253 lines
9.5 KiB
Python
253 lines
9.5 KiB
Python
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
import pytest
|
||
|
from scipy.sparse import csr_matrix
|
||
|
|
||
|
from sklearn import datasets
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.metrics.cluster import silhouette_score
|
||
|
from sklearn.metrics.cluster import silhouette_samples
|
||
|
from sklearn.metrics import pairwise_distances
|
||
|
from sklearn.metrics.cluster import calinski_harabasz_score
|
||
|
from sklearn.metrics.cluster import davies_bouldin_score
|
||
|
|
||
|
|
||
|
def test_silhouette():
|
||
|
# Tests the Silhouette Coefficient.
|
||
|
dataset = datasets.load_iris()
|
||
|
X_dense = dataset.data
|
||
|
X_csr = csr_matrix(X_dense)
|
||
|
X_dok = sp.dok_matrix(X_dense)
|
||
|
X_lil = sp.lil_matrix(X_dense)
|
||
|
y = dataset.target
|
||
|
|
||
|
for X in [X_dense, X_csr, X_dok, X_lil]:
|
||
|
D = pairwise_distances(X, metric='euclidean')
|
||
|
# Given that the actual labels are used, we can assume that S would be
|
||
|
# positive.
|
||
|
score_precomputed = silhouette_score(D, y, metric='precomputed')
|
||
|
assert score_precomputed > 0
|
||
|
# Test without calculating D
|
||
|
score_euclidean = silhouette_score(X, y, metric='euclidean')
|
||
|
pytest.approx(score_precomputed, score_euclidean)
|
||
|
|
||
|
if X is X_dense:
|
||
|
score_dense_without_sampling = score_precomputed
|
||
|
else:
|
||
|
pytest.approx(score_euclidean,
|
||
|
score_dense_without_sampling)
|
||
|
|
||
|
# Test with sampling
|
||
|
score_precomputed = silhouette_score(D, y, metric='precomputed',
|
||
|
sample_size=int(X.shape[0] / 2),
|
||
|
random_state=0)
|
||
|
score_euclidean = silhouette_score(X, y, metric='euclidean',
|
||
|
sample_size=int(X.shape[0] / 2),
|
||
|
random_state=0)
|
||
|
assert score_precomputed > 0
|
||
|
assert score_euclidean > 0
|
||
|
pytest.approx(score_euclidean, score_precomputed)
|
||
|
|
||
|
if X is X_dense:
|
||
|
score_dense_with_sampling = score_precomputed
|
||
|
else:
|
||
|
pytest.approx(score_euclidean, score_dense_with_sampling)
|
||
|
|
||
|
|
||
|
def test_cluster_size_1():
|
||
|
# Assert Silhouette Coefficient == 0 when there is 1 sample in a cluster
|
||
|
# (cluster 0). We also test the case where there are identical samples
|
||
|
# as the only members of a cluster (cluster 2). To our knowledge, this case
|
||
|
# is not discussed in reference material, and we choose for it a sample
|
||
|
# score of 1.
|
||
|
X = [[0.], [1.], [1.], [2.], [3.], [3.]]
|
||
|
labels = np.array([0, 1, 1, 1, 2, 2])
|
||
|
|
||
|
# Cluster 0: 1 sample -> score of 0 by Rousseeuw's convention
|
||
|
# Cluster 1: intra-cluster = [.5, .5, 1]
|
||
|
# inter-cluster = [1, 1, 1]
|
||
|
# silhouette = [.5, .5, 0]
|
||
|
# Cluster 2: intra-cluster = [0, 0]
|
||
|
# inter-cluster = [arbitrary, arbitrary]
|
||
|
# silhouette = [1., 1.]
|
||
|
|
||
|
silhouette = silhouette_score(X, labels)
|
||
|
assert not np.isnan(silhouette)
|
||
|
ss = silhouette_samples(X, labels)
|
||
|
assert_array_equal(ss, [0, .5, .5, 0, 1, 1])
|
||
|
|
||
|
|
||
|
def test_silhouette_paper_example():
|
||
|
# Explicitly check per-sample results against Rousseeuw (1987)
|
||
|
# Data from Table 1
|
||
|
lower = [5.58,
|
||
|
7.00, 6.50,
|
||
|
7.08, 7.00, 3.83,
|
||
|
4.83, 5.08, 8.17, 5.83,
|
||
|
2.17, 5.75, 6.67, 6.92, 4.92,
|
||
|
6.42, 5.00, 5.58, 6.00, 4.67, 6.42,
|
||
|
3.42, 5.50, 6.42, 6.42, 5.00, 3.92, 6.17,
|
||
|
2.50, 4.92, 6.25, 7.33, 4.50, 2.25, 6.33, 2.75,
|
||
|
6.08, 6.67, 4.25, 2.67, 6.00, 6.17, 6.17, 6.92, 6.17,
|
||
|
5.25, 6.83, 4.50, 3.75, 5.75, 5.42, 6.08, 5.83, 6.67, 3.67,
|
||
|
4.75, 3.00, 6.08, 6.67, 5.00, 5.58, 4.83, 6.17, 5.67, 6.50, 6.92]
|
||
|
D = np.zeros((12, 12))
|
||
|
D[np.tril_indices(12, -1)] = lower
|
||
|
D += D.T
|
||
|
|
||
|
names = ['BEL', 'BRA', 'CHI', 'CUB', 'EGY', 'FRA', 'IND', 'ISR', 'USA',
|
||
|
'USS', 'YUG', 'ZAI']
|
||
|
|
||
|
# Data from Figure 2
|
||
|
labels1 = [1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1]
|
||
|
expected1 = {'USA': .43, 'BEL': .39, 'FRA': .35, 'ISR': .30, 'BRA': .22,
|
||
|
'EGY': .20, 'ZAI': .19, 'CUB': .40, 'USS': .34, 'CHI': .33,
|
||
|
'YUG': .26, 'IND': -.04}
|
||
|
score1 = .28
|
||
|
|
||
|
# Data from Figure 3
|
||
|
labels2 = [1, 2, 3, 3, 1, 1, 2, 1, 1, 3, 3, 2]
|
||
|
expected2 = {'USA': .47, 'FRA': .44, 'BEL': .42, 'ISR': .37, 'EGY': .02,
|
||
|
'ZAI': .28, 'BRA': .25, 'IND': .17, 'CUB': .48, 'USS': .44,
|
||
|
'YUG': .31, 'CHI': .31}
|
||
|
score2 = .33
|
||
|
|
||
|
for labels, expected, score in [(labels1, expected1, score1),
|
||
|
(labels2, expected2, score2)]:
|
||
|
expected = [expected[name] for name in names]
|
||
|
# we check to 2dp because that's what's in the paper
|
||
|
pytest.approx(expected,
|
||
|
silhouette_samples(D, np.array(labels),
|
||
|
metric='precomputed'),
|
||
|
abs=1e-2)
|
||
|
pytest.approx(score,
|
||
|
silhouette_score(D, np.array(labels),
|
||
|
metric='precomputed'),
|
||
|
abs=1e-2)
|
||
|
|
||
|
|
||
|
def test_correct_labelsize():
|
||
|
# Assert 1 < n_labels < n_samples
|
||
|
dataset = datasets.load_iris()
|
||
|
X = dataset.data
|
||
|
|
||
|
# n_labels = n_samples
|
||
|
y = np.arange(X.shape[0])
|
||
|
err_msg = (r'Number of labels is %d\. Valid values are 2 '
|
||
|
r'to n_samples - 1 \(inclusive\)' % len(np.unique(y)))
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
silhouette_score(X, y)
|
||
|
|
||
|
# n_labels = 1
|
||
|
y = np.zeros(X.shape[0])
|
||
|
err_msg = (r'Number of labels is %d\. Valid values are 2 '
|
||
|
r'to n_samples - 1 \(inclusive\)' % len(np.unique(y)))
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
silhouette_score(X, y)
|
||
|
|
||
|
|
||
|
def test_non_encoded_labels():
|
||
|
dataset = datasets.load_iris()
|
||
|
X = dataset.data
|
||
|
labels = dataset.target
|
||
|
assert (
|
||
|
silhouette_score(X, labels * 2 + 10) == silhouette_score(X, labels))
|
||
|
assert_array_equal(
|
||
|
silhouette_samples(X, labels * 2 + 10), silhouette_samples(X, labels))
|
||
|
|
||
|
|
||
|
def test_non_numpy_labels():
|
||
|
dataset = datasets.load_iris()
|
||
|
X = dataset.data
|
||
|
y = dataset.target
|
||
|
assert (
|
||
|
silhouette_score(list(X), list(y)) == silhouette_score(X, y))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('dtype', (np.float32, np.float64))
|
||
|
def test_silhouette_nonzero_diag(dtype):
|
||
|
# Make sure silhouette_samples requires diagonal to be zero.
|
||
|
# Non-regression test for #12178
|
||
|
|
||
|
# Construct a zero-diagonal matrix
|
||
|
dists = pairwise_distances(
|
||
|
np.array([[0.2, 0.1, 0.12, 1.34, 1.11, 1.6]], dtype=dtype).T)
|
||
|
labels = [0, 0, 0, 1, 1, 1]
|
||
|
|
||
|
# small values on the diagonal are OK
|
||
|
dists[2][2] = np.finfo(dists.dtype).eps * 10
|
||
|
silhouette_samples(dists, labels, metric='precomputed')
|
||
|
|
||
|
# values bigger than eps * 100 are not
|
||
|
dists[2][2] = np.finfo(dists.dtype).eps * 1000
|
||
|
with pytest.raises(ValueError, match='contains non-zero'):
|
||
|
silhouette_samples(dists, labels, metric='precomputed')
|
||
|
|
||
|
|
||
|
def assert_raises_on_only_one_label(func):
|
||
|
"""Assert message when there is only one label"""
|
||
|
rng = np.random.RandomState(seed=0)
|
||
|
with pytest.raises(ValueError, match="Number of labels is"):
|
||
|
func(rng.rand(10, 2), np.zeros(10))
|
||
|
|
||
|
|
||
|
def assert_raises_on_all_points_same_cluster(func):
|
||
|
"""Assert message when all point are in different clusters"""
|
||
|
rng = np.random.RandomState(seed=0)
|
||
|
with pytest.raises(ValueError, match="Number of labels is"):
|
||
|
func(rng.rand(10, 2), np.arange(10))
|
||
|
|
||
|
|
||
|
def test_calinski_harabasz_score():
|
||
|
assert_raises_on_only_one_label(calinski_harabasz_score)
|
||
|
|
||
|
assert_raises_on_all_points_same_cluster(calinski_harabasz_score)
|
||
|
|
||
|
# Assert the value is 1. when all samples are equals
|
||
|
assert 1. == calinski_harabasz_score(np.ones((10, 2)),
|
||
|
[0] * 5 + [1] * 5)
|
||
|
|
||
|
# Assert the value is 0. when all the mean cluster are equal
|
||
|
assert 0. == calinski_harabasz_score([[-1, -1], [1, 1]] * 10,
|
||
|
[0] * 10 + [1] * 10)
|
||
|
|
||
|
# General case (with non numpy arrays)
|
||
|
X = ([[0, 0], [1, 1]] * 5 + [[3, 3], [4, 4]] * 5 +
|
||
|
[[0, 4], [1, 3]] * 5 + [[3, 1], [4, 0]] * 5)
|
||
|
labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
|
||
|
pytest.approx(calinski_harabasz_score(X, labels),
|
||
|
45 * (40 - 4) / (5 * (4 - 1)))
|
||
|
|
||
|
|
||
|
def test_davies_bouldin_score():
|
||
|
assert_raises_on_only_one_label(davies_bouldin_score)
|
||
|
assert_raises_on_all_points_same_cluster(davies_bouldin_score)
|
||
|
|
||
|
# Assert the value is 0. when all samples are equals
|
||
|
assert davies_bouldin_score(np.ones((10, 2)),
|
||
|
[0] * 5 + [1] * 5) == pytest.approx(0.0)
|
||
|
|
||
|
# Assert the value is 0. when all the mean cluster are equal
|
||
|
assert davies_bouldin_score([[-1, -1], [1, 1]] * 10,
|
||
|
[0] * 10 + [1] * 10) == pytest.approx(0.0)
|
||
|
|
||
|
# General case (with non numpy arrays)
|
||
|
X = ([[0, 0], [1, 1]] * 5 + [[3, 3], [4, 4]] * 5 +
|
||
|
[[0, 4], [1, 3]] * 5 + [[3, 1], [4, 0]] * 5)
|
||
|
labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10
|
||
|
pytest.approx(davies_bouldin_score(X, labels), 2 * np.sqrt(0.5) / 3)
|
||
|
|
||
|
# Ensure divide by zero warning is not raised in general case
|
||
|
with pytest.warns(None) as record:
|
||
|
davies_bouldin_score(X, labels)
|
||
|
div_zero_warnings = [
|
||
|
warning for warning in record
|
||
|
if "divide by zero encountered" in warning.message.args[0]
|
||
|
]
|
||
|
assert len(div_zero_warnings) == 0
|
||
|
|
||
|
# General case - cluster have one sample
|
||
|
X = ([[0, 0], [2, 2], [3, 3], [5, 5]])
|
||
|
labels = [0, 0, 1, 2]
|
||
|
pytest.approx(davies_bouldin_score(X, labels), (5. / 4) / 3)
|