimage.metrics import structural_similarity
|
||
|
from skimage.metrics import peak_signal_noise_ratio
|
||
|
from skimage.restoration._denoise import _wavelet_threshold
|
||
|
import pywt
|
||
|
|
||
|
from skimage._shared import testing
|
||
|
from skimage._shared.testing import (assert_equal, assert_almost_equal,
|
||
|
assert_warns, assert_)
|
||
|
from skimage._shared._warnings import expected_warnings
|
||
|
from distutils.version import LooseVersion as Version
|
||
|
|
||
|
|
||
|
try:
|
||
|
import dask
|
||
|
except ImportError:
|
||
|
DASK_NOT_INSTALLED_WARNING = 'The optional dask dependency is not installed'
|
||
|
else:
|
||
|
DASK_NOT_INSTALLED_WARNING = None
|
||
|
|
||
|
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
|
||
|
astro = img_as_float(data.astronaut()[:128, :128])
|
||
|
astro_gray = color.rgb2gray(astro)
|
||
|
checkerboard_gray = img_as_float(data.checkerboard())
|
||
|
checkerboard = color.gray2rgb(checkerboard_gray)
|
||
|
# versions with one odd-sized dimension
|
||
|
astro_gray_odd = astro_gray[:, :-1]
|
||
|
astro_odd = astro[:, :-1]
|
||
|
|
||
|
|
||
|
def test_denoise_tv_chambolle_2d():
|
||
|
# astronaut image
|
||
|
img = astro_gray.copy()
|
||
|
# add noise to astronaut
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
# clip noise so that it does not exceed allowed range for float images.
|
||
|
img = np.clip(img, 0, 1)
|
||
|
# denoise
|
||
|
denoised_astro = restoration.denoise_tv_chambolle(img, weight=0.1)
|
||
|
# which dtype?
|
||
|
assert_(denoised_astro.dtype in [np.float, np.float32, np.float64])
|
||
|
from scipy import ndimage as ndi
|
||
|
grad = ndi.morphological_gradient(img, size=((3, 3)))
|
||
|
grad_denoised = ndi.morphological_gradient(denoised_astro, size=((3, 3)))
|
||
|
# test if the total variation has decreased
|
||
|
assert_(grad_denoised.dtype == np.float)
|
||
|
assert_(np.sqrt((grad_denoised**2).sum()) < np.sqrt((grad**2).sum()))
|
||
|
|
||
|
|
||
|
def test_denoise_tv_chambolle_multichannel():
|
||
|
denoised0 = restoration.denoise_tv_chambolle(astro[..., 0], weight=0.1)
|
||
|
denoised = restoration.denoise_tv_chambolle(astro, weight=0.1,
|
||
|
multichannel=True)
|
||
|
assert_equal(denoised[..., 0], denoised0)
|
||
|
|
||
|
# tile astronaut subset to generate 3D+channels data
|
||
|
astro3 = np.tile(astro[:64, :64, np.newaxis, :], [1, 1, 2, 1])
|
||
|
# modify along tiled dimension to give non-zero gradient on 3rd axis
|
||
|
astro3[:, :, 0, :] = 2*astro3[:, :, 0, :]
|
||
|
denoised0 = restoration.denoise_tv_chambolle(astro3[..., 0], weight=0.1)
|
||
|
denoised = restoration.denoise_tv_chambolle(astro3, weight=0.1,
|
||
|
multichannel=True)
|
||
|
assert_equal(denoised[..., 0], denoised0)
|
||
|
|
||
|
|
||
|
def test_denoise_tv_chambolle_float_result_range():
|
||
|
# astronaut image
|
||
|
img = astro_gray
|
||
|
int_astro = np.multiply(img, 255).astype(np.uint8)
|
||
|
assert_(np.max(int_astro) > 1)
|
||
|
denoised_int_astro = restoration.denoise_tv_chambolle(int_astro,
|
||
|
weight=0.1)
|
||
|
# test if the value range of output float data is within [0.0:1.0]
|
||
|
assert_(denoised_int_astro.dtype == np.float)
|
||
|
assert_(np.max(denoised_int_astro) <= 1.0)
|
||
|
assert_(np.min(denoised_int_astro) >= 0.0)
|
||
|
|
||
|
|
||
|
def test_denoise_tv_chambolle_3d():
|
||
|
"""Apply the TV denoising algorithm on a 3D image representing a sphere."""
|
||
|
x, y, z = np.ogrid[0:40, 0:40, 0:40]
|
||
|
mask = (x - 22)**2 + (y - 20)**2 + (z - 17)**2 < 8**2
|
||
|
mask = 100 * mask.astype(np.float)
|
||
|
mask += 60
|
||
|
mask += 20 * np.random.rand(*mask.shape)
|
||
|
mask[mask < 0] = 0
|
||
|
mask[mask > 255] = 255
|
||
|
res = restoration.denoise_tv_chambolle(mask.astype(np.uint8), weight=0.1)
|
||
|
assert_(res.dtype == np.float)
|
||
|
assert_(res.std() * 255 < mask.std())
|
||
|
|
||
|
|
||
|
def test_denoise_tv_chambolle_1d():
|
||
|
"""Apply the TV denoising algorithm on a 1D sinusoid."""
|
||
|
x = 125 + 100*np.sin(np.linspace(0, 8*np.pi, 1000))
|
||
|
x += 20 * np.random.rand(x.size)
|
||
|
x = np.clip(x, 0, 255)
|
||
|
res = restoration.denoise_tv_chambolle(x.astype(np.uint8), weight=0.1)
|
||
|
assert_(res.dtype == np.float)
|
||
|
assert_(res.std() * 255 < x.std())
|
||
|
|
||
|
|
||
|
def test_denoise_tv_chambolle_4d():
|
||
|
""" TV denoising for a 4D input."""
|
||
|
im = 255 * np.random.rand(8, 8, 8, 8)
|
||
|
res = restoration.denoise_tv_chambolle(im.astype(np.uint8), weight=0.1)
|
||
|
assert_(res.dtype == np.float)
|
||
|
assert_(res.std() * 255 < im.std())
|
||
|
|
||
|
|
||
|
def test_denoise_tv_chambolle_weighting():
|
||
|
# make sure a specified weight gives consistent results regardless of
|
||
|
# the number of input image dimensions
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
img2d = astro_gray.copy()
|
||
|
img2d += 0.15 * rstate.standard_normal(img2d.shape)
|
||
|
img2d = np.clip(img2d, 0, 1)
|
||
|
|
||
|
# generate 4D image by tiling
|
||
|
img4d = np.tile(img2d[..., None, None], (1, 1, 2, 2))
|
||
|
|
||
|
w = 0.2
|
||
|
denoised_2d = restoration.denoise_tv_chambolle(img2d, weight=w)
|
||
|
denoised_4d = restoration.denoise_tv_chambolle(img4d, weight=w)
|
||
|
assert_(structural_similarity(denoised_2d,
|
||
|
denoised_4d[:, :, 0, 0]) > 0.99)
|
||
|
|
||
|
|
||
|
def test_denoise_tv_bregman_2d():
|
||
|
img = checkerboard_gray.copy()
|
||
|
# add some random noise
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
img = np.clip(img, 0, 1)
|
||
|
|
||
|
out1 = restoration.denoise_tv_bregman(img, weight=10)
|
||
|
out2 = restoration.denoise_tv_bregman(img, weight=5)
|
||
|
|
||
|
# make sure noise is reduced in the checkerboard cells
|
||
|
assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
|
||
|
assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
|
||
|
|
||
|
|
||
|
def test_denoise_tv_bregman_float_result_range():
|
||
|
# astronaut image
|
||
|
img = astro_gray.copy()
|
||
|
int_astro = np.multiply(img, 255).astype(np.uint8)
|
||
|
assert_(np.max(int_astro) > 1)
|
||
|
denoised_int_astro = restoration.denoise_tv_bregman(int_astro, weight=60.0)
|
||
|
# test if the value range of output float data is within [0.0:1.0]
|
||
|
assert_(denoised_int_astro.dtype == np.float)
|
||
|
assert_(np.max(denoised_int_astro) <= 1.0)
|
||
|
assert_(np.min(denoised_int_astro) >= 0.0)
|
||
|
|
||
|
|
||
|
def test_denoise_tv_bregman_3d():
|
||
|
img = checkerboard.copy()
|
||
|
# add some random noise
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
img = np.clip(img, 0, 1)
|
||
|
|
||
|
out1 = restoration.denoise_tv_bregman(img, weight=10)
|
||
|
out2 = restoration.denoise_tv_bregman(img, weight=5)
|
||
|
|
||
|
# make sure noise is reduced in the checkerboard cells
|
||
|
assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
|
||
|
assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
|
||
|
|
||
|
|
||
|
def test_denoise_tv_bregman_3d_multichannel():
|
||
|
img_astro = astro.copy()
|
||
|
denoised0 = restoration.denoise_tv_bregman(img_astro[..., 0], weight=60.0)
|
||
|
denoised = restoration.denoise_tv_bregman(img_astro, weight=60.0,
|
||
|
multichannel=True)
|
||
|
|
||
|
assert_equal(denoised0, denoised[..., 0])
|
||
|
|
||
|
|
||
|
def test_denoise_tv_bregman_multichannel():
|
||
|
img = checkerboard_gray.copy()[:50, :50]
|
||
|
# add some random noise
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
img = np.clip(img, 0, 1)
|
||
|
|
||
|
out1 = restoration.denoise_tv_bregman(img, weight=60.0)
|
||
|
out2 = restoration.denoise_tv_bregman(img, weight=60.0, multichannel=True)
|
||
|
|
||
|
assert_equal(out1, out2)
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_2d():
|
||
|
img = checkerboard_gray.copy()[:50, :50]
|
||
|
# add some random noise
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
img = np.clip(img, 0, 1)
|
||
|
|
||
|
out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
|
||
|
sigma_spatial=10, multichannel=False)
|
||
|
out2 = restoration.denoise_bilateral(img, sigma_color=0.2,
|
||
|
sigma_spatial=20, multichannel=False)
|
||
|
|
||
|
# make sure noise is reduced in the checkerboard cells
|
||
|
assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
|
||
|
assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_pad():
|
||
|
"""This test checks if the bilateral filter is returning an image
|
||
|
correctly padded."""
|
||
|
img = img_as_float(data.chelsea())[100:200, 100:200]
|
||
|
img_bil = restoration.denoise_bilateral(img, sigma_color=0.1,
|
||
|
sigma_spatial=10,
|
||
|
multichannel=True)
|
||
|
condition_padding = np.count_nonzero(np.isclose(img_bil,
|
||
|
0,
|
||
|
atol=0.001))
|
||
|
assert_equal(condition_padding, 0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('dtype', [np.float32, np.double])
|
||
|
def test_denoise_bilateral_types(dtype):
|
||
|
img = checkerboard_gray.copy()[:50, :50]
|
||
|
# add some random noise
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
img = np.clip(img, 0, 1).astype(dtype)
|
||
|
|
||
|
# check that we can process multiple float types
|
||
|
out = restoration.denoise_bilateral(img, sigma_color=0.1,
|
||
|
sigma_spatial=10, multichannel=False)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('dtype', [np.float32, np.double])
|
||
|
def test_denoise_bregman_types(dtype):
|
||
|
img = checkerboard_gray.copy()[:50, :50]
|
||
|
# add some random noise
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
img = np.clip(img, 0, 1).astype(dtype)
|
||
|
|
||
|
# check that we can process multiple float types
|
||
|
out = restoration.denoise_tv_bregman(img, weight=5)
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_zeros():
|
||
|
img = np.zeros((10, 10))
|
||
|
assert_equal(img, restoration.denoise_bilateral(img, multichannel=False))
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_constant():
|
||
|
img = np.ones((10, 10)) * 5
|
||
|
assert_equal(img, restoration.denoise_bilateral(img, multichannel=False))
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_color():
|
||
|
img = checkerboard.copy()[:50, :50]
|
||
|
# add some random noise
|
||
|
img += 0.5 * img.std() * np.random.rand(*img.shape)
|
||
|
img = np.clip(img, 0, 1)
|
||
|
|
||
|
out1 = restoration.denoise_bilateral(img, sigma_color=0.1,
|
||
|
sigma_spatial=10, multichannel=True)
|
||
|
out2 = restoration.denoise_bilateral(img, sigma_color=0.2,
|
||
|
sigma_spatial=20, multichannel=True)
|
||
|
|
||
|
# make sure noise is reduced in the checkerboard cells
|
||
|
assert_(img[30:45, 5:15].std() > out1[30:45, 5:15].std())
|
||
|
assert_(out1[30:45, 5:15].std() > out2[30:45, 5:15].std())
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_3d_grayscale():
|
||
|
img = np.ones((50, 50, 3))
|
||
|
with testing.raises(ValueError):
|
||
|
restoration.denoise_bilateral(img, multichannel=False)
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_3d_multichannel():
|
||
|
img = np.ones((50, 50, 50))
|
||
|
with expected_warnings(["grayscale"]):
|
||
|
result = restoration.denoise_bilateral(img, multichannel=True)
|
||
|
|
||
|
assert_equal(result, img)
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_multidimensional():
|
||
|
img = np.ones((10, 10, 10, 10))
|
||
|
with testing.raises(ValueError):
|
||
|
restoration.denoise_bilateral(img, multichannel=False)
|
||
|
with testing.raises(ValueError):
|
||
|
restoration.denoise_bilateral(img, multichannel=True)
|
||
|
|
||
|
|
||
|
def test_denoise_bilateral_nan():
|
||
|
img = np.full((50, 50), np.NaN)
|
||
|
# This is in fact an optional warning for our test suite.
|
||
|
# Python 3.5 will not trigger a warning.
|
||
|
with expected_warnings([r'invalid|\A\Z']):
|
||
|
out = restoration.denoise_bilateral(img, multichannel=False)
|
||
|
assert_equal(img, out)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('fast_mode', [False, True])
|
||
|
def test_denoise_nl_means_2d(fast_mode):
|
||
|
img = np.zeros((40, 40))
|
||
|
img[10:-10, 10:-10] = 1.
|
||
|
sigma = 0.3
|
||
|
img += sigma * np.random.randn(*img.shape)
|
||
|
img_f32 = img.astype('float32')
|
||
|
for s in [sigma, 0]:
|
||
|
denoised = restoration.denoise_nl_means(img, 7, 5, 0.2,
|
||
|
fast_mode=fast_mode,
|
||
|
multichannel=False,
|
||
|
sigma=s)
|
||
|
# make sure noise is reduced
|
||
|
assert_(img.std() > denoised.std())
|
||
|
|
||
|
denoised_f32 = restoration.denoise_nl_means(img_f32, 7, 5, 0.2,
|
||
|
fast_mode=fast_mode,
|
||
|
multichannel=False,
|
||
|
sigma=s)
|
||
|
# make sure noise is reduced
|
||
|
assert_(img.std() > denoised_f32.std())
|
||
|
|
||
|
# Sheck single precision result
|
||
|
assert np.allclose(denoised_f32, denoised, atol=1e-2)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('fast_mode', [False, True])
|
||
|
@pytest.mark.parametrize('n_channels', [2, 3, 6])
|
||
|
@pytest.mark.parametrize('dtype', ['float64', 'float32'])
|
||
|
def test_denoise_nl_means_2d_multichannel(fast_mode, n_channels, dtype):
|
||
|
# reduce image size because nl means is slow
|
||
|
img = np.copy(astro[:50, :50])
|
||
|
img = np.concatenate((img, ) * 2, ) # 6 channels
|
||
|
img = img.astype(dtype)
|
||
|
|
||
|
# add some random noise
|
||
|
sigma = 0.1
|
||
|
imgn = img + sigma * np.random.standard_normal(img.shape)
|
||
|
imgn = np.clip(imgn, 0, 1)
|
||
|
imgn = imgn.astype(dtype)
|
||
|
|
||
|
for s in [sigma, 0]:
|
||
|
psnr_noisy = peak_signal_noise_ratio(
|
||
|
img[..., :n_channels], imgn[..., :n_channels])
|
||
|
denoised = restoration.denoise_nl_means(imgn[..., :n_channels],
|
||
|
3, 5, h=0.75 * sigma,
|
||
|
fast_mode=fast_mode,
|
||
|
multichannel=True,
|
||
|
sigma=s)
|
||
|
psnr_denoised = peak_signal_noise_ratio(
|
||
|
denoised[..., :n_channels], img[..., :n_channels])
|
||
|
|
||
|
# make sure noise is reduced
|
||
|
assert_(psnr_denoised > psnr_noisy)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('fast_mode', [False, True])
|
||
|
@pytest.mark.parametrize('dtype', ['float64', 'float32'])
|
||
|
def test_denoise_nl_means_3d(fast_mode, dtype):
|
||
|
img = np.zeros((12, 12, 8), dtype=dtype)
|
||
|
img[5:-5, 5:-5, 2:-2] = 1.
|
||
|
sigma = 0.3
|
||
|
imgn = img + sigma * np.random.randn(*img.shape)
|
||
|
imgn = imgn.astype(dtype)
|
||
|
psnr_noisy = peak_signal_noise_ratio(img, imgn)
|
||
|
for s in [sigma, 0]:
|
||
|
denoised = restoration.denoise_nl_means(imgn, 3, 4, h=0.75 * sigma,
|
||
|
fast_mode=fast_mode,
|
||
|
multichannel=False, sigma=s)
|
||
|
# make sure noise is reduced
|
||
|
assert_(peak_signal_noise_ratio(img, denoised) > psnr_noisy)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('fast_mode', [False, True])
|
||
|
@pytest.mark.parametrize('dtype', ['float64', 'float32'])
|
||
|
def test_denoise_nl_means_multichannel(fast_mode, dtype):
|
||
|
# for true 3D data, 3D denoising is better than denoising as 2D+channels
|
||
|
img = np.zeros((13, 10, 8), dtype=dtype)
|
||
|
img[6, 4:6, 2:-2] = 1.
|
||
|
sigma = 0.3
|
||
|
imgn = img + sigma * np.random.randn(*img.shape)
|
||
|
imgn = imgn.astype(dtype)
|
||
|
denoised_wrong_multichannel = restoration.denoise_nl_means(
|
||
|
imgn, 3, 4, 0.6 * sigma, fast_mode=fast_mode, multichannel=True)
|
||
|
denoised_ok_multichannel = restoration.denoise_nl_means(
|
||
|
imgn, 3, 4, 0.6 * sigma, fast_mode=fast_mode, multichannel=False)
|
||
|
psnr_wrong = peak_signal_noise_ratio(img, denoised_wrong_multichannel)
|
||
|
psnr_ok = peak_signal_noise_ratio(img, denoised_ok_multichannel)
|
||
|
assert_(psnr_ok > psnr_wrong)
|
||
|
|
||
|
|
||
|
def test_denoise_nl_means_wrong_dimension():
|
||
|
img = np.zeros((5, 5, 5, 5))
|
||
|
with testing.raises(NotImplementedError):
|
||
|
restoration.denoise_nl_means(img, multichannel=True)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('fast_mode', [False, True])
|
||
|
@pytest.mark.parametrize('dtype', ['float64', 'float32'])
|
||
|
def test_no_denoising_for_small_h(fast_mode, dtype):
|
||
|
img = np.zeros((40, 40))
|
||
|
img[10:-10, 10:-10] = 1.
|
||
|
img += 0.3*np.random.randn(*img.shape)
|
||
|
img = img.astype(dtype)
|
||
|
# very small h should result in no averaging with other patches
|
||
|
denoised = restoration.denoise_nl_means(img, 7, 5, 0.01,
|
||
|
fast_mode=fast_mode,
|
||
|
multichannel=False)
|
||
|
assert_(np.allclose(denoised, img))
|
||
|
denoised = restoration.denoise_nl_means(img, 7, 5, 0.01,
|
||
|
fast_mode=fast_mode,
|
||
|
multichannel=False)
|
||
|
assert_(np.allclose(denoised, img))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('fast_mode', [False, True])
|
||
|
def test_denoise_nl_means_2d_dtype(fast_mode):
|
||
|
img = np.zeros((40, 40), dtype=int)
|
||
|
img_f32 = img.astype('float32')
|
||
|
img_f64 = img.astype('float64')
|
||
|
|
||
|
with expected_warnings(['Image dtype is not float']):
|
||
|
assert restoration.denoise_nl_means(
|
||
|
img, fast_mode=fast_mode).dtype == 'float64'
|
||
|
|
||
|
assert restoration.denoise_nl_means(
|
||
|
img_f32, fast_mode=fast_mode).dtype == img_f32.dtype
|
||
|
|
||
|
assert restoration.denoise_nl_means(
|
||
|
img_f64, fast_mode=fast_mode).dtype == img_f64.dtype
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('fast_mode', [False, True])
|
||
|
def test_denoise_nl_means_3d_dtype(fast_mode):
|
||
|
img = np.zeros((12, 12, 8), dtype=int)
|
||
|
img_f32 = img.astype('float32')
|
||
|
img_f64 = img.astype('float64')
|
||
|
|
||
|
with expected_warnings(['Image dtype is not float']):
|
||
|
assert restoration.denoise_nl_means(
|
||
|
img, patch_distance=2, fast_mode=fast_mode).dtype == 'float64'
|
||
|
|
||
|
assert restoration.denoise_nl_means(
|
||
|
img_f32, patch_distance=2, fast_mode=fast_mode).dtype == img_f32.dtype
|
||
|
|
||
|
assert restoration.denoise_nl_means(
|
||
|
img_f64, patch_distance=2, fast_mode=fast_mode).dtype == img_f64.dtype
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'img, multichannel, convert2ycbcr',
|
||
|
[(astro_gray, False, False),
|
||
|
(astro_gray_odd, False, False),
|
||
|
(astro_odd, True, False),
|
||
|
(astro_odd, True, True)]
|
||
|
)
|
||
|
def test_wavelet_denoising(img, multichannel, convert2ycbcr):
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
sigma = 0.1
|
||
|
noisy = img + sigma * rstate.randn(*(img.shape))
|
||
|
noisy = np.clip(noisy, 0, 1)
|
||
|
|
||
|
# Verify that SNR is improved when true sigma is used
|
||
|
denoised = restoration.denoise_wavelet(noisy, sigma=sigma,
|
||
|
multichannel=multichannel,
|
||
|
convert2ycbcr=convert2ycbcr,
|
||
|
rescale_sigma=True)
|
||
|
psnr_noisy = peak_signal_noise_ratio(img, noisy)
|
||
|
psnr_denoised = peak_signal_noise_ratio(img, denoised)
|
||
|
assert_(psnr_denoised > psnr_noisy)
|
||
|
|
||
|
# Verify that SNR is improved with internally estimated sigma
|
||
|
denoised = restoration.denoise_wavelet(noisy,
|
||
|
multichannel=multichannel,
|
||
|
convert2ycbcr=convert2ycbcr,
|
||
|
rescale_sigma=True)
|
||
|
psnr_noisy = peak_signal_noise_ratio(img, noisy)
|
||
|
psnr_denoised = peak_signal_noise_ratio(img, denoised)
|
||
|
assert_(psnr_denoised > psnr_noisy)
|
||
|
|
||
|
# SNR is improved less with 1 wavelet level than with the default.
|
||
|
denoised_1 = restoration.denoise_wavelet(noisy,
|
||
|
multichannel=multichannel,
|
||
|
wavelet_levels=1,
|
||
|
convert2ycbcr=convert2ycbcr,
|
||
|
rescale_sigma=True)
|
||
|
psnr_denoised_1 = peak_signal_noise_ratio(img, denoised_1)
|
||
|
assert_(psnr_denoised > psnr_denoised_1)
|
||
|
assert_(psnr_denoised_1 > psnr_noisy)
|
||
|
|
||
|
# Test changing noise_std (higher threshold, so less energy in signal)
|
||
|
res1 = restoration.denoise_wavelet(noisy, sigma=2 * sigma,
|
||
|
multichannel=multichannel,
|
||
|
rescale_sigma=True)
|
||
|
res2 = restoration.denoise_wavelet(noisy, sigma=sigma,
|
||
|
multichannel=multichannel,
|
||
|
rescale_sigma=True)
|
||
|
assert_(np.sum(res1**2) <= np.sum(res2**2))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'case, dtype, convert2ycbcr, estimate_sigma',
|
||
|
itertools.product(
|
||
|
['1d', '2d multichannel'],
|
||
|
[np.float16, np.float32, np.float64, np.int16, np.uint8],
|
||
|
[True, False],
|
||
|
[True, False])
|
||
|
)
|
||
|
def test_wavelet_denoising_scaling(case, dtype, convert2ycbcr,
|
||
|
estimate_sigma):
|
||
|
"""Test cases for images without prescaling via img_as_float."""
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
|
||
|
if case == '1d':
|
||
|
# 1D single-channel in range [0, 255]
|
||
|
x = np.linspace(0, 255, 1024)
|
||
|
elif case == '2d multichannel':
|
||
|
# 2D multichannel in range [0, 255]
|
||
|
x = data.astronaut()[:64, :64]
|
||
|
x = x.astype(dtype)
|
||
|
|
||
|
# add noise and clip to original signal range
|
||
|
sigma = 25.
|
||
|
noisy = x + sigma * rstate.randn(*x.shape)
|
||
|
noisy = np.clip(noisy, x.min(), x.max())
|
||
|
noisy = noisy.astype(x.dtype)
|
||
|
|
||
|
multichannel = x.shape[-1] == 3
|
||
|
|
||
|
if estimate_sigma:
|
||
|
sigma_est = restoration.estimate_sigma(noisy,
|
||
|
multichannel=multichannel)
|
||
|
else:
|
||
|
sigma_est = None
|
||
|
|
||
|
if convert2ycbcr and not multichannel:
|
||
|
# YCbCr requires multichannel == True
|
||
|
with testing.raises(ValueError):
|
||
|
denoised = restoration.denoise_wavelet(noisy,
|
||
|
sigma=sigma_est,
|
||
|
wavelet='sym4',
|
||
|
multichannel=multichannel,
|
||
|
convert2ycbcr=convert2ycbcr,
|
||
|
rescale_sigma=True)
|
||
|
return
|
||
|
|
||
|
denoised = restoration.denoise_wavelet(noisy, sigma=sigma_est,
|
||
|
wavelet='sym4',
|
||
|
multichannel=multichannel,
|
||
|
convert2ycbcr=convert2ycbcr,
|
||
|
rescale_sigma=True)
|
||
|
|
||
|
data_range = x.max() - x.min()
|
||
|
psnr_noisy = peak_signal_noise_ratio(x, noisy, data_range=data_range)
|
||
|
clipped = np.dtype(dtype).kind != 'f'
|
||
|
if not clipped:
|
||
|
psnr_denoised = peak_signal_noise_ratio(x, denoised,
|
||
|
data_range=data_range)
|
||
|
|
||
|
# output's max value is not substantially smaller than x's
|
||
|
assert_(denoised.max() > 0.9 * x.max())
|
||
|
else:
|
||
|
# have to compare to x_as_float in integer input cases
|
||
|
x_as_float = img_as_float(x)
|
||
|
f_data_range = x_as_float.max() - x_as_float.min()
|
||
|
psnr_denoised = peak_signal_noise_ratio(x_as_float, denoised,
|
||
|
data_range=f_data_range)
|
||
|
|
||
|
# output has been clipped to expected range
|
||
|
assert_(denoised.max() <= 1.0)
|
||
|
if np.dtype(dtype).kind == 'u':
|
||
|
assert_(denoised.min() >= 0)
|
||
|
else:
|
||
|
assert_(denoised.min() >= -1)
|
||
|
|
||
|
assert_(psnr_denoised > psnr_noisy)
|
||
|
|
||
|
|
||
|
def test_wavelet_threshold():
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
|
||
|
img = astro_gray
|
||
|
sigma = 0.1
|
||
|
noisy = img + sigma * rstate.randn(*(img.shape))
|
||
|
noisy = np.clip(noisy, 0, 1)
|
||
|
|
||
|
# employ a single, user-specified threshold instead of BayesShrink sigmas
|
||
|
denoised = _wavelet_threshold(noisy, wavelet='db1', method=None,
|
||
|
threshold=sigma)
|
||
|
psnr_noisy = peak_signal_noise_ratio(img, noisy)
|
||
|
psnr_denoised = peak_signal_noise_ratio(img, denoised)
|
||
|
assert_(psnr_denoised > psnr_noisy)
|
||
|
|
||
|
# either method or threshold must be defined
|
||
|
with testing.raises(ValueError):
|
||
|
_wavelet_threshold(noisy, wavelet='db1', method=None, threshold=None)
|
||
|
|
||
|
# warns if a threshold is provided in a case where it would be ignored
|
||
|
with expected_warnings(["Thresholding method ",]):
|
||
|
_wavelet_threshold(noisy, wavelet='db1', method='BayesShrink',
|
||
|
threshold=sigma)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'rescale_sigma, method, ndim',
|
||
|
itertools.product(
|
||
|
[True, False],
|
||
|
['VisuShrink', 'BayesShrink'],
|
||
|
range(1, 5)
|
||
|
)
|
||
|
)
|
||
|
def test_wavelet_denoising_nd(rescale_sigma, method, ndim):
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
# Generate a very simple test image
|
||
|
if ndim < 3:
|
||
|
img = 0.2*np.ones((128, )*ndim)
|
||
|
else:
|
||
|
img = 0.2*np.ones((16, )*ndim)
|
||
|
img[(slice(5, 13), ) * ndim] = 0.8
|
||
|
|
||
|
sigma = 0.1
|
||
|
noisy = img + sigma * rstate.randn(*(img.shape))
|
||
|
noisy = np.clip(noisy, 0, 1)
|
||
|
|
||
|
# Mark H. 2018.08:
|
||
|
# The issue arises because when ndim in [1, 2]
|
||
|
# ``waverecn`` calls ``_match_coeff_dims``
|
||
|
# Which includes a numpy 1.15 deprecation.
|
||
|
# for larger number of dimensions _match_coeff_dims isn't called
|
||
|
# for some reason.
|
||
|
# Verify that SNR is improved with internally estimated sigma
|
||
|
denoised = restoration.denoise_wavelet(
|
||
|
noisy, method=method,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
psnr_noisy = peak_signal_noise_ratio(img, noisy)
|
||
|
psnr_denoised = peak_signal_noise_ratio(img, denoised)
|
||
|
assert_(psnr_denoised > psnr_noisy)
|
||
|
|
||
|
|
||
|
def test_wavelet_invalid_method():
|
||
|
with testing.raises(ValueError):
|
||
|
restoration.denoise_wavelet(np.ones(16), method='Unimplemented',
|
||
|
rescale_sigma=True)
|
||
|
|
||
|
|
||
|
def test_wavelet_rescale_sigma_deprecation():
|
||
|
# No specifying rescale_sigma results in a DeprecationWarning
|
||
|
assert_warns(FutureWarning, restoration.denoise_wavelet, np.ones(16))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('rescale_sigma', [True, False])
|
||
|
def test_wavelet_denoising_levels(rescale_sigma):
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
ndim = 2
|
||
|
N = 256
|
||
|
wavelet = 'db1'
|
||
|
# Generate a very simple test image
|
||
|
img = 0.2*np.ones((N, )*ndim)
|
||
|
img[(slice(5, 13), ) * ndim] = 0.8
|
||
|
|
||
|
sigma = 0.1
|
||
|
noisy = img + sigma * rstate.randn(*(img.shape))
|
||
|
noisy = np.clip(noisy, 0, 1)
|
||
|
|
||
|
denoised = restoration.denoise_wavelet(noisy, wavelet=wavelet,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
denoised_1 = restoration.denoise_wavelet(noisy, wavelet=wavelet,
|
||
|
wavelet_levels=1,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
psnr_noisy = peak_signal_noise_ratio(img, noisy)
|
||
|
psnr_denoised = peak_signal_noise_ratio(img, denoised)
|
||
|
psnr_denoised_1 = peak_signal_noise_ratio(img, denoised_1)
|
||
|
|
||
|
# multi-level case should outperform single level case
|
||
|
assert_(psnr_denoised > psnr_denoised_1 > psnr_noisy)
|
||
|
|
||
|
# invalid number of wavelet levels results in a ValueError or UserWarning
|
||
|
max_level = pywt.dwt_max_level(np.min(img.shape),
|
||
|
pywt.Wavelet(wavelet).dec_len)
|
||
|
# exceeding max_level raises a UserWarning in PyWavelets >= 1.0.0
|
||
|
with expected_warnings([
|
||
|
'all coefficients will experience boundary effects']):
|
||
|
restoration.denoise_wavelet(
|
||
|
noisy, wavelet=wavelet, wavelet_levels=max_level + 1,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
|
||
|
with testing.raises(ValueError):
|
||
|
restoration.denoise_wavelet(
|
||
|
noisy,
|
||
|
wavelet=wavelet, wavelet_levels=-1,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
|
||
|
|
||
|
def test_estimate_sigma_gray():
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
# astronaut image
|
||
|
img = astro_gray.copy()
|
||
|
sigma = 0.1
|
||
|
# add noise to astronaut
|
||
|
img += sigma * rstate.standard_normal(img.shape)
|
||
|
|
||
|
sigma_est = restoration.estimate_sigma(img, multichannel=False)
|
||
|
assert_almost_equal(sigma, sigma_est, decimal=2)
|
||
|
|
||
|
|
||
|
def test_estimate_sigma_masked_image():
|
||
|
# Verify computation on an image with a large, noise-free border.
|
||
|
# (zero regions will be masked out by _sigma_est_dwt to avoid returning
|
||
|
# sigma = 0)
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
# uniform image
|
||
|
img = np.zeros((128, 128))
|
||
|
center_roi = (slice(32, 96), slice(32, 96))
|
||
|
img[center_roi] = 0.8
|
||
|
sigma = 0.1
|
||
|
|
||
|
img[center_roi] = sigma * rstate.standard_normal(img[center_roi].shape)
|
||
|
|
||
|
sigma_est = restoration.estimate_sigma(img, multichannel=False)
|
||
|
assert_almost_equal(sigma, sigma_est, decimal=1)
|
||
|
|
||
|
|
||
|
def test_estimate_sigma_color():
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
# astronaut image
|
||
|
img = astro.copy()
|
||
|
sigma = 0.1
|
||
|
# add noise to astronaut
|
||
|
img += sigma * rstate.standard_normal(img.shape)
|
||
|
|
||
|
sigma_est = restoration.estimate_sigma(img, multichannel=True,
|
||
|
average_sigmas=True)
|
||
|
assert_almost_equal(sigma, sigma_est, decimal=2)
|
||
|
|
||
|
sigma_list = restoration.estimate_sigma(img, multichannel=True,
|
||
|
average_sigmas=False)
|
||
|
assert_equal(len(sigma_list), img.shape[-1])
|
||
|
assert_almost_equal(sigma_list[0], sigma_est, decimal=2)
|
||
|
|
||
|
# default multichannel=False should raise a warning about last axis size
|
||
|
assert_warns(UserWarning, restoration.estimate_sigma, img)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('rescale_sigma', [True, False])
|
||
|
def test_wavelet_denoising_args(rescale_sigma):
|
||
|
"""
|
||
|
Some of the functions inside wavelet denoising throw an error the wrong
|
||
|
arguments are passed. This protects against that and verifies that all
|
||
|
arguments can be passed.
|
||
|
"""
|
||
|
img = astro
|
||
|
noisy = img.copy() + 0.1 * np.random.randn(*(img.shape))
|
||
|
|
||
|
for convert2ycbcr in [True, False]:
|
||
|
for multichannel in [True, False]:
|
||
|
if convert2ycbcr and not multichannel:
|
||
|
with testing.raises(ValueError):
|
||
|
restoration.denoise_wavelet(noisy,
|
||
|
convert2ycbcr=convert2ycbcr,
|
||
|
multichannel=multichannel,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
continue
|
||
|
for sigma in [0.1, [0.1, 0.1, 0.1], None]:
|
||
|
if (not multichannel and not convert2ycbcr) or \
|
||
|
(isinstance(sigma, list) and not multichannel):
|
||
|
continue
|
||
|
restoration.denoise_wavelet(noisy, sigma=sigma,
|
||
|
convert2ycbcr=convert2ycbcr,
|
||
|
multichannel=multichannel,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('rescale_sigma', [True, False])
|
||
|
def test_denoise_wavelet_biorthogonal(rescale_sigma):
|
||
|
"""Biorthogonal wavelets should raise a warning during thresholding."""
|
||
|
img = astro_gray
|
||
|
assert_warns(UserWarning, restoration.denoise_wavelet, img,
|
||
|
wavelet='bior2.2', multichannel=False,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('rescale_sigma', [True, False])
|
||
|
def test_cycle_spinning_multichannel(rescale_sigma):
|
||
|
sigma = 0.1
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
|
||
|
for multichannel in True, False:
|
||
|
if multichannel:
|
||
|
img = astro
|
||
|
# can either omit or be 0 along the channels axis
|
||
|
valid_shifts = [1, (0, 1), (1, 0), (1, 1), (1, 1, 0)]
|
||
|
# can either omit or be 1 on channels axis.
|
||
|
valid_steps = [1, 2, (1, 2), (1, 2, 1)]
|
||
|
# too few or too many shifts or non-zero shift on channels
|
||
|
invalid_shifts = [(1, 1, 2), (1, ), (1, 1, 0, 1)]
|
||
|
# too few or too many shifts or any shifts <= 0
|
||
|
invalid_steps = [(1, ), (1, 1, 1, 1), (0, 1), (-1, -1)]
|
||
|
else:
|
||
|
img = astro_gray
|
||
|
valid_shifts = [1, (0, 1), (1, 0), (1, 1)]
|
||
|
valid_steps = [1, 2, (1, 2)]
|
||
|
invalid_shifts = [(1, 1, 2), (1, )]
|
||
|
invalid_steps = [(1, ), (1, 1, 1), (0, 1), (-1, -1)]
|
||
|
|
||
|
noisy = img.copy() + 0.1 * rstate.randn(*(img.shape))
|
||
|
|
||
|
denoise_func = restoration.denoise_wavelet
|
||
|
func_kw = dict(sigma=sigma, multichannel=multichannel,
|
||
|
rescale_sigma=rescale_sigma)
|
||
|
|
||
|
# max_shifts=0 is equivalent to just calling denoise_func
|
||
|
with expected_warnings([DASK_NOT_INSTALLED_WARNING]):
|
||
|
dn_cc = restoration.cycle_spin(noisy, denoise_func, max_shifts=0,
|
||
|
func_kw=func_kw,
|
||
|
multichannel=multichannel)
|
||
|
dn = denoise_func(noisy, **func_kw)
|
||
|
assert_equal(dn, dn_cc)
|
||
|
|
||
|
# denoising with cycle spinning will give better PSNR than without
|
||
|
for max_shifts in valid_shifts:
|
||
|
with expected_warnings([DASK_NOT_INSTALLED_WARNING]):
|
||
|
dn_cc = restoration.cycle_spin(noisy, denoise_func,
|
||
|
max_shifts=max_shifts,
|
||
|
func_kw=func_kw,
|
||
|
multichannel=multichannel)
|
||
|
psnr = peak_signal_noise_ratio(img, dn)
|
||
|
psnr_cc = peak_signal_noise_ratio(img, dn_cc)
|
||
|
assert_(psnr_cc > psnr)
|
||
|
|
||
|
for shift_steps in valid_steps:
|
||
|
with expected_warnings([DASK_NOT_INSTALLED_WARNING]):
|
||
|
dn_cc = restoration.cycle_spin(noisy, denoise_func,
|
||
|
max_shifts=2,
|
||
|
shift_steps=shift_steps,
|
||
|
func_kw=func_kw,
|
||
|
multichannel=multichannel)
|
||
|
psnr = peak_signal_noise_ratio(img, dn)
|
||
|
psnr_cc = peak_signal_noise_ratio(img, dn_cc)
|
||
|
assert_(psnr_cc > psnr)
|
||
|
|
||
|
for max_shifts in invalid_shifts:
|
||
|
with testing.raises(ValueError):
|
||
|
dn_cc = restoration.cycle_spin(noisy, denoise_func,
|
||
|
max_shifts=max_shifts,
|
||
|
func_kw=func_kw,
|
||
|
multichannel=multichannel)
|
||
|
for shift_steps in invalid_steps:
|
||
|
with testing.raises(ValueError):
|
||
|
dn_cc = restoration.cycle_spin(noisy, denoise_func,
|
||
|
max_shifts=2,
|
||
|
shift_steps=shift_steps,
|
||
|
func_kw=func_kw,
|
||
|
multichannel=multichannel)
|
||
|
|
||
|
|
||
|
def test_cycle_spinning_num_workers():
|
||
|
img = astro_gray
|
||
|
sigma = 0.1
|
||
|
rstate = np.random.RandomState(1234)
|
||
|
noisy = img.copy() + 0.1 * rstate.randn(*(img.shape))
|
||
|
|
||
|
denoise_func = restoration.denoise_wavelet
|
||
|
func_kw = dict(sigma=sigma, multichannel=True, rescale_sigma=True)
|
||
|
|
||
|
# same results are expected whether using 1 worker or multiple workers
|
||
|
dn_cc1 = restoration.cycle_spin(noisy, denoise_func, max_shifts=1,
|
||
|
func_kw=func_kw, multichannel=False,
|
||
|
num_workers=1)
|
||
|
with expected_warnings([DASK_NOT_INSTALLED_WARNING,]):
|
||
|
dn_cc2 = restoration.cycle_spin(noisy, denoise_func, max_shifts=1,
|
||
|
func_kw=func_kw, multichannel=False,
|
||
|
num_workers=4)
|
||
|
dn_cc3 = restoration.cycle_spin(noisy, denoise_func, max_shifts=1,
|
||
|
func_kw=func_kw, multichannel=False,
|
||
|
num_workers=None)
|
||
|
assert_almost_equal(dn_cc1, dn_cc2)
|
||
|
assert_almost_equal(dn_cc1, dn_cc3)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
testing.run_module_suite()
|