114 lines
3.7 KiB
Python
114 lines
3.7 KiB
Python
|
import sys
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_array_almost_equal
|
||
|
import matplotlib.pyplot as plt
|
||
|
from matplotlib.testing.decorators import image_comparison
|
||
|
import matplotlib.transforms as mtransforms
|
||
|
|
||
|
|
||
|
on_win = (sys.platform == 'win32')
|
||
|
on_mac = (sys.platform == 'darwin')
|
||
|
|
||
|
|
||
|
def velocity_field():
|
||
|
Y, X = np.mgrid[-3:3:100j, -3:3:100j]
|
||
|
U = -1 - X**2 + Y
|
||
|
V = 1 + X - Y**2
|
||
|
return X, Y, U, V
|
||
|
|
||
|
|
||
|
def swirl_velocity_field():
|
||
|
x = np.linspace(-3., 3., 100)
|
||
|
y = np.linspace(-3., 3., 100)
|
||
|
X, Y = np.meshgrid(x, y)
|
||
|
a = 0.1
|
||
|
U = np.cos(a) * (-Y) - np.sin(a) * X
|
||
|
V = np.sin(a) * (-Y) + np.cos(a) * X
|
||
|
return x, y, U, V
|
||
|
|
||
|
|
||
|
@image_comparison(['streamplot_startpoints'], remove_text=True, style='mpl20')
|
||
|
def test_startpoints():
|
||
|
X, Y, U, V = velocity_field()
|
||
|
start_x = np.linspace(X.min(), X.max(), 10)
|
||
|
start_y = np.linspace(Y.min(), Y.max(), 10)
|
||
|
start_points = np.column_stack([start_x, start_y])
|
||
|
plt.streamplot(X, Y, U, V, start_points=start_points)
|
||
|
plt.plot(start_x, start_y, 'ok')
|
||
|
|
||
|
|
||
|
@image_comparison(['streamplot_colormap'],
|
||
|
tol=.04, remove_text=True, style='mpl20')
|
||
|
def test_colormap():
|
||
|
X, Y, U, V = velocity_field()
|
||
|
plt.streamplot(X, Y, U, V, color=U, density=0.6, linewidth=2,
|
||
|
cmap=plt.cm.autumn)
|
||
|
plt.colorbar()
|
||
|
|
||
|
|
||
|
@image_comparison(['streamplot_linewidth'], remove_text=True, style='mpl20')
|
||
|
def test_linewidth():
|
||
|
X, Y, U, V = velocity_field()
|
||
|
speed = np.hypot(U, V)
|
||
|
lw = 5 * speed / speed.max()
|
||
|
# Compatibility for old test image
|
||
|
df = 25 / 30
|
||
|
ax = plt.figure().subplots()
|
||
|
ax.set(xlim=(-3.0, 2.9999999999999947),
|
||
|
ylim=(-3.0000000000000004, 2.9999999999999947))
|
||
|
ax.streamplot(X, Y, U, V, density=[0.5 * df, 1. * df], color='k',
|
||
|
linewidth=lw)
|
||
|
|
||
|
|
||
|
@image_comparison(['streamplot_masks_and_nans'],
|
||
|
remove_text=True, style='mpl20', tol=0.04 if on_win else 0)
|
||
|
def test_masks_and_nans():
|
||
|
X, Y, U, V = velocity_field()
|
||
|
mask = np.zeros(U.shape, dtype=bool)
|
||
|
mask[40:60, 40:60] = 1
|
||
|
U[:20, :20] = np.nan
|
||
|
U = np.ma.array(U, mask=mask)
|
||
|
# Compatibility for old test image
|
||
|
ax = plt.figure().subplots()
|
||
|
ax.set(xlim=(-3.0, 2.9999999999999947),
|
||
|
ylim=(-3.0000000000000004, 2.9999999999999947))
|
||
|
with np.errstate(invalid='ignore'):
|
||
|
ax.streamplot(X, Y, U, V, color=U, cmap=plt.cm.Blues)
|
||
|
|
||
|
|
||
|
@image_comparison(['streamplot_maxlength.png'],
|
||
|
remove_text=True, style='mpl20',
|
||
|
tol=0.002 if on_mac else 0)
|
||
|
def test_maxlength():
|
||
|
x, y, U, V = swirl_velocity_field()
|
||
|
ax = plt.figure().subplots()
|
||
|
ax.streamplot(x, y, U, V, maxlength=10., start_points=[[0., 1.5]],
|
||
|
linewidth=2, density=2)
|
||
|
assert ax.get_xlim()[-1] == ax.get_ylim()[-1] == 3
|
||
|
# Compatibility for old test image
|
||
|
ax.set(xlim=(None, 3.2555988021882305), ylim=(None, 3.078326760195413))
|
||
|
|
||
|
|
||
|
@image_comparison(['streamplot_direction.png'],
|
||
|
remove_text=True, style='mpl20')
|
||
|
def test_direction():
|
||
|
x, y, U, V = swirl_velocity_field()
|
||
|
plt.streamplot(x, y, U, V, integration_direction='backward',
|
||
|
maxlength=1.5, start_points=[[1.5, 0.]],
|
||
|
linewidth=2, density=2)
|
||
|
|
||
|
|
||
|
def test_streamplot_limits():
|
||
|
ax = plt.axes()
|
||
|
x = np.linspace(-5, 10, 20)
|
||
|
y = np.linspace(-2, 4, 10)
|
||
|
y, x = np.meshgrid(y, x)
|
||
|
trans = mtransforms.Affine2D().translate(25, 32) + ax.transData
|
||
|
plt.barbs(x, y, np.sin(x), np.cos(y), transform=trans)
|
||
|
# The calculated bounds are approximately the bounds of the original data,
|
||
|
# this is because the entire path is taken into account when updating the
|
||
|
# datalim.
|
||
|
assert_array_almost_equal(ax.dataLim.bounds, (20, 30, 15, 6),
|
||
|
decimal=1)
|