1956 lines
75 KiB
Python
1956 lines
75 KiB
Python
|
"""Test the search module"""
|
||
|
|
||
|
from collections.abc import Iterable, Sized
|
||
|
from io import StringIO
|
||
|
from itertools import chain, product
|
||
|
from functools import partial
|
||
|
import pickle
|
||
|
import sys
|
||
|
from types import GeneratorType
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.utils.fixes import sp_version, parse_version
|
||
|
from sklearn.utils._testing import assert_raises
|
||
|
from sklearn.utils._testing import assert_warns
|
||
|
from sklearn.utils._testing import assert_warns_message
|
||
|
from sklearn.utils._testing import assert_raise_message
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.utils._testing import assert_array_almost_equal
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
from sklearn.utils._testing import assert_almost_equal
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
|
||
|
|
||
|
from scipy.stats import bernoulli, expon, uniform
|
||
|
|
||
|
from sklearn.base import BaseEstimator, ClassifierMixin
|
||
|
from sklearn.base import clone
|
||
|
from sklearn.exceptions import NotFittedError
|
||
|
from sklearn.datasets import make_classification
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.datasets import make_multilabel_classification
|
||
|
|
||
|
from sklearn.model_selection import fit_grid_point
|
||
|
from sklearn.model_selection import cross_val_score
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.model_selection import KFold
|
||
|
from sklearn.model_selection import StratifiedKFold
|
||
|
from sklearn.model_selection import StratifiedShuffleSplit
|
||
|
from sklearn.model_selection import LeaveOneGroupOut
|
||
|
from sklearn.model_selection import LeavePGroupsOut
|
||
|
from sklearn.model_selection import GroupKFold
|
||
|
from sklearn.model_selection import GroupShuffleSplit
|
||
|
from sklearn.model_selection import GridSearchCV
|
||
|
from sklearn.model_selection import RandomizedSearchCV
|
||
|
from sklearn.model_selection import ParameterGrid
|
||
|
from sklearn.model_selection import ParameterSampler
|
||
|
from sklearn.model_selection._search import BaseSearchCV
|
||
|
|
||
|
from sklearn.model_selection._validation import FitFailedWarning
|
||
|
|
||
|
from sklearn.svm import LinearSVC, SVC
|
||
|
from sklearn.tree import DecisionTreeRegressor
|
||
|
from sklearn.tree import DecisionTreeClassifier
|
||
|
from sklearn.cluster import KMeans
|
||
|
from sklearn.neighbors import KernelDensity
|
||
|
from sklearn.neighbors import KNeighborsClassifier
|
||
|
from sklearn.metrics import f1_score
|
||
|
from sklearn.metrics import recall_score
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
from sklearn.metrics import make_scorer
|
||
|
from sklearn.metrics import roc_auc_score
|
||
|
from sklearn.metrics.pairwise import euclidean_distances
|
||
|
from sklearn.impute import SimpleImputer
|
||
|
from sklearn.pipeline import Pipeline
|
||
|
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
|
||
|
from sklearn.experimental import enable_hist_gradient_boosting # noqa
|
||
|
from sklearn.ensemble import HistGradientBoostingClassifier
|
||
|
|
||
|
from sklearn.model_selection.tests.common import OneTimeSplitter
|
||
|
|
||
|
|
||
|
# Neither of the following two estimators inherit from BaseEstimator,
|
||
|
# to test hyperparameter search on user-defined classifiers.
|
||
|
class MockClassifier:
|
||
|
"""Dummy classifier to test the parameter search algorithms"""
|
||
|
def __init__(self, foo_param=0):
|
||
|
self.foo_param = foo_param
|
||
|
|
||
|
def fit(self, X, Y):
|
||
|
assert len(X) == len(Y)
|
||
|
self.classes_ = np.unique(Y)
|
||
|
return self
|
||
|
|
||
|
def predict(self, T):
|
||
|
return T.shape[0]
|
||
|
|
||
|
def transform(self, X):
|
||
|
return X + self.foo_param
|
||
|
|
||
|
def inverse_transform(self, X):
|
||
|
return X - self.foo_param
|
||
|
|
||
|
predict_proba = predict
|
||
|
predict_log_proba = predict
|
||
|
decision_function = predict
|
||
|
|
||
|
def score(self, X=None, Y=None):
|
||
|
if self.foo_param > 1:
|
||
|
score = 1.
|
||
|
else:
|
||
|
score = 0.
|
||
|
return score
|
||
|
|
||
|
def get_params(self, deep=False):
|
||
|
return {'foo_param': self.foo_param}
|
||
|
|
||
|
def set_params(self, **params):
|
||
|
self.foo_param = params['foo_param']
|
||
|
return self
|
||
|
|
||
|
|
||
|
class LinearSVCNoScore(LinearSVC):
|
||
|
"""An LinearSVC classifier that has no score method."""
|
||
|
@property
|
||
|
def score(self):
|
||
|
raise AttributeError
|
||
|
|
||
|
|
||
|
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
|
||
|
y = np.array([1, 1, 2, 2])
|
||
|
|
||
|
|
||
|
def assert_grid_iter_equals_getitem(grid):
|
||
|
assert list(grid) == [grid[i] for i in range(len(grid))]
|
||
|
|
||
|
@pytest.mark.parametrize("klass", [ParameterGrid,
|
||
|
partial(ParameterSampler, n_iter=10)])
|
||
|
@pytest.mark.parametrize(
|
||
|
"input, error_type, error_message",
|
||
|
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
|
||
|
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
|
||
|
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
|
||
|
r"\(key='foo', value=0\)")]
|
||
|
)
|
||
|
def test_validate_parameter_input(klass, input, error_type, error_message):
|
||
|
with pytest.raises(error_type, match=error_message):
|
||
|
klass(input)
|
||
|
|
||
|
|
||
|
def test_parameter_grid():
|
||
|
|
||
|
# Test basic properties of ParameterGrid.
|
||
|
params1 = {"foo": [1, 2, 3]}
|
||
|
grid1 = ParameterGrid(params1)
|
||
|
assert isinstance(grid1, Iterable)
|
||
|
assert isinstance(grid1, Sized)
|
||
|
assert len(grid1) == 3
|
||
|
assert_grid_iter_equals_getitem(grid1)
|
||
|
|
||
|
params2 = {"foo": [4, 2],
|
||
|
"bar": ["ham", "spam", "eggs"]}
|
||
|
grid2 = ParameterGrid(params2)
|
||
|
assert len(grid2) == 6
|
||
|
|
||
|
# loop to assert we can iterate over the grid multiple times
|
||
|
for i in range(2):
|
||
|
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
|
||
|
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
|
||
|
assert (points ==
|
||
|
set(("bar", x, "foo", y)
|
||
|
for x, y in product(params2["bar"], params2["foo"])))
|
||
|
assert_grid_iter_equals_getitem(grid2)
|
||
|
|
||
|
# Special case: empty grid (useful to get default estimator settings)
|
||
|
empty = ParameterGrid({})
|
||
|
assert len(empty) == 1
|
||
|
assert list(empty) == [{}]
|
||
|
assert_grid_iter_equals_getitem(empty)
|
||
|
assert_raises(IndexError, lambda: empty[1])
|
||
|
|
||
|
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
|
||
|
assert len(has_empty) == 4
|
||
|
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
|
||
|
assert_grid_iter_equals_getitem(has_empty)
|
||
|
|
||
|
|
||
|
def test_grid_search():
|
||
|
# Test that the best estimator contains the right value for foo_param
|
||
|
clf = MockClassifier()
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
|
||
|
# make sure it selects the smallest parameter in case of ties
|
||
|
old_stdout = sys.stdout
|
||
|
sys.stdout = StringIO()
|
||
|
grid_search.fit(X, y)
|
||
|
sys.stdout = old_stdout
|
||
|
assert grid_search.best_estimator_.foo_param == 2
|
||
|
|
||
|
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
|
||
|
[1, 2, 3])
|
||
|
|
||
|
# Smoke test the score etc:
|
||
|
grid_search.score(X, y)
|
||
|
grid_search.predict_proba(X)
|
||
|
grid_search.decision_function(X)
|
||
|
grid_search.transform(X)
|
||
|
|
||
|
# Test exception handling on scoring
|
||
|
grid_search.scoring = 'sklearn'
|
||
|
assert_raises(ValueError, grid_search.fit, X, y)
|
||
|
|
||
|
|
||
|
def test_grid_search_pipeline_steps():
|
||
|
# check that parameters that are estimators are cloned before fitting
|
||
|
pipe = Pipeline([('regressor', LinearRegression())])
|
||
|
param_grid = {'regressor': [LinearRegression(), Ridge()]}
|
||
|
grid_search = GridSearchCV(pipe, param_grid, cv=2)
|
||
|
grid_search.fit(X, y)
|
||
|
regressor_results = grid_search.cv_results_['param_regressor']
|
||
|
assert isinstance(regressor_results[0], LinearRegression)
|
||
|
assert isinstance(regressor_results[1], Ridge)
|
||
|
assert not hasattr(regressor_results[0], 'coef_')
|
||
|
assert not hasattr(regressor_results[1], 'coef_')
|
||
|
assert regressor_results[0] is not grid_search.best_estimator_
|
||
|
assert regressor_results[1] is not grid_search.best_estimator_
|
||
|
# check that we didn't modify the parameter grid that was passed
|
||
|
assert not hasattr(param_grid['regressor'][0], 'coef_')
|
||
|
assert not hasattr(param_grid['regressor'][1], 'coef_')
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
|
||
|
def test_SearchCV_with_fit_params(SearchCV):
|
||
|
X = np.arange(100).reshape(10, 10)
|
||
|
y = np.array([0] * 5 + [1] * 5)
|
||
|
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
|
||
|
searcher = SearchCV(
|
||
|
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
|
||
|
)
|
||
|
|
||
|
# The CheckingClassifier generates an assertion error if
|
||
|
# a parameter is missing or has length != len(X).
|
||
|
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
|
||
|
with pytest.raises(AssertionError, match=err_msg):
|
||
|
searcher.fit(X, y, spam=np.ones(10))
|
||
|
|
||
|
err_msg = "Fit parameter spam has length 1; expected"
|
||
|
with pytest.raises(AssertionError, match=err_msg):
|
||
|
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
|
||
|
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_grid_search_no_score():
|
||
|
# Test grid-search on classifier that has no score function.
|
||
|
clf = LinearSVC(random_state=0)
|
||
|
X, y = make_blobs(random_state=0, centers=2)
|
||
|
Cs = [.1, 1, 10]
|
||
|
clf_no_score = LinearSVCNoScore(random_state=0)
|
||
|
grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
|
||
|
grid_search.fit(X, y)
|
||
|
|
||
|
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
|
||
|
scoring='accuracy')
|
||
|
# smoketest grid search
|
||
|
grid_search_no_score.fit(X, y)
|
||
|
|
||
|
# check that best params are equal
|
||
|
assert grid_search_no_score.best_params_ == grid_search.best_params_
|
||
|
# check that we can call score and that it gives the correct result
|
||
|
assert grid_search.score(X, y) == grid_search_no_score.score(X, y)
|
||
|
|
||
|
# giving no scoring function raises an error
|
||
|
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
|
||
|
assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
|
||
|
[[1]])
|
||
|
|
||
|
|
||
|
def test_grid_search_score_method():
|
||
|
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
|
||
|
random_state=0)
|
||
|
clf = LinearSVC(random_state=0)
|
||
|
grid = {'C': [.1]}
|
||
|
|
||
|
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
|
||
|
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
|
||
|
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
|
||
|
scoring='roc_auc'
|
||
|
).fit(X, y)
|
||
|
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
|
||
|
|
||
|
# Check warning only occurs in situation where behavior changed:
|
||
|
# estimator requires score method to compete with scoring parameter
|
||
|
score_no_scoring = search_no_scoring.score(X, y)
|
||
|
score_accuracy = search_accuracy.score(X, y)
|
||
|
score_no_score_auc = search_no_score_method_auc.score(X, y)
|
||
|
score_auc = search_auc.score(X, y)
|
||
|
|
||
|
# ensure the test is sane
|
||
|
assert score_auc < 1.0
|
||
|
assert score_accuracy < 1.0
|
||
|
assert score_auc != score_accuracy
|
||
|
|
||
|
assert_almost_equal(score_accuracy, score_no_scoring)
|
||
|
assert_almost_equal(score_auc, score_no_score_auc)
|
||
|
|
||
|
|
||
|
def test_grid_search_groups():
|
||
|
# Check if ValueError (when groups is None) propagates to GridSearchCV
|
||
|
# And also check if groups is correctly passed to the cv object
|
||
|
rng = np.random.RandomState(0)
|
||
|
|
||
|
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
|
||
|
groups = rng.randint(0, 3, 15)
|
||
|
|
||
|
clf = LinearSVC(random_state=0)
|
||
|
grid = {'C': [1]}
|
||
|
|
||
|
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2),
|
||
|
GroupKFold(n_splits=3), GroupShuffleSplit()]
|
||
|
for cv in group_cvs:
|
||
|
gs = GridSearchCV(clf, grid, cv=cv)
|
||
|
assert_raise_message(ValueError,
|
||
|
"The 'groups' parameter should not be None.",
|
||
|
gs.fit, X, y)
|
||
|
gs.fit(X, y, groups=groups)
|
||
|
|
||
|
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
|
||
|
for cv in non_group_cvs:
|
||
|
gs = GridSearchCV(clf, grid, cv=cv)
|
||
|
# Should not raise an error
|
||
|
gs.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_classes__property():
|
||
|
# Test that classes_ property matches best_estimator_.classes_
|
||
|
X = np.arange(100).reshape(10, 10)
|
||
|
y = np.array([0] * 5 + [1] * 5)
|
||
|
Cs = [.1, 1, 10]
|
||
|
|
||
|
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
|
||
|
grid_search.fit(X, y)
|
||
|
assert_array_equal(grid_search.best_estimator_.classes_,
|
||
|
grid_search.classes_)
|
||
|
|
||
|
# Test that regressors do not have a classes_ attribute
|
||
|
grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
|
||
|
grid_search.fit(X, y)
|
||
|
assert not hasattr(grid_search, 'classes_')
|
||
|
|
||
|
# Test that the grid searcher has no classes_ attribute before it's fit
|
||
|
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
|
||
|
assert not hasattr(grid_search, 'classes_')
|
||
|
|
||
|
# Test that the grid searcher has no classes_ attribute without a refit
|
||
|
grid_search = GridSearchCV(LinearSVC(random_state=0),
|
||
|
{'C': Cs}, refit=False)
|
||
|
grid_search.fit(X, y)
|
||
|
assert not hasattr(grid_search, 'classes_')
|
||
|
|
||
|
|
||
|
def test_trivial_cv_results_attr():
|
||
|
# Test search over a "grid" with only one point.
|
||
|
clf = MockClassifier()
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1]}, cv=3)
|
||
|
grid_search.fit(X, y)
|
||
|
assert hasattr(grid_search, "cv_results_")
|
||
|
|
||
|
random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1, cv=3)
|
||
|
random_search.fit(X, y)
|
||
|
assert hasattr(grid_search, "cv_results_")
|
||
|
|
||
|
|
||
|
def test_no_refit():
|
||
|
# Test that GSCV can be used for model selection alone without refitting
|
||
|
clf = MockClassifier()
|
||
|
for scoring in [None, ['accuracy', 'precision']]:
|
||
|
grid_search = GridSearchCV(
|
||
|
clf, {'foo_param': [1, 2, 3]}, refit=False, cv=3
|
||
|
)
|
||
|
grid_search.fit(X, y)
|
||
|
assert not hasattr(grid_search, "best_estimator_") and \
|
||
|
hasattr(grid_search, "best_index_") and \
|
||
|
hasattr(grid_search, "best_params_")
|
||
|
|
||
|
# Make sure the functions predict/transform etc raise meaningful
|
||
|
# error messages
|
||
|
for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
|
||
|
'transform', 'inverse_transform'):
|
||
|
assert_raise_message(NotFittedError,
|
||
|
('refit=False. %s is available only after '
|
||
|
'refitting on the best parameters'
|
||
|
% fn_name), getattr(grid_search, fn_name), X)
|
||
|
|
||
|
# Test that an invalid refit param raises appropriate error messages
|
||
|
for refit in ["", 5, True, 'recall', 'accuracy']:
|
||
|
assert_raise_message(ValueError, "For multi-metric scoring, the "
|
||
|
"parameter refit must be set to a scorer key",
|
||
|
GridSearchCV(clf, {}, refit=refit,
|
||
|
scoring={'acc': 'accuracy',
|
||
|
'prec': 'precision'}
|
||
|
).fit,
|
||
|
X, y)
|
||
|
|
||
|
|
||
|
def test_grid_search_error():
|
||
|
# Test that grid search will capture errors on data with different length
|
||
|
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
|
||
|
|
||
|
clf = LinearSVC()
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
|
||
|
assert_raises(ValueError, cv.fit, X_[:180], y_)
|
||
|
|
||
|
|
||
|
def test_grid_search_one_grid_point():
|
||
|
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
|
||
|
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
|
||
|
|
||
|
clf = SVC(gamma='auto')
|
||
|
cv = GridSearchCV(clf, param_dict)
|
||
|
cv.fit(X_, y_)
|
||
|
|
||
|
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
|
||
|
clf.fit(X_, y_)
|
||
|
|
||
|
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
|
||
|
|
||
|
|
||
|
def test_grid_search_when_param_grid_includes_range():
|
||
|
# Test that the best estimator contains the right value for foo_param
|
||
|
clf = MockClassifier()
|
||
|
grid_search = None
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}, cv=3)
|
||
|
grid_search.fit(X, y)
|
||
|
assert grid_search.best_estimator_.foo_param == 2
|
||
|
|
||
|
|
||
|
def test_grid_search_bad_param_grid():
|
||
|
param_dict = {"C": 1}
|
||
|
clf = SVC(gamma='auto')
|
||
|
assert_raise_message(
|
||
|
ValueError,
|
||
|
"Parameter grid for parameter (C) needs to"
|
||
|
" be a list or numpy array, but got (<class 'int'>)."
|
||
|
" Single values need to be wrapped in a list"
|
||
|
" with one element.",
|
||
|
GridSearchCV, clf, param_dict)
|
||
|
|
||
|
param_dict = {"C": []}
|
||
|
clf = SVC()
|
||
|
assert_raise_message(
|
||
|
ValueError,
|
||
|
"Parameter values for parameter (C) need to be a non-empty sequence.",
|
||
|
GridSearchCV, clf, param_dict)
|
||
|
|
||
|
param_dict = {"C": "1,2,3"}
|
||
|
clf = SVC(gamma='auto')
|
||
|
assert_raise_message(
|
||
|
ValueError,
|
||
|
"Parameter grid for parameter (C) needs to"
|
||
|
" be a list or numpy array, but got (<class 'str'>)."
|
||
|
" Single values need to be wrapped in a list"
|
||
|
" with one element.",
|
||
|
GridSearchCV, clf, param_dict)
|
||
|
|
||
|
param_dict = {"C": np.ones((3, 2))}
|
||
|
clf = SVC()
|
||
|
assert_raises(ValueError, GridSearchCV, clf, param_dict)
|
||
|
|
||
|
|
||
|
def test_grid_search_sparse():
|
||
|
# Test that grid search works with both dense and sparse matrices
|
||
|
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
|
||
|
|
||
|
clf = LinearSVC()
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
|
||
|
cv.fit(X_[:180], y_[:180])
|
||
|
y_pred = cv.predict(X_[180:])
|
||
|
C = cv.best_estimator_.C
|
||
|
|
||
|
X_ = sp.csr_matrix(X_)
|
||
|
clf = LinearSVC()
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
|
||
|
cv.fit(X_[:180].tocoo(), y_[:180])
|
||
|
y_pred2 = cv.predict(X_[180:])
|
||
|
C2 = cv.best_estimator_.C
|
||
|
|
||
|
assert np.mean(y_pred == y_pred2) >= .9
|
||
|
assert C == C2
|
||
|
|
||
|
|
||
|
def test_grid_search_sparse_scoring():
|
||
|
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
|
||
|
|
||
|
clf = LinearSVC()
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
|
||
|
cv.fit(X_[:180], y_[:180])
|
||
|
y_pred = cv.predict(X_[180:])
|
||
|
C = cv.best_estimator_.C
|
||
|
|
||
|
X_ = sp.csr_matrix(X_)
|
||
|
clf = LinearSVC()
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
|
||
|
cv.fit(X_[:180], y_[:180])
|
||
|
y_pred2 = cv.predict(X_[180:])
|
||
|
C2 = cv.best_estimator_.C
|
||
|
|
||
|
assert_array_equal(y_pred, y_pred2)
|
||
|
assert C == C2
|
||
|
# Smoke test the score
|
||
|
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
|
||
|
# cv.score(X_[:180], y[:180]))
|
||
|
|
||
|
# test loss where greater is worse
|
||
|
def f1_loss(y_true_, y_pred_):
|
||
|
return -f1_score(y_true_, y_pred_)
|
||
|
F1Loss = make_scorer(f1_loss, greater_is_better=False)
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
|
||
|
cv.fit(X_[:180], y_[:180])
|
||
|
y_pred3 = cv.predict(X_[180:])
|
||
|
C3 = cv.best_estimator_.C
|
||
|
|
||
|
assert C == C3
|
||
|
assert_array_equal(y_pred, y_pred3)
|
||
|
|
||
|
|
||
|
def test_grid_search_precomputed_kernel():
|
||
|
# Test that grid search works when the input features are given in the
|
||
|
# form of a precomputed kernel matrix
|
||
|
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
|
||
|
|
||
|
# compute the training kernel matrix corresponding to the linear kernel
|
||
|
K_train = np.dot(X_[:180], X_[:180].T)
|
||
|
y_train = y_[:180]
|
||
|
|
||
|
clf = SVC(kernel='precomputed')
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
|
||
|
cv.fit(K_train, y_train)
|
||
|
|
||
|
assert cv.best_score_ >= 0
|
||
|
|
||
|
# compute the test kernel matrix
|
||
|
K_test = np.dot(X_[180:], X_[:180].T)
|
||
|
y_test = y_[180:]
|
||
|
|
||
|
y_pred = cv.predict(K_test)
|
||
|
|
||
|
assert np.mean(y_pred == y_test) >= 0
|
||
|
|
||
|
# test error is raised when the precomputed kernel is not array-like
|
||
|
# or sparse
|
||
|
assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
|
||
|
|
||
|
|
||
|
def test_grid_search_precomputed_kernel_error_nonsquare():
|
||
|
# Test that grid search returns an error with a non-square precomputed
|
||
|
# training kernel matrix
|
||
|
K_train = np.zeros((10, 20))
|
||
|
y_train = np.ones((10, ))
|
||
|
clf = SVC(kernel='precomputed')
|
||
|
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
|
||
|
assert_raises(ValueError, cv.fit, K_train, y_train)
|
||
|
|
||
|
|
||
|
class BrokenClassifier(BaseEstimator):
|
||
|
"""Broken classifier that cannot be fit twice"""
|
||
|
|
||
|
def __init__(self, parameter=None):
|
||
|
self.parameter = parameter
|
||
|
|
||
|
def fit(self, X, y):
|
||
|
assert not hasattr(self, 'has_been_fit_')
|
||
|
self.has_been_fit_ = True
|
||
|
|
||
|
def predict(self, X):
|
||
|
return np.zeros(X.shape[0])
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_refit():
|
||
|
# Regression test for bug in refitting
|
||
|
# Simulates re-fitting a broken estimator; this used to break with
|
||
|
# sparse SVMs.
|
||
|
X = np.arange(100).reshape(10, 10)
|
||
|
y = np.array([0] * 5 + [1] * 5)
|
||
|
|
||
|
clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
|
||
|
scoring="precision", refit=True)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_refit_callable():
|
||
|
"""
|
||
|
Test refit=callable, which adds flexibility in identifying the
|
||
|
"best" estimator.
|
||
|
"""
|
||
|
def refit_callable(cv_results):
|
||
|
"""
|
||
|
A dummy function tests `refit=callable` interface.
|
||
|
Return the index of a model that has the least
|
||
|
`mean_test_score`.
|
||
|
"""
|
||
|
# Fit a dummy clf with `refit=True` to get a list of keys in
|
||
|
# clf.cv_results_.
|
||
|
X, y = make_classification(n_samples=100, n_features=4,
|
||
|
random_state=42)
|
||
|
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
|
||
|
scoring='precision', refit=True)
|
||
|
clf.fit(X, y)
|
||
|
# Ensure that `best_index_ != 0` for this dummy clf
|
||
|
assert clf.best_index_ != 0
|
||
|
|
||
|
# Assert every key matches those in `cv_results`
|
||
|
for key in clf.cv_results_.keys():
|
||
|
assert key in cv_results
|
||
|
|
||
|
return cv_results['mean_test_score'].argmin()
|
||
|
|
||
|
X, y = make_classification(n_samples=100, n_features=4,
|
||
|
random_state=42)
|
||
|
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
|
||
|
scoring='precision', refit=refit_callable)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
assert clf.best_index_ == 0
|
||
|
# Ensure `best_score_` is disabled when using `refit=callable`
|
||
|
assert not hasattr(clf, 'best_score_')
|
||
|
|
||
|
|
||
|
def test_refit_callable_invalid_type():
|
||
|
"""
|
||
|
Test implementation catches the errors when 'best_index_' returns an
|
||
|
invalid result.
|
||
|
"""
|
||
|
def refit_callable_invalid_type(cv_results):
|
||
|
"""
|
||
|
A dummy function tests when returned 'best_index_' is not integer.
|
||
|
"""
|
||
|
return None
|
||
|
|
||
|
X, y = make_classification(n_samples=100, n_features=4,
|
||
|
random_state=42)
|
||
|
|
||
|
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.1, 1]},
|
||
|
scoring='precision', refit=refit_callable_invalid_type)
|
||
|
with pytest.raises(TypeError,
|
||
|
match='best_index_ returned is not an integer'):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('out_bound_value', [-1, 2])
|
||
|
@pytest.mark.parametrize('search_cv', [RandomizedSearchCV, GridSearchCV])
|
||
|
def test_refit_callable_out_bound(out_bound_value, search_cv):
|
||
|
"""
|
||
|
Test implementation catches the errors when 'best_index_' returns an
|
||
|
out of bound result.
|
||
|
"""
|
||
|
def refit_callable_out_bound(cv_results):
|
||
|
"""
|
||
|
A dummy function tests when returned 'best_index_' is out of bounds.
|
||
|
"""
|
||
|
return out_bound_value
|
||
|
|
||
|
X, y = make_classification(n_samples=100, n_features=4,
|
||
|
random_state=42)
|
||
|
|
||
|
clf = search_cv(LinearSVC(random_state=42), {'C': [0.1, 1]},
|
||
|
scoring='precision', refit=refit_callable_out_bound)
|
||
|
with pytest.raises(IndexError, match='best_index_ index out of range'):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_refit_callable_multi_metric():
|
||
|
"""
|
||
|
Test refit=callable in multiple metric evaluation setting
|
||
|
"""
|
||
|
def refit_callable(cv_results):
|
||
|
"""
|
||
|
A dummy function tests `refit=callable` interface.
|
||
|
Return the index of a model that has the least
|
||
|
`mean_test_prec`.
|
||
|
"""
|
||
|
assert 'mean_test_prec' in cv_results
|
||
|
return cv_results['mean_test_prec'].argmin()
|
||
|
|
||
|
X, y = make_classification(n_samples=100, n_features=4,
|
||
|
random_state=42)
|
||
|
scoring = {'Accuracy': make_scorer(accuracy_score), 'prec': 'precision'}
|
||
|
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
|
||
|
scoring=scoring, refit=refit_callable)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
assert clf.best_index_ == 0
|
||
|
# Ensure `best_score_` is disabled when using `refit=callable`
|
||
|
assert not hasattr(clf, 'best_score_')
|
||
|
|
||
|
|
||
|
def test_gridsearch_nd():
|
||
|
# Pass X as list in GridSearchCV
|
||
|
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
|
||
|
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
|
||
|
check_X = lambda x: x.shape[1:] == (5, 3, 2)
|
||
|
check_y = lambda x: x.shape[1:] == (7, 11)
|
||
|
clf = CheckingClassifier(check_X=check_X, check_y=check_y)
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
|
||
|
grid_search.fit(X_4d, y_3d).score(X, y)
|
||
|
assert hasattr(grid_search, "cv_results_")
|
||
|
|
||
|
|
||
|
def test_X_as_list():
|
||
|
# Pass X as list in GridSearchCV
|
||
|
X = np.arange(100).reshape(10, 10)
|
||
|
y = np.array([0] * 5 + [1] * 5)
|
||
|
|
||
|
clf = CheckingClassifier(check_X=lambda x: isinstance(x, list))
|
||
|
cv = KFold(n_splits=3)
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
|
||
|
grid_search.fit(X.tolist(), y).score(X, y)
|
||
|
assert hasattr(grid_search, "cv_results_")
|
||
|
|
||
|
|
||
|
def test_y_as_list():
|
||
|
# Pass y as list in GridSearchCV
|
||
|
X = np.arange(100).reshape(10, 10)
|
||
|
y = np.array([0] * 5 + [1] * 5)
|
||
|
|
||
|
clf = CheckingClassifier(check_y=lambda x: isinstance(x, list))
|
||
|
cv = KFold(n_splits=3)
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
|
||
|
grid_search.fit(X, y.tolist()).score(X, y)
|
||
|
assert hasattr(grid_search, "cv_results_")
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_pandas_input():
|
||
|
# check cross_val_score doesn't destroy pandas dataframe
|
||
|
types = [(MockDataFrame, MockDataFrame)]
|
||
|
try:
|
||
|
from pandas import Series, DataFrame
|
||
|
types.append((DataFrame, Series))
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
X = np.arange(100).reshape(10, 10)
|
||
|
y = np.array([0] * 5 + [1] * 5)
|
||
|
|
||
|
for InputFeatureType, TargetType in types:
|
||
|
# X dataframe, y series
|
||
|
X_df, y_ser = InputFeatureType(X), TargetType(y)
|
||
|
|
||
|
def check_df(x):
|
||
|
return isinstance(x, InputFeatureType)
|
||
|
|
||
|
def check_series(x):
|
||
|
return isinstance(x, TargetType)
|
||
|
|
||
|
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
|
||
|
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
|
||
|
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
|
||
|
grid_search.predict(X_df)
|
||
|
assert hasattr(grid_search, "cv_results_")
|
||
|
|
||
|
|
||
|
def test_unsupervised_grid_search():
|
||
|
# test grid-search with unsupervised estimator
|
||
|
X, y = make_blobs(n_samples=50, random_state=0)
|
||
|
km = KMeans(random_state=0, init="random", n_init=1)
|
||
|
|
||
|
# Multi-metric evaluation unsupervised
|
||
|
scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
|
||
|
for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
|
||
|
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
|
||
|
scoring=scoring, refit=refit)
|
||
|
grid_search.fit(X, y)
|
||
|
# Both ARI and FMS can find the right number :)
|
||
|
assert grid_search.best_params_["n_clusters"] == 3
|
||
|
|
||
|
# Single metric evaluation unsupervised
|
||
|
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
|
||
|
scoring='fowlkes_mallows_score')
|
||
|
grid_search.fit(X, y)
|
||
|
assert grid_search.best_params_["n_clusters"] == 3
|
||
|
|
||
|
# Now without a score, and without y
|
||
|
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
|
||
|
grid_search.fit(X)
|
||
|
assert grid_search.best_params_["n_clusters"] == 4
|
||
|
|
||
|
|
||
|
def test_gridsearch_no_predict():
|
||
|
# test grid-search with an estimator without predict.
|
||
|
# slight duplication of a test from KDE
|
||
|
def custom_scoring(estimator, X):
|
||
|
return 42 if estimator.bandwidth == .1 else 0
|
||
|
X, _ = make_blobs(cluster_std=.1, random_state=1,
|
||
|
centers=[[0, 1], [1, 0], [0, 0]])
|
||
|
search = GridSearchCV(KernelDensity(),
|
||
|
param_grid=dict(bandwidth=[.01, .1, 1]),
|
||
|
scoring=custom_scoring)
|
||
|
search.fit(X)
|
||
|
assert search.best_params_['bandwidth'] == .1
|
||
|
assert search.best_score_ == 42
|
||
|
|
||
|
|
||
|
def test_param_sampler():
|
||
|
# test basic properties of param sampler
|
||
|
param_distributions = {"kernel": ["rbf", "linear"],
|
||
|
"C": uniform(0, 1)}
|
||
|
sampler = ParameterSampler(param_distributions=param_distributions,
|
||
|
n_iter=10, random_state=0)
|
||
|
samples = [x for x in sampler]
|
||
|
assert len(samples) == 10
|
||
|
for sample in samples:
|
||
|
assert sample["kernel"] in ["rbf", "linear"]
|
||
|
assert 0 <= sample["C"] <= 1
|
||
|
|
||
|
# test that repeated calls yield identical parameters
|
||
|
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
|
||
|
sampler = ParameterSampler(param_distributions=param_distributions,
|
||
|
n_iter=3, random_state=0)
|
||
|
assert [x for x in sampler] == [x for x in sampler]
|
||
|
|
||
|
if sp_version >= parse_version("0.16"):
|
||
|
param_distributions = {"C": uniform(0, 1)}
|
||
|
sampler = ParameterSampler(param_distributions=param_distributions,
|
||
|
n_iter=10, random_state=0)
|
||
|
assert [x for x in sampler] == [x for x in sampler]
|
||
|
|
||
|
|
||
|
def check_cv_results_array_types(search, param_keys, score_keys):
|
||
|
# Check if the search `cv_results`'s array are of correct types
|
||
|
cv_results = search.cv_results_
|
||
|
assert all(isinstance(cv_results[param], np.ma.MaskedArray)
|
||
|
for param in param_keys)
|
||
|
assert all(cv_results[key].dtype == object for key in param_keys)
|
||
|
assert not any(isinstance(cv_results[key], np.ma.MaskedArray)
|
||
|
for key in score_keys)
|
||
|
assert all(cv_results[key].dtype == np.float64
|
||
|
for key in score_keys if not key.startswith('rank'))
|
||
|
|
||
|
scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']
|
||
|
|
||
|
for key in scorer_keys:
|
||
|
assert cv_results['rank_test_%s' % key].dtype == np.int32
|
||
|
|
||
|
|
||
|
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
|
||
|
# Test the search.cv_results_ contains all the required results
|
||
|
assert_array_equal(sorted(cv_results.keys()),
|
||
|
sorted(param_keys + score_keys + ('params',)))
|
||
|
assert all(cv_results[key].shape == (n_cand,)
|
||
|
for key in param_keys + score_keys)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:The parameter 'iid' is deprecated") # 0.24
|
||
|
def test_grid_search_cv_results():
|
||
|
X, y = make_classification(n_samples=50, n_features=4,
|
||
|
random_state=42)
|
||
|
|
||
|
n_splits = 3
|
||
|
n_grid_points = 6
|
||
|
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
|
||
|
dict(kernel=['poly', ], degree=[1, 2])]
|
||
|
|
||
|
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
|
||
|
score_keys = ('mean_test_score', 'mean_train_score',
|
||
|
'rank_test_score',
|
||
|
'split0_test_score', 'split1_test_score',
|
||
|
'split2_test_score',
|
||
|
'split0_train_score', 'split1_train_score',
|
||
|
'split2_train_score',
|
||
|
'std_test_score', 'std_train_score',
|
||
|
'mean_fit_time', 'std_fit_time',
|
||
|
'mean_score_time', 'std_score_time')
|
||
|
n_candidates = n_grid_points
|
||
|
|
||
|
for iid in (False, True):
|
||
|
search = GridSearchCV(SVC(), cv=n_splits, iid=iid,
|
||
|
param_grid=params, return_train_score=True)
|
||
|
search.fit(X, y)
|
||
|
assert iid == search.iid
|
||
|
cv_results = search.cv_results_
|
||
|
# Check if score and timing are reasonable
|
||
|
assert all(cv_results['rank_test_score'] >= 1)
|
||
|
assert (all(cv_results[k] >= 0) for k in score_keys
|
||
|
if k != 'rank_test_score')
|
||
|
assert (all(cv_results[k] <= 1) for k in score_keys
|
||
|
if 'time' not in k and
|
||
|
k != 'rank_test_score')
|
||
|
# Check cv_results structure
|
||
|
check_cv_results_array_types(search, param_keys, score_keys)
|
||
|
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
|
||
|
# Check masking
|
||
|
cv_results = search.cv_results_
|
||
|
n_candidates = len(search.cv_results_['params'])
|
||
|
assert all((cv_results['param_C'].mask[i] and
|
||
|
cv_results['param_gamma'].mask[i] and
|
||
|
not cv_results['param_degree'].mask[i])
|
||
|
for i in range(n_candidates)
|
||
|
if cv_results['param_kernel'][i] == 'linear')
|
||
|
assert all((not cv_results['param_C'].mask[i] and
|
||
|
not cv_results['param_gamma'].mask[i] and
|
||
|
cv_results['param_degree'].mask[i])
|
||
|
for i in range(n_candidates)
|
||
|
if cv_results['param_kernel'][i] == 'rbf')
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:The parameter 'iid' is deprecated") # 0.24
|
||
|
def test_random_search_cv_results():
|
||
|
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
|
||
|
|
||
|
n_splits = 3
|
||
|
n_search_iter = 30
|
||
|
|
||
|
params = [{'kernel': ['rbf'], 'C': expon(scale=10),
|
||
|
'gamma': expon(scale=0.1)},
|
||
|
{'kernel': ['poly'], 'degree': [2, 3]}]
|
||
|
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
|
||
|
score_keys = ('mean_test_score', 'mean_train_score',
|
||
|
'rank_test_score',
|
||
|
'split0_test_score', 'split1_test_score',
|
||
|
'split2_test_score',
|
||
|
'split0_train_score', 'split1_train_score',
|
||
|
'split2_train_score',
|
||
|
'std_test_score', 'std_train_score',
|
||
|
'mean_fit_time', 'std_fit_time',
|
||
|
'mean_score_time', 'std_score_time')
|
||
|
n_cand = n_search_iter
|
||
|
|
||
|
for iid in (False, True):
|
||
|
search = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
|
||
|
cv=n_splits, iid=iid,
|
||
|
param_distributions=params,
|
||
|
return_train_score=True)
|
||
|
search.fit(X, y)
|
||
|
assert iid == search.iid
|
||
|
cv_results = search.cv_results_
|
||
|
# Check results structure
|
||
|
check_cv_results_array_types(search, param_keys, score_keys)
|
||
|
check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
|
||
|
n_candidates = len(search.cv_results_['params'])
|
||
|
assert all((cv_results['param_C'].mask[i] and
|
||
|
cv_results['param_gamma'].mask[i] and
|
||
|
not cv_results['param_degree'].mask[i])
|
||
|
for i in range(n_candidates)
|
||
|
if cv_results['param_kernel'][i] == 'linear')
|
||
|
assert all((not cv_results['param_C'].mask[i] and
|
||
|
not cv_results['param_gamma'].mask[i] and
|
||
|
cv_results['param_degree'].mask[i])
|
||
|
for i in range(n_candidates)
|
||
|
if cv_results['param_kernel'][i] == 'rbf')
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"SearchCV, specialized_params",
|
||
|
[(GridSearchCV, {'param_grid': {'C': [1, 10]}}),
|
||
|
(RandomizedSearchCV,
|
||
|
{'param_distributions': {'C': [1, 10]}, 'n_iter': 2})]
|
||
|
)
|
||
|
def test_search_default_iid(SearchCV, specialized_params):
|
||
|
# Test the IID parameter
|
||
|
# noise-free simple 2d-data
|
||
|
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
|
||
|
cluster_std=0.1, shuffle=False, n_samples=80)
|
||
|
# split dataset into two folds that are not iid
|
||
|
# first one contains data of all 4 blobs, second only from two.
|
||
|
mask = np.ones(X.shape[0], dtype=np.bool)
|
||
|
mask[np.where(y == 1)[0][::2]] = 0
|
||
|
mask[np.where(y == 2)[0][::2]] = 0
|
||
|
# this leads to perfect classification on one fold and a score of 1/3 on
|
||
|
# the other
|
||
|
# create "cv" for splits
|
||
|
cv = [[mask, ~mask], [~mask, mask]]
|
||
|
|
||
|
common_params = {'estimator': SVC(), 'cv': cv,
|
||
|
'return_train_score': True}
|
||
|
search = SearchCV(**common_params, **specialized_params)
|
||
|
search.fit(X, y)
|
||
|
|
||
|
test_cv_scores = np.array(
|
||
|
[search.cv_results_['split%d_test_score' % s][0]
|
||
|
for s in range(search.n_splits_)]
|
||
|
)
|
||
|
test_mean = search.cv_results_['mean_test_score'][0]
|
||
|
test_std = search.cv_results_['std_test_score'][0]
|
||
|
|
||
|
train_cv_scores = np.array(
|
||
|
[search.cv_results_['split%d_train_score' % s][0]
|
||
|
for s in range(search.n_splits_)]
|
||
|
)
|
||
|
train_mean = search.cv_results_['mean_train_score'][0]
|
||
|
train_std = search.cv_results_['std_train_score'][0]
|
||
|
|
||
|
assert search.cv_results_['param_C'][0] == 1
|
||
|
# scores are the same as above
|
||
|
assert_allclose(test_cv_scores, [1, 1. / 3.])
|
||
|
assert_allclose(train_cv_scores, [1, 1])
|
||
|
# Unweighted mean/std is used
|
||
|
assert test_mean == pytest.approx(np.mean(test_cv_scores))
|
||
|
assert test_std == pytest.approx(np.std(test_cv_scores))
|
||
|
|
||
|
# For the train scores, we do not take a weighted mean irrespective of
|
||
|
# i.i.d. or not
|
||
|
assert train_mean == pytest.approx(1)
|
||
|
assert train_std == pytest.approx(0)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:The parameter 'iid' is deprecated") # 0.24
|
||
|
def test_search_iid_param():
|
||
|
# Test the IID parameter
|
||
|
# noise-free simple 2d-data
|
||
|
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
|
||
|
cluster_std=0.1, shuffle=False, n_samples=80)
|
||
|
# split dataset into two folds that are not iid
|
||
|
# first one contains data of all 4 blobs, second only from two.
|
||
|
mask = np.ones(X.shape[0], dtype=np.bool)
|
||
|
mask[np.where(y == 1)[0][::2]] = 0
|
||
|
mask[np.where(y == 2)[0][::2]] = 0
|
||
|
# this leads to perfect classification on one fold and a score of 1/3 on
|
||
|
# the other
|
||
|
# create "cv" for splits
|
||
|
cv = [[mask, ~mask], [~mask, mask]]
|
||
|
# once with iid=True (default)
|
||
|
grid_search = GridSearchCV(SVC(gamma='auto'), param_grid={'C': [1, 10]},
|
||
|
cv=cv, return_train_score=True, iid=True)
|
||
|
random_search = RandomizedSearchCV(SVC(gamma='auto'), n_iter=2,
|
||
|
param_distributions={'C': [1, 10]},
|
||
|
cv=cv, iid=True,
|
||
|
return_train_score=True)
|
||
|
for search in (grid_search, random_search):
|
||
|
search.fit(X, y)
|
||
|
assert search.iid or search.iid is None
|
||
|
|
||
|
test_cv_scores = np.array(list(search.cv_results_['split%d_test_score'
|
||
|
% s_i][0]
|
||
|
for s_i in range(search.n_splits_)))
|
||
|
test_mean = search.cv_results_['mean_test_score'][0]
|
||
|
test_std = search.cv_results_['std_test_score'][0]
|
||
|
|
||
|
train_cv_scores = np.array(list(search.cv_results_['split%d_train_'
|
||
|
'score' % s_i][0]
|
||
|
for s_i in range(search.n_splits_)))
|
||
|
train_mean = search.cv_results_['mean_train_score'][0]
|
||
|
train_std = search.cv_results_['std_train_score'][0]
|
||
|
|
||
|
# Test the first candidate
|
||
|
assert search.cv_results_['param_C'][0] == 1
|
||
|
assert_array_almost_equal(test_cv_scores, [1, 1. / 3.])
|
||
|
assert_array_almost_equal(train_cv_scores, [1, 1])
|
||
|
|
||
|
# for first split, 1/4 of dataset is in test, for second 3/4.
|
||
|
# take weighted average and weighted std
|
||
|
expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4.
|
||
|
expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 +
|
||
|
3. / 4 * (expected_test_mean - 1. / 3.) **
|
||
|
2)
|
||
|
assert_almost_equal(test_mean, expected_test_mean)
|
||
|
assert_almost_equal(test_std, expected_test_std)
|
||
|
assert_array_almost_equal(test_cv_scores,
|
||
|
cross_val_score(SVC(C=1, gamma='auto'), X,
|
||
|
y, cv=cv))
|
||
|
|
||
|
# For the train scores, we do not take a weighted mean irrespective of
|
||
|
# i.i.d. or not
|
||
|
assert_almost_equal(train_mean, 1)
|
||
|
assert_almost_equal(train_std, 0)
|
||
|
|
||
|
# once with iid=False
|
||
|
grid_search = GridSearchCV(SVC(gamma='auto'),
|
||
|
param_grid={'C': [1, 10]},
|
||
|
cv=cv, iid=False, return_train_score=True)
|
||
|
random_search = RandomizedSearchCV(SVC(gamma='auto'), n_iter=2,
|
||
|
param_distributions={'C': [1, 10]},
|
||
|
cv=cv, iid=False,
|
||
|
return_train_score=True)
|
||
|
|
||
|
for search in (grid_search, random_search):
|
||
|
search.fit(X, y)
|
||
|
assert not search.iid
|
||
|
|
||
|
test_cv_scores = np.array(list(search.cv_results_['split%d_test_score'
|
||
|
% s][0]
|
||
|
for s in range(search.n_splits_)))
|
||
|
test_mean = search.cv_results_['mean_test_score'][0]
|
||
|
test_std = search.cv_results_['std_test_score'][0]
|
||
|
|
||
|
train_cv_scores = np.array(list(search.cv_results_['split%d_train_'
|
||
|
'score' % s][0]
|
||
|
for s in range(search.n_splits_)))
|
||
|
train_mean = search.cv_results_['mean_train_score'][0]
|
||
|
train_std = search.cv_results_['std_train_score'][0]
|
||
|
|
||
|
assert search.cv_results_['param_C'][0] == 1
|
||
|
# scores are the same as above
|
||
|
assert_array_almost_equal(test_cv_scores, [1, 1. / 3.])
|
||
|
# Unweighted mean/std is used
|
||
|
assert_almost_equal(test_mean, np.mean(test_cv_scores))
|
||
|
assert_almost_equal(test_std, np.std(test_cv_scores))
|
||
|
|
||
|
# For the train scores, we do not take a weighted mean irrespective of
|
||
|
# i.i.d. or not
|
||
|
assert_almost_equal(train_mean, 1)
|
||
|
assert_almost_equal(train_std, 0)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:The parameter 'iid' is deprecated") # 0.24
|
||
|
def test_grid_search_cv_results_multimetric():
|
||
|
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
|
||
|
|
||
|
n_splits = 3
|
||
|
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
|
||
|
dict(kernel=['poly', ], degree=[1, 2])]
|
||
|
|
||
|
for iid in (False, True):
|
||
|
grid_searches = []
|
||
|
for scoring in ({'accuracy': make_scorer(accuracy_score),
|
||
|
'recall': make_scorer(recall_score)},
|
||
|
'accuracy', 'recall'):
|
||
|
grid_search = GridSearchCV(SVC(), cv=n_splits,
|
||
|
iid=iid, param_grid=params,
|
||
|
scoring=scoring, refit=False)
|
||
|
grid_search.fit(X, y)
|
||
|
assert grid_search.iid == iid
|
||
|
grid_searches.append(grid_search)
|
||
|
|
||
|
compare_cv_results_multimetric_with_single(*grid_searches, iid=iid)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:The parameter 'iid' is deprecated") # 0.24
|
||
|
def test_random_search_cv_results_multimetric():
|
||
|
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
|
||
|
|
||
|
n_splits = 3
|
||
|
n_search_iter = 30
|
||
|
|
||
|
# Scipy 0.12's stats dists do not accept seed, hence we use param grid
|
||
|
params = dict(C=np.logspace(-4, 1, 3),
|
||
|
gamma=np.logspace(-5, 0, 3, base=0.1))
|
||
|
for iid in (True, False):
|
||
|
for refit in (True, False):
|
||
|
random_searches = []
|
||
|
for scoring in (('accuracy', 'recall'), 'accuracy', 'recall'):
|
||
|
# If True, for multi-metric pass refit='accuracy'
|
||
|
if refit:
|
||
|
probability = True
|
||
|
refit = 'accuracy' if isinstance(scoring, tuple) else refit
|
||
|
else:
|
||
|
probability = False
|
||
|
clf = SVC(probability=probability, random_state=42)
|
||
|
random_search = RandomizedSearchCV(clf, n_iter=n_search_iter,
|
||
|
cv=n_splits, iid=iid,
|
||
|
param_distributions=params,
|
||
|
scoring=scoring,
|
||
|
refit=refit, random_state=0)
|
||
|
random_search.fit(X, y)
|
||
|
random_searches.append(random_search)
|
||
|
|
||
|
compare_cv_results_multimetric_with_single(*random_searches,
|
||
|
iid=iid)
|
||
|
compare_refit_methods_when_refit_with_acc(
|
||
|
random_searches[0], random_searches[1], refit)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:The parameter 'iid' is deprecated") # 0.24
|
||
|
def compare_cv_results_multimetric_with_single(
|
||
|
search_multi, search_acc, search_rec, iid):
|
||
|
"""Compare multi-metric cv_results with the ensemble of multiple
|
||
|
single metric cv_results from single metric grid/random search"""
|
||
|
|
||
|
assert search_multi.iid == iid
|
||
|
assert search_multi.multimetric_
|
||
|
assert_array_equal(sorted(search_multi.scorer_),
|
||
|
('accuracy', 'recall'))
|
||
|
|
||
|
cv_results_multi = search_multi.cv_results_
|
||
|
cv_results_acc_rec = {re.sub('_score$', '_accuracy', k): v
|
||
|
for k, v in search_acc.cv_results_.items()}
|
||
|
cv_results_acc_rec.update({re.sub('_score$', '_recall', k): v
|
||
|
for k, v in search_rec.cv_results_.items()})
|
||
|
|
||
|
# Check if score and timing are reasonable, also checks if the keys
|
||
|
# are present
|
||
|
assert all((np.all(cv_results_multi[k] <= 1) for k in (
|
||
|
'mean_score_time', 'std_score_time', 'mean_fit_time',
|
||
|
'std_fit_time')))
|
||
|
|
||
|
# Compare the keys, other than time keys, among multi-metric and
|
||
|
# single metric grid search results. np.testing.assert_equal performs a
|
||
|
# deep nested comparison of the two cv_results dicts
|
||
|
np.testing.assert_equal({k: v for k, v in cv_results_multi.items()
|
||
|
if not k.endswith('_time')},
|
||
|
{k: v for k, v in cv_results_acc_rec.items()
|
||
|
if not k.endswith('_time')})
|
||
|
|
||
|
|
||
|
def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
|
||
|
"""Compare refit multi-metric search methods with single metric methods"""
|
||
|
assert search_acc.refit == refit
|
||
|
if refit:
|
||
|
assert search_multi.refit == 'accuracy'
|
||
|
else:
|
||
|
assert not search_multi.refit
|
||
|
return # search cannot predict/score without refit
|
||
|
|
||
|
X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
|
||
|
for method in ('predict', 'predict_proba', 'predict_log_proba'):
|
||
|
assert_almost_equal(getattr(search_multi, method)(X),
|
||
|
getattr(search_acc, method)(X))
|
||
|
assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
|
||
|
for key in ('best_index_', 'best_score_', 'best_params_'):
|
||
|
assert getattr(search_multi, key) == getattr(search_acc, key)
|
||
|
|
||
|
|
||
|
def test_search_cv_results_rank_tie_breaking():
|
||
|
X, y = make_blobs(n_samples=50, random_state=42)
|
||
|
|
||
|
# The two C values are close enough to give similar models
|
||
|
# which would result in a tie of their mean cv-scores
|
||
|
param_grid = {'C': [1, 1.001, 0.001]}
|
||
|
|
||
|
grid_search = GridSearchCV(SVC(), param_grid=param_grid,
|
||
|
return_train_score=True)
|
||
|
random_search = RandomizedSearchCV(SVC(), n_iter=3,
|
||
|
param_distributions=param_grid,
|
||
|
return_train_score=True)
|
||
|
|
||
|
for search in (grid_search, random_search):
|
||
|
search.fit(X, y)
|
||
|
cv_results = search.cv_results_
|
||
|
# Check tie breaking strategy -
|
||
|
# Check that there is a tie in the mean scores between
|
||
|
# candidates 1 and 2 alone
|
||
|
assert_almost_equal(cv_results['mean_test_score'][0],
|
||
|
cv_results['mean_test_score'][1])
|
||
|
assert_almost_equal(cv_results['mean_train_score'][0],
|
||
|
cv_results['mean_train_score'][1])
|
||
|
assert not np.allclose(cv_results['mean_test_score'][1],
|
||
|
cv_results['mean_test_score'][2])
|
||
|
assert not np.allclose(cv_results['mean_train_score'][1],
|
||
|
cv_results['mean_train_score'][2])
|
||
|
# 'min' rank should be assigned to the tied candidates
|
||
|
assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3])
|
||
|
|
||
|
|
||
|
def test_search_cv_results_none_param():
|
||
|
X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1]
|
||
|
estimators = (DecisionTreeRegressor(), DecisionTreeClassifier())
|
||
|
est_parameters = {"random_state": [0, None]}
|
||
|
cv = KFold()
|
||
|
|
||
|
for est in estimators:
|
||
|
grid_search = GridSearchCV(est, est_parameters, cv=cv,
|
||
|
).fit(X, y)
|
||
|
assert_array_equal(grid_search.cv_results_['param_random_state'],
|
||
|
[0, None])
|
||
|
|
||
|
|
||
|
@ignore_warnings()
|
||
|
def test_search_cv_timing():
|
||
|
svc = LinearSVC(random_state=0)
|
||
|
|
||
|
X = [[1, ], [2, ], [3, ], [4, ]]
|
||
|
y = [0, 1, 1, 0]
|
||
|
|
||
|
gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0)
|
||
|
rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2)
|
||
|
|
||
|
for search in (gs, rs):
|
||
|
search.fit(X, y)
|
||
|
for key in ['mean_fit_time', 'std_fit_time']:
|
||
|
# NOTE The precision of time.time in windows is not high
|
||
|
# enough for the fit/score times to be non-zero for trivial X and y
|
||
|
assert np.all(search.cv_results_[key] >= 0)
|
||
|
assert np.all(search.cv_results_[key] < 1)
|
||
|
|
||
|
for key in ['mean_score_time', 'std_score_time']:
|
||
|
assert search.cv_results_[key][1] >= 0
|
||
|
assert search.cv_results_[key][0] == 0.0
|
||
|
assert np.all(search.cv_results_[key] < 1)
|
||
|
|
||
|
assert hasattr(search, "refit_time_")
|
||
|
assert isinstance(search.refit_time_, float)
|
||
|
assert search.refit_time_ >= 0
|
||
|
|
||
|
|
||
|
def test_grid_search_correct_score_results():
|
||
|
# test that correct scores are used
|
||
|
n_splits = 3
|
||
|
clf = LinearSVC(random_state=0)
|
||
|
X, y = make_blobs(random_state=0, centers=2)
|
||
|
Cs = [.1, 1, 10]
|
||
|
for score in ['f1', 'roc_auc']:
|
||
|
grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits)
|
||
|
cv_results = grid_search.fit(X, y).cv_results_
|
||
|
|
||
|
# Test scorer names
|
||
|
result_keys = list(cv_results.keys())
|
||
|
expected_keys = (("mean_test_score", "rank_test_score") +
|
||
|
tuple("split%d_test_score" % cv_i
|
||
|
for cv_i in range(n_splits)))
|
||
|
assert all(np.in1d(expected_keys, result_keys))
|
||
|
|
||
|
cv = StratifiedKFold(n_splits=n_splits)
|
||
|
n_splits = grid_search.n_splits_
|
||
|
for candidate_i, C in enumerate(Cs):
|
||
|
clf.set_params(C=C)
|
||
|
cv_scores = np.array(
|
||
|
list(grid_search.cv_results_['split%d_test_score'
|
||
|
% s][candidate_i]
|
||
|
for s in range(n_splits)))
|
||
|
for i, (train, test) in enumerate(cv.split(X, y)):
|
||
|
clf.fit(X[train], y[train])
|
||
|
if score == "f1":
|
||
|
correct_score = f1_score(y[test], clf.predict(X[test]))
|
||
|
elif score == "roc_auc":
|
||
|
dec = clf.decision_function(X[test])
|
||
|
correct_score = roc_auc_score(y[test], dec)
|
||
|
assert_almost_equal(correct_score, cv_scores[i])
|
||
|
|
||
|
|
||
|
# FIXME remove test_fit_grid_point as the function will be removed on 0.25
|
||
|
@ignore_warnings(category=FutureWarning)
|
||
|
def test_fit_grid_point():
|
||
|
X, y = make_classification(random_state=0)
|
||
|
cv = StratifiedKFold()
|
||
|
svc = LinearSVC(random_state=0)
|
||
|
scorer = make_scorer(accuracy_score)
|
||
|
|
||
|
for params in ({'C': 0.1}, {'C': 0.01}, {'C': 0.001}):
|
||
|
for train, test in cv.split(X, y):
|
||
|
this_scores, this_params, n_test_samples = fit_grid_point(
|
||
|
X, y, clone(svc), params, train, test,
|
||
|
scorer, verbose=False)
|
||
|
|
||
|
est = clone(svc).set_params(**params)
|
||
|
est.fit(X[train], y[train])
|
||
|
expected_score = scorer(est, X[test], y[test])
|
||
|
|
||
|
# Test the return values of fit_grid_point
|
||
|
assert_almost_equal(this_scores, expected_score)
|
||
|
assert params == this_params
|
||
|
assert n_test_samples == test.size
|
||
|
|
||
|
# Should raise an error upon multimetric scorer
|
||
|
assert_raise_message(ValueError, "For evaluating multiple scores, use "
|
||
|
"sklearn.model_selection.cross_validate instead.",
|
||
|
fit_grid_point, X, y, svc, params, train, test,
|
||
|
{'score': scorer}, verbose=True)
|
||
|
|
||
|
|
||
|
# FIXME remove test_fit_grid_point_deprecated as
|
||
|
# fit_grid_point will be removed on 0.25
|
||
|
def test_fit_grid_point_deprecated():
|
||
|
X, y = make_classification(random_state=0)
|
||
|
svc = LinearSVC(random_state=0)
|
||
|
scorer = make_scorer(accuracy_score)
|
||
|
msg = ("fit_grid_point is deprecated in version 0.23 "
|
||
|
"and will be removed in version 0.25")
|
||
|
params = {'C': 0.1}
|
||
|
train, test = next(StratifiedKFold().split(X, y))
|
||
|
|
||
|
with pytest.warns(FutureWarning, match=msg):
|
||
|
fit_grid_point(X, y, svc, params, train, test, scorer, verbose=False)
|
||
|
|
||
|
|
||
|
def test_pickle():
|
||
|
# Test that a fit search can be pickled
|
||
|
clf = MockClassifier()
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, cv=3)
|
||
|
grid_search.fit(X, y)
|
||
|
grid_search_pickled = pickle.loads(pickle.dumps(grid_search))
|
||
|
assert_array_almost_equal(grid_search.predict(X),
|
||
|
grid_search_pickled.predict(X))
|
||
|
|
||
|
random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]},
|
||
|
refit=True, n_iter=3, cv=3)
|
||
|
random_search.fit(X, y)
|
||
|
random_search_pickled = pickle.loads(pickle.dumps(random_search))
|
||
|
assert_array_almost_equal(random_search.predict(X),
|
||
|
random_search_pickled.predict(X))
|
||
|
|
||
|
|
||
|
def test_grid_search_with_multioutput_data():
|
||
|
# Test search with multi-output estimator
|
||
|
|
||
|
X, y = make_multilabel_classification(return_indicator=True,
|
||
|
random_state=0)
|
||
|
|
||
|
est_parameters = {"max_depth": [1, 2, 3, 4]}
|
||
|
cv = KFold()
|
||
|
|
||
|
estimators = [DecisionTreeRegressor(random_state=0),
|
||
|
DecisionTreeClassifier(random_state=0)]
|
||
|
|
||
|
# Test with grid search cv
|
||
|
for est in estimators:
|
||
|
grid_search = GridSearchCV(est, est_parameters, cv=cv)
|
||
|
grid_search.fit(X, y)
|
||
|
res_params = grid_search.cv_results_['params']
|
||
|
for cand_i in range(len(res_params)):
|
||
|
est.set_params(**res_params[cand_i])
|
||
|
|
||
|
for i, (train, test) in enumerate(cv.split(X, y)):
|
||
|
est.fit(X[train], y[train])
|
||
|
correct_score = est.score(X[test], y[test])
|
||
|
assert_almost_equal(
|
||
|
correct_score,
|
||
|
grid_search.cv_results_['split%d_test_score' % i][cand_i])
|
||
|
|
||
|
# Test with a randomized search
|
||
|
for est in estimators:
|
||
|
random_search = RandomizedSearchCV(est, est_parameters,
|
||
|
cv=cv, n_iter=3)
|
||
|
random_search.fit(X, y)
|
||
|
res_params = random_search.cv_results_['params']
|
||
|
for cand_i in range(len(res_params)):
|
||
|
est.set_params(**res_params[cand_i])
|
||
|
|
||
|
for i, (train, test) in enumerate(cv.split(X, y)):
|
||
|
est.fit(X[train], y[train])
|
||
|
correct_score = est.score(X[test], y[test])
|
||
|
assert_almost_equal(
|
||
|
correct_score,
|
||
|
random_search.cv_results_['split%d_test_score'
|
||
|
% i][cand_i])
|
||
|
|
||
|
|
||
|
def test_predict_proba_disabled():
|
||
|
# Test predict_proba when disabled on estimator.
|
||
|
X = np.arange(20).reshape(5, -1)
|
||
|
y = [0, 0, 1, 1, 1]
|
||
|
clf = SVC(probability=False)
|
||
|
gs = GridSearchCV(clf, {}, cv=2).fit(X, y)
|
||
|
assert not hasattr(gs, "predict_proba")
|
||
|
|
||
|
|
||
|
def test_grid_search_allows_nans():
|
||
|
# Test GridSearchCV with SimpleImputer
|
||
|
X = np.arange(20, dtype=np.float64).reshape(5, -1)
|
||
|
X[2, :] = np.nan
|
||
|
y = [0, 0, 1, 1, 1]
|
||
|
p = Pipeline([
|
||
|
('imputer', SimpleImputer(strategy='mean', missing_values=np.nan)),
|
||
|
('classifier', MockClassifier()),
|
||
|
])
|
||
|
GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y)
|
||
|
|
||
|
|
||
|
class FailingClassifier(BaseEstimator):
|
||
|
"""Classifier that raises a ValueError on fit()"""
|
||
|
|
||
|
FAILING_PARAMETER = 2
|
||
|
|
||
|
def __init__(self, parameter=None):
|
||
|
self.parameter = parameter
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
if self.parameter == FailingClassifier.FAILING_PARAMETER:
|
||
|
raise ValueError("Failing classifier failed as required")
|
||
|
|
||
|
def predict(self, X):
|
||
|
return np.zeros(X.shape[0])
|
||
|
|
||
|
def score(self, X=None, Y=None):
|
||
|
return 0.
|
||
|
|
||
|
|
||
|
def test_grid_search_failing_classifier():
|
||
|
# GridSearchCV with on_error != 'raise'
|
||
|
# Ensures that a warning is raised and score reset where appropriate.
|
||
|
|
||
|
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
|
||
|
|
||
|
clf = FailingClassifier()
|
||
|
|
||
|
# refit=False because we only want to check that errors caused by fits
|
||
|
# to individual folds will be caught and warnings raised instead. If
|
||
|
# refit was done, then an exception would be raised on refit and not
|
||
|
# caught by grid_search (expected behavior), and this would cause an
|
||
|
# error in this test.
|
||
|
gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
|
||
|
refit=False, error_score=0.0)
|
||
|
assert_warns(FitFailedWarning, gs.fit, X, y)
|
||
|
n_candidates = len(gs.cv_results_['params'])
|
||
|
|
||
|
# Ensure that grid scores were set to zero as required for those fits
|
||
|
# that are expected to fail.
|
||
|
def get_cand_scores(i):
|
||
|
return np.array(list(gs.cv_results_['split%d_test_score' % s][i]
|
||
|
for s in range(gs.n_splits_)))
|
||
|
|
||
|
assert all((np.all(get_cand_scores(cand_i) == 0.0)
|
||
|
for cand_i in range(n_candidates)
|
||
|
if gs.cv_results_['param_parameter'][cand_i] ==
|
||
|
FailingClassifier.FAILING_PARAMETER))
|
||
|
|
||
|
gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
|
||
|
refit=False, error_score=float('nan'))
|
||
|
assert_warns(FitFailedWarning, gs.fit, X, y)
|
||
|
n_candidates = len(gs.cv_results_['params'])
|
||
|
assert all(np.all(np.isnan(get_cand_scores(cand_i)))
|
||
|
for cand_i in range(n_candidates)
|
||
|
if gs.cv_results_['param_parameter'][cand_i] ==
|
||
|
FailingClassifier.FAILING_PARAMETER)
|
||
|
|
||
|
ranks = gs.cv_results_['rank_test_score']
|
||
|
|
||
|
# Check that succeeded estimators have lower ranks
|
||
|
assert ranks[0] <= 2 and ranks[1] <= 2
|
||
|
# Check that failed estimator has the highest rank
|
||
|
assert ranks[clf.FAILING_PARAMETER] == 3
|
||
|
assert gs.best_index_ != clf.FAILING_PARAMETER
|
||
|
|
||
|
|
||
|
def test_grid_search_failing_classifier_raise():
|
||
|
# GridSearchCV with on_error == 'raise' raises the error
|
||
|
|
||
|
X, y = make_classification(n_samples=20, n_features=10, random_state=0)
|
||
|
|
||
|
clf = FailingClassifier()
|
||
|
|
||
|
# refit=False because we want to test the behaviour of the grid search part
|
||
|
gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy',
|
||
|
refit=False, error_score='raise')
|
||
|
|
||
|
# FailingClassifier issues a ValueError so this is what we look for.
|
||
|
assert_raises(ValueError, gs.fit, X, y)
|
||
|
|
||
|
|
||
|
def test_parameters_sampler_replacement():
|
||
|
# raise warning if n_iter is bigger than total parameter space
|
||
|
params = [{'first': [0, 1], 'second': ['a', 'b', 'c']},
|
||
|
{'third': ['two', 'values']}]
|
||
|
sampler = ParameterSampler(params, n_iter=9)
|
||
|
n_iter = 9
|
||
|
grid_size = 8
|
||
|
expected_warning = ('The total space of parameters %d is smaller '
|
||
|
'than n_iter=%d. Running %d iterations. For '
|
||
|
'exhaustive searches, use GridSearchCV.'
|
||
|
% (grid_size, n_iter, grid_size))
|
||
|
assert_warns_message(UserWarning, expected_warning,
|
||
|
list, sampler)
|
||
|
|
||
|
# degenerates to GridSearchCV if n_iter the same as grid_size
|
||
|
sampler = ParameterSampler(params, n_iter=8)
|
||
|
samples = list(sampler)
|
||
|
assert len(samples) == 8
|
||
|
for values in ParameterGrid(params):
|
||
|
assert values in samples
|
||
|
|
||
|
# test sampling without replacement in a large grid
|
||
|
params = {'a': range(10), 'b': range(10), 'c': range(10)}
|
||
|
sampler = ParameterSampler(params, n_iter=99, random_state=42)
|
||
|
samples = list(sampler)
|
||
|
assert len(samples) == 99
|
||
|
hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c'])
|
||
|
for p in samples]
|
||
|
assert len(set(hashable_samples)) == 99
|
||
|
|
||
|
# doesn't go into infinite loops
|
||
|
params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']}
|
||
|
sampler = ParameterSampler(params_distribution, n_iter=7)
|
||
|
samples = list(sampler)
|
||
|
assert len(samples) == 7
|
||
|
|
||
|
|
||
|
def test_stochastic_gradient_loss_param():
|
||
|
# Make sure the predict_proba works when loss is specified
|
||
|
# as one of the parameters in the param_grid.
|
||
|
param_grid = {
|
||
|
'loss': ['log'],
|
||
|
}
|
||
|
X = np.arange(24).reshape(6, -1)
|
||
|
y = [0, 0, 0, 1, 1, 1]
|
||
|
clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'),
|
||
|
param_grid=param_grid, cv=3)
|
||
|
|
||
|
# When the estimator is not fitted, `predict_proba` is not available as the
|
||
|
# loss is 'hinge'.
|
||
|
assert not hasattr(clf, "predict_proba")
|
||
|
clf.fit(X, y)
|
||
|
clf.predict_proba(X)
|
||
|
clf.predict_log_proba(X)
|
||
|
|
||
|
# Make sure `predict_proba` is not available when setting loss=['hinge']
|
||
|
# in param_grid
|
||
|
param_grid = {
|
||
|
'loss': ['hinge'],
|
||
|
}
|
||
|
clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'),
|
||
|
param_grid=param_grid, cv=3)
|
||
|
assert not hasattr(clf, "predict_proba")
|
||
|
clf.fit(X, y)
|
||
|
assert not hasattr(clf, "predict_proba")
|
||
|
|
||
|
|
||
|
def test_search_train_scores_set_to_false():
|
||
|
X = np.arange(6).reshape(6, -1)
|
||
|
y = [0, 0, 0, 1, 1, 1]
|
||
|
clf = LinearSVC(random_state=0)
|
||
|
|
||
|
gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]}, cv=3)
|
||
|
gs.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_grid_search_cv_splits_consistency():
|
||
|
# Check if a one time iterable is accepted as a cv parameter.
|
||
|
n_samples = 100
|
||
|
n_splits = 5
|
||
|
X, y = make_classification(n_samples=n_samples, random_state=0)
|
||
|
|
||
|
gs = GridSearchCV(LinearSVC(random_state=0),
|
||
|
param_grid={'C': [0.1, 0.2, 0.3]},
|
||
|
cv=OneTimeSplitter(n_splits=n_splits,
|
||
|
n_samples=n_samples),
|
||
|
return_train_score=True)
|
||
|
gs.fit(X, y)
|
||
|
|
||
|
gs2 = GridSearchCV(LinearSVC(random_state=0),
|
||
|
param_grid={'C': [0.1, 0.2, 0.3]},
|
||
|
cv=KFold(n_splits=n_splits), return_train_score=True)
|
||
|
gs2.fit(X, y)
|
||
|
|
||
|
# Give generator as a cv parameter
|
||
|
assert isinstance(KFold(n_splits=n_splits,
|
||
|
shuffle=True, random_state=0).split(X, y),
|
||
|
GeneratorType)
|
||
|
gs3 = GridSearchCV(LinearSVC(random_state=0),
|
||
|
param_grid={'C': [0.1, 0.2, 0.3]},
|
||
|
cv=KFold(n_splits=n_splits, shuffle=True,
|
||
|
random_state=0).split(X, y),
|
||
|
return_train_score=True)
|
||
|
gs3.fit(X, y)
|
||
|
|
||
|
gs4 = GridSearchCV(LinearSVC(random_state=0),
|
||
|
param_grid={'C': [0.1, 0.2, 0.3]},
|
||
|
cv=KFold(n_splits=n_splits, shuffle=True,
|
||
|
random_state=0), return_train_score=True)
|
||
|
gs4.fit(X, y)
|
||
|
|
||
|
def _pop_time_keys(cv_results):
|
||
|
for key in ('mean_fit_time', 'std_fit_time',
|
||
|
'mean_score_time', 'std_score_time'):
|
||
|
cv_results.pop(key)
|
||
|
return cv_results
|
||
|
|
||
|
# Check if generators are supported as cv and
|
||
|
# that the splits are consistent
|
||
|
np.testing.assert_equal(_pop_time_keys(gs3.cv_results_),
|
||
|
_pop_time_keys(gs4.cv_results_))
|
||
|
|
||
|
# OneTimeSplitter is a non-re-entrant cv where split can be called only
|
||
|
# once if ``cv.split`` is called once per param setting in GridSearchCV.fit
|
||
|
# the 2nd and 3rd parameter will not be evaluated as no train/test indices
|
||
|
# will be generated for the 2nd and subsequent cv.split calls.
|
||
|
# This is a check to make sure cv.split is not called once per param
|
||
|
# setting.
|
||
|
np.testing.assert_equal({k: v for k, v in gs.cv_results_.items()
|
||
|
if not k.endswith('_time')},
|
||
|
{k: v for k, v in gs2.cv_results_.items()
|
||
|
if not k.endswith('_time')})
|
||
|
|
||
|
# Check consistency of folds across the parameters
|
||
|
gs = GridSearchCV(LinearSVC(random_state=0),
|
||
|
param_grid={'C': [0.1, 0.1, 0.2, 0.2]},
|
||
|
cv=KFold(n_splits=n_splits, shuffle=True),
|
||
|
return_train_score=True)
|
||
|
gs.fit(X, y)
|
||
|
|
||
|
# As the first two param settings (C=0.1) and the next two param
|
||
|
# settings (C=0.2) are same, the test and train scores must also be
|
||
|
# same as long as the same train/test indices are generated for all
|
||
|
# the cv splits, for both param setting
|
||
|
for score_type in ('train', 'test'):
|
||
|
per_param_scores = {}
|
||
|
for param_i in range(4):
|
||
|
per_param_scores[param_i] = list(
|
||
|
gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i]
|
||
|
for s in range(5))
|
||
|
|
||
|
assert_array_almost_equal(per_param_scores[0],
|
||
|
per_param_scores[1])
|
||
|
assert_array_almost_equal(per_param_scores[2],
|
||
|
per_param_scores[3])
|
||
|
|
||
|
|
||
|
def test_transform_inverse_transform_round_trip():
|
||
|
clf = MockClassifier()
|
||
|
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
|
||
|
|
||
|
grid_search.fit(X, y)
|
||
|
X_round_trip = grid_search.inverse_transform(grid_search.transform(X))
|
||
|
assert_array_equal(X, X_round_trip)
|
||
|
|
||
|
|
||
|
def test_custom_run_search():
|
||
|
def check_results(results, gscv):
|
||
|
exp_results = gscv.cv_results_
|
||
|
assert sorted(results.keys()) == sorted(exp_results)
|
||
|
for k in results:
|
||
|
if not k.endswith('_time'):
|
||
|
# XXX: results['params'] is a list :|
|
||
|
results[k] = np.asanyarray(results[k])
|
||
|
if results[k].dtype.kind == 'O':
|
||
|
assert_array_equal(exp_results[k], results[k],
|
||
|
err_msg='Checking ' + k)
|
||
|
else:
|
||
|
assert_allclose(exp_results[k], results[k],
|
||
|
err_msg='Checking ' + k)
|
||
|
|
||
|
def fit_grid(param_grid):
|
||
|
return GridSearchCV(clf, param_grid,
|
||
|
return_train_score=True).fit(X, y)
|
||
|
|
||
|
class CustomSearchCV(BaseSearchCV):
|
||
|
def __init__(self, estimator, **kwargs):
|
||
|
super().__init__(estimator, **kwargs)
|
||
|
|
||
|
def _run_search(self, evaluate):
|
||
|
results = evaluate([{'max_depth': 1}, {'max_depth': 2}])
|
||
|
check_results(results, fit_grid({'max_depth': [1, 2]}))
|
||
|
results = evaluate([{'min_samples_split': 5},
|
||
|
{'min_samples_split': 10}])
|
||
|
check_results(results, fit_grid([{'max_depth': [1, 2]},
|
||
|
{'min_samples_split': [5, 10]}]))
|
||
|
|
||
|
# Using regressor to make sure each score differs
|
||
|
clf = DecisionTreeRegressor(random_state=0)
|
||
|
X, y = make_classification(n_samples=100, n_informative=4,
|
||
|
random_state=0)
|
||
|
mycv = CustomSearchCV(clf, return_train_score=True).fit(X, y)
|
||
|
gscv = fit_grid([{'max_depth': [1, 2]},
|
||
|
{'min_samples_split': [5, 10]}])
|
||
|
|
||
|
results = mycv.cv_results_
|
||
|
check_results(results, gscv)
|
||
|
# TODO: remove in v0.24, the deprecation goes away then.
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match="attribute is to be deprecated from version 0.22"):
|
||
|
for attr in dir(gscv):
|
||
|
if (attr[0].islower() and attr[-1:] == '_' and
|
||
|
attr not in {'cv_results_', 'best_estimator_',
|
||
|
'refit_time_',
|
||
|
}):
|
||
|
assert getattr(gscv, attr) == getattr(mycv, attr), \
|
||
|
"Attribute %s not equal" % attr
|
||
|
|
||
|
|
||
|
def test__custom_fit_no_run_search():
|
||
|
class NoRunSearchSearchCV(BaseSearchCV):
|
||
|
def __init__(self, estimator, **kwargs):
|
||
|
super().__init__(estimator, **kwargs)
|
||
|
|
||
|
def fit(self, X, y=None, groups=None, **fit_params):
|
||
|
return self
|
||
|
|
||
|
# this should not raise any exceptions
|
||
|
NoRunSearchSearchCV(SVC()).fit(X, y)
|
||
|
|
||
|
class BadSearchCV(BaseSearchCV):
|
||
|
def __init__(self, estimator, **kwargs):
|
||
|
super().__init__(estimator, **kwargs)
|
||
|
|
||
|
with pytest.raises(NotImplementedError,
|
||
|
match="_run_search not implemented."):
|
||
|
# this should raise a NotImplementedError
|
||
|
BadSearchCV(SVC()).fit(X, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("iid", [False, True])
|
||
|
def test_deprecated_grid_search_iid(iid):
|
||
|
# FIXME: remove in 0.24
|
||
|
depr_msg = "The parameter 'iid' is deprecated in 0.22 and will be removed"
|
||
|
X, y = make_blobs(n_samples=54, random_state=0, centers=2)
|
||
|
grid = GridSearchCV(
|
||
|
SVC(random_state=0), param_grid={'C': [10]}, cv=3, iid=iid
|
||
|
)
|
||
|
with pytest.warns(FutureWarning, match=depr_msg):
|
||
|
grid.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_empty_cv_iterator_error():
|
||
|
# Use global X, y
|
||
|
|
||
|
# create cv
|
||
|
cv = KFold(n_splits=3).split(X)
|
||
|
|
||
|
# pop all of it, this should cause the expected ValueError
|
||
|
[u for u in cv]
|
||
|
# cv is empty now
|
||
|
|
||
|
train_size = 100
|
||
|
ridge = RandomizedSearchCV(Ridge(), {'alpha': [1e-3, 1e-2, 1e-1]},
|
||
|
cv=cv, n_jobs=4)
|
||
|
|
||
|
# assert that this raises an error
|
||
|
with pytest.raises(ValueError,
|
||
|
match='No fits were performed. '
|
||
|
'Was the CV iterator empty\\? '
|
||
|
'Were there no candidates\\?'):
|
||
|
ridge.fit(X[:train_size], y[:train_size])
|
||
|
|
||
|
|
||
|
def test_random_search_bad_cv():
|
||
|
# Use global X, y
|
||
|
|
||
|
class BrokenKFold(KFold):
|
||
|
def get_n_splits(self, *args, **kw):
|
||
|
return 1
|
||
|
|
||
|
# create bad cv
|
||
|
cv = BrokenKFold(n_splits=3)
|
||
|
|
||
|
train_size = 100
|
||
|
ridge = RandomizedSearchCV(Ridge(), {'alpha': [1e-3, 1e-2, 1e-1]},
|
||
|
cv=cv, n_jobs=4)
|
||
|
|
||
|
# assert that this raises an error
|
||
|
with pytest.raises(ValueError,
|
||
|
match='cv.split and cv.get_n_splits returned '
|
||
|
'inconsistent results. Expected \\d+ '
|
||
|
'splits, got \\d+'):
|
||
|
ridge.fit(X[:train_size], y[:train_size])
|
||
|
|
||
|
|
||
|
def test_n_features_in():
|
||
|
# make sure grid search and random search delegate n_features_in to the
|
||
|
# best estimator
|
||
|
n_features = 4
|
||
|
X, y = make_classification(n_features=n_features)
|
||
|
gbdt = HistGradientBoostingClassifier()
|
||
|
param_grid = {'max_iter': [3, 4]}
|
||
|
gs = GridSearchCV(gbdt, param_grid)
|
||
|
rs = RandomizedSearchCV(gbdt, param_grid, n_iter=1)
|
||
|
assert not hasattr(gs, 'n_features_in_')
|
||
|
assert not hasattr(rs, 'n_features_in_')
|
||
|
gs.fit(X, y)
|
||
|
rs.fit(X, y)
|
||
|
assert gs.n_features_in_ == n_features
|
||
|
assert rs.n_features_in_ == n_features
|
||
|
|
||
|
|
||
|
def test_search_cv__pairwise_property_delegated_to_base_estimator():
|
||
|
"""
|
||
|
Test implementation of BaseSearchCV has the _pairwise property
|
||
|
which matches the _pairwise property of its estimator.
|
||
|
This test make sure _pairwise is delegated to the base estimator.
|
||
|
|
||
|
Non-regression test for issue #13920.
|
||
|
"""
|
||
|
est = BaseEstimator()
|
||
|
attr_message = "BaseSearchCV _pairwise property must match estimator"
|
||
|
|
||
|
for _pairwise_setting in [True, False]:
|
||
|
setattr(est, '_pairwise', _pairwise_setting)
|
||
|
cv = GridSearchCV(est, {'n_neighbors': [10]})
|
||
|
assert _pairwise_setting == cv._pairwise, attr_message
|
||
|
|
||
|
|
||
|
def test_search_cv__pairwise_property_equivalence_of_precomputed():
|
||
|
"""
|
||
|
Test implementation of BaseSearchCV has the _pairwise property
|
||
|
which matches the _pairwise property of its estimator.
|
||
|
This test ensures the equivalence of 'precomputed'.
|
||
|
|
||
|
Non-regression test for issue #13920.
|
||
|
"""
|
||
|
n_samples = 50
|
||
|
n_splits = 2
|
||
|
X, y = make_classification(n_samples=n_samples, random_state=0)
|
||
|
grid_params = {'n_neighbors': [10]}
|
||
|
|
||
|
# defaults to euclidean metric (minkowski p = 2)
|
||
|
clf = KNeighborsClassifier()
|
||
|
cv = GridSearchCV(clf, grid_params, cv=n_splits)
|
||
|
cv.fit(X, y)
|
||
|
preds_original = cv.predict(X)
|
||
|
|
||
|
# precompute euclidean metric to validate _pairwise is working
|
||
|
X_precomputed = euclidean_distances(X)
|
||
|
clf = KNeighborsClassifier(metric='precomputed')
|
||
|
cv = GridSearchCV(clf, grid_params, cv=n_splits)
|
||
|
cv.fit(X_precomputed, y)
|
||
|
preds_precomputed = cv.predict(X_precomputed)
|
||
|
|
||
|
attr_message = "GridSearchCV not identical with precomputed metric"
|
||
|
assert (preds_original == preds_precomputed).all(), attr_message
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"SearchCV, param_search",
|
||
|
[(GridSearchCV, {'a': [0.1, 0.01]}),
|
||
|
(RandomizedSearchCV, {'a': uniform(1, 3)})]
|
||
|
)
|
||
|
def test_scalar_fit_param(SearchCV, param_search):
|
||
|
# unofficially sanctioned tolerance for scalar values in fit_params
|
||
|
# non-regression test for:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/15805
|
||
|
class TestEstimator(BaseEstimator, ClassifierMixin):
|
||
|
def __init__(self, a=None):
|
||
|
self.a = a
|
||
|
|
||
|
def fit(self, X, y, r=None):
|
||
|
self.r_ = r
|
||
|
|
||
|
def predict(self, X):
|
||
|
return np.zeros(shape=(len(X)))
|
||
|
|
||
|
model = SearchCV(TestEstimator(), param_search)
|
||
|
X, y = make_classification(random_state=42)
|
||
|
model.fit(X, y, r=42)
|
||
|
assert model.best_estimator_.r_ == 42
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"SearchCV, param_search",
|
||
|
[(GridSearchCV, {'alpha': [0.1, 0.01]}),
|
||
|
(RandomizedSearchCV, {'alpha': uniform(0.01, 0.1)})]
|
||
|
)
|
||
|
def test_scalar_fit_param_compat(SearchCV, param_search):
|
||
|
# check support for scalar values in fit_params, for instance in LightGBM
|
||
|
# that do not exactly respect the scikit-learn API contract but that we do
|
||
|
# not want to break without an explicit deprecation cycle and API
|
||
|
# recommendations for implementing early stopping with a user provided
|
||
|
# validation set. non-regression test for:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/15805
|
||
|
X_train, X_valid, y_train, y_valid = train_test_split(
|
||
|
*make_classification(random_state=42), random_state=42
|
||
|
)
|
||
|
|
||
|
class _FitParamClassifier(SGDClassifier):
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None, tuple_of_arrays=None,
|
||
|
scalar_param=None, callable_param=None):
|
||
|
super().fit(X, y, sample_weight=sample_weight)
|
||
|
assert scalar_param > 0
|
||
|
assert callable(callable_param)
|
||
|
|
||
|
# The tuple of arrays should be preserved as tuple.
|
||
|
assert isinstance(tuple_of_arrays, tuple)
|
||
|
assert tuple_of_arrays[0].ndim == 2
|
||
|
assert tuple_of_arrays[1].ndim == 1
|
||
|
return self
|
||
|
|
||
|
def _fit_param_callable():
|
||
|
pass
|
||
|
|
||
|
model = SearchCV(
|
||
|
_FitParamClassifier(), param_search
|
||
|
)
|
||
|
|
||
|
# NOTE: `fit_params` should be data dependent (e.g. `sample_weight`) which
|
||
|
# is not the case for the following parameters. But this abuse is common in
|
||
|
# popular third-party libraries and we should tolerate this behavior for
|
||
|
# now and be careful not to break support for those without following
|
||
|
# proper deprecation cycle.
|
||
|
fit_params = {
|
||
|
'tuple_of_arrays': (X_valid, y_valid),
|
||
|
'callable_param': _fit_param_callable,
|
||
|
'scalar_param': 42,
|
||
|
}
|
||
|
model.fit(X_train, y_train, **fit_params)
|