1175 lines
42 KiB
Python
1175 lines
42 KiB
Python
|
"""Weight Boosting
|
||
|
|
||
|
This module contains weight boosting estimators for both classification and
|
||
|
regression.
|
||
|
|
||
|
The module structure is the following:
|
||
|
|
||
|
- The ``BaseWeightBoosting`` base class implements a common ``fit`` method
|
||
|
for all the estimators in the module. Regression and classification
|
||
|
only differ from each other in the loss function that is optimized.
|
||
|
|
||
|
- ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for
|
||
|
classification problems.
|
||
|
|
||
|
- ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for
|
||
|
regression problems.
|
||
|
"""
|
||
|
|
||
|
# Authors: Noel Dawe <noel@dawe.me>
|
||
|
# Gilles Louppe <g.louppe@gmail.com>
|
||
|
# Hamzeh Alsalhi <ha258@cornell.edu>
|
||
|
# Arnaud Joly <arnaud.v.joly@gmail.com>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
from abc import ABCMeta, abstractmethod
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy.special import xlogy
|
||
|
|
||
|
from ._base import BaseEnsemble
|
||
|
from ..base import ClassifierMixin, RegressorMixin, is_classifier, is_regressor
|
||
|
|
||
|
from ..tree import DecisionTreeClassifier, DecisionTreeRegressor
|
||
|
from ..utils import check_array, check_random_state, _safe_indexing
|
||
|
from ..utils.extmath import softmax
|
||
|
from ..utils.extmath import stable_cumsum
|
||
|
from ..metrics import accuracy_score, r2_score
|
||
|
from ..utils.validation import check_is_fitted
|
||
|
from ..utils.validation import _check_sample_weight
|
||
|
from ..utils.validation import has_fit_parameter
|
||
|
from ..utils.validation import _num_samples
|
||
|
from ..utils.validation import _deprecate_positional_args
|
||
|
|
||
|
__all__ = [
|
||
|
'AdaBoostClassifier',
|
||
|
'AdaBoostRegressor',
|
||
|
]
|
||
|
|
||
|
|
||
|
class BaseWeightBoosting(BaseEnsemble, metaclass=ABCMeta):
|
||
|
"""Base class for AdaBoost estimators.
|
||
|
|
||
|
Warning: This class should not be used directly. Use derived classes
|
||
|
instead.
|
||
|
"""
|
||
|
|
||
|
@abstractmethod
|
||
|
def __init__(self,
|
||
|
base_estimator=None, *,
|
||
|
n_estimators=50,
|
||
|
estimator_params=tuple(),
|
||
|
learning_rate=1.,
|
||
|
random_state=None):
|
||
|
|
||
|
super().__init__(
|
||
|
base_estimator=base_estimator,
|
||
|
n_estimators=n_estimators,
|
||
|
estimator_params=estimator_params)
|
||
|
|
||
|
self.learning_rate = learning_rate
|
||
|
self.random_state = random_state
|
||
|
|
||
|
def _check_X(self, X):
|
||
|
return check_array(X, accept_sparse=['csr', 'csc'], ensure_2d=True,
|
||
|
allow_nd=True, dtype=None)
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Build a boosted classifier/regressor from the training set (X, y).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
The target values (class labels in classification, real numbers in
|
||
|
regression).
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights. If None, the sample weights are initialized to
|
||
|
1 / n_samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
# Check parameters
|
||
|
if self.learning_rate <= 0:
|
||
|
raise ValueError("learning_rate must be greater than zero")
|
||
|
|
||
|
X, y = self._validate_data(X, y,
|
||
|
accept_sparse=['csr', 'csc'],
|
||
|
ensure_2d=True,
|
||
|
allow_nd=True,
|
||
|
dtype=None,
|
||
|
y_numeric=is_regressor(self))
|
||
|
|
||
|
sample_weight = _check_sample_weight(sample_weight, X, np.float64)
|
||
|
sample_weight /= sample_weight.sum()
|
||
|
if np.any(sample_weight < 0):
|
||
|
raise ValueError("sample_weight cannot contain negative weights")
|
||
|
|
||
|
# Check parameters
|
||
|
self._validate_estimator()
|
||
|
|
||
|
# Clear any previous fit results
|
||
|
self.estimators_ = []
|
||
|
self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64)
|
||
|
self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64)
|
||
|
|
||
|
# Initializion of the random number instance that will be used to
|
||
|
# generate a seed at each iteration
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
|
||
|
for iboost in range(self.n_estimators):
|
||
|
# Boosting step
|
||
|
sample_weight, estimator_weight, estimator_error = self._boost(
|
||
|
iboost,
|
||
|
X, y,
|
||
|
sample_weight,
|
||
|
random_state)
|
||
|
|
||
|
# Early termination
|
||
|
if sample_weight is None:
|
||
|
break
|
||
|
|
||
|
self.estimator_weights_[iboost] = estimator_weight
|
||
|
self.estimator_errors_[iboost] = estimator_error
|
||
|
|
||
|
# Stop if error is zero
|
||
|
if estimator_error == 0:
|
||
|
break
|
||
|
|
||
|
sample_weight_sum = np.sum(sample_weight)
|
||
|
|
||
|
# Stop if the sum of sample weights has become non-positive
|
||
|
if sample_weight_sum <= 0:
|
||
|
break
|
||
|
|
||
|
if iboost < self.n_estimators - 1:
|
||
|
# Normalize
|
||
|
sample_weight /= sample_weight_sum
|
||
|
|
||
|
return self
|
||
|
|
||
|
@abstractmethod
|
||
|
def _boost(self, iboost, X, y, sample_weight, random_state):
|
||
|
"""Implement a single boost.
|
||
|
|
||
|
Warning: This method needs to be overridden by subclasses.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
iboost : int
|
||
|
The index of the current boost iteration.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
The target values (class labels).
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,)
|
||
|
The current sample weights.
|
||
|
|
||
|
random_state : RandomState
|
||
|
The current random number generator
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sample_weight : array-like of shape (n_samples,) or None
|
||
|
The reweighted sample weights.
|
||
|
If None then boosting has terminated early.
|
||
|
|
||
|
estimator_weight : float
|
||
|
The weight for the current boost.
|
||
|
If None then boosting has terminated early.
|
||
|
|
||
|
error : float
|
||
|
The classification error for the current boost.
|
||
|
If None then boosting has terminated early.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
def staged_score(self, X, y, sample_weight=None):
|
||
|
"""Return staged scores for X, y.
|
||
|
|
||
|
This generator method yields the ensemble score after each iteration of
|
||
|
boosting and therefore allows monitoring, such as to determine the
|
||
|
score on a test set after each boost.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
Labels for X.
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
z : float
|
||
|
"""
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
for y_pred in self.staged_predict(X):
|
||
|
if is_classifier(self):
|
||
|
yield accuracy_score(y, y_pred, sample_weight=sample_weight)
|
||
|
else:
|
||
|
yield r2_score(y, y_pred, sample_weight=sample_weight)
|
||
|
|
||
|
@property
|
||
|
def feature_importances_(self):
|
||
|
"""The impurity-based feature importances.
|
||
|
|
||
|
The higher, the more important the feature.
|
||
|
The importance of a feature is computed as the (normalized)
|
||
|
total reduction of the criterion brought by that feature. It is also
|
||
|
known as the Gini importance.
|
||
|
|
||
|
Warning: impurity-based feature importances can be misleading for
|
||
|
high cardinality features (many unique values). See
|
||
|
:func:`sklearn.inspection.permutation_importance` as an alternative.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
feature_importances_ : ndarray of shape (n_features,)
|
||
|
The feature importances.
|
||
|
"""
|
||
|
if self.estimators_ is None or len(self.estimators_) == 0:
|
||
|
raise ValueError("Estimator not fitted, "
|
||
|
"call `fit` before `feature_importances_`.")
|
||
|
|
||
|
try:
|
||
|
norm = self.estimator_weights_.sum()
|
||
|
return (sum(weight * clf.feature_importances_ for weight, clf
|
||
|
in zip(self.estimator_weights_, self.estimators_))
|
||
|
/ norm)
|
||
|
|
||
|
except AttributeError:
|
||
|
raise AttributeError(
|
||
|
"Unable to compute feature importances "
|
||
|
"since base_estimator does not have a "
|
||
|
"feature_importances_ attribute")
|
||
|
|
||
|
|
||
|
def _samme_proba(estimator, n_classes, X):
|
||
|
"""Calculate algorithm 4, step 2, equation c) of Zhu et al [1].
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
|
||
|
|
||
|
"""
|
||
|
proba = estimator.predict_proba(X)
|
||
|
|
||
|
# Displace zero probabilities so the log is defined.
|
||
|
# Also fix negative elements which may occur with
|
||
|
# negative sample weights.
|
||
|
np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba)
|
||
|
log_proba = np.log(proba)
|
||
|
|
||
|
return (n_classes - 1) * (log_proba - (1. / n_classes)
|
||
|
* log_proba.sum(axis=1)[:, np.newaxis])
|
||
|
|
||
|
|
||
|
class AdaBoostClassifier(ClassifierMixin, BaseWeightBoosting):
|
||
|
"""An AdaBoost classifier.
|
||
|
|
||
|
An AdaBoost [1] classifier is a meta-estimator that begins by fitting a
|
||
|
classifier on the original dataset and then fits additional copies of the
|
||
|
classifier on the same dataset but where the weights of incorrectly
|
||
|
classified instances are adjusted such that subsequent classifiers focus
|
||
|
more on difficult cases.
|
||
|
|
||
|
This class implements the algorithm known as AdaBoost-SAMME [2].
|
||
|
|
||
|
Read more in the :ref:`User Guide <adaboost>`.
|
||
|
|
||
|
.. versionadded:: 0.14
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base_estimator : object, default=None
|
||
|
The base estimator from which the boosted ensemble is built.
|
||
|
Support for sample weighting is required, as well as proper
|
||
|
``classes_`` and ``n_classes_`` attributes. If ``None``, then
|
||
|
the base estimator is ``DecisionTreeClassifier(max_depth=1)``.
|
||
|
|
||
|
n_estimators : int, default=50
|
||
|
The maximum number of estimators at which boosting is terminated.
|
||
|
In case of perfect fit, the learning procedure is stopped early.
|
||
|
|
||
|
learning_rate : float, default=1.
|
||
|
Learning rate shrinks the contribution of each classifier by
|
||
|
``learning_rate``. There is a trade-off between ``learning_rate`` and
|
||
|
``n_estimators``.
|
||
|
|
||
|
algorithm : {'SAMME', 'SAMME.R'}, default='SAMME.R'
|
||
|
If 'SAMME.R' then use the SAMME.R real boosting algorithm.
|
||
|
``base_estimator`` must support calculation of class probabilities.
|
||
|
If 'SAMME' then use the SAMME discrete boosting algorithm.
|
||
|
The SAMME.R algorithm typically converges faster than SAMME,
|
||
|
achieving a lower test error with fewer boosting iterations.
|
||
|
|
||
|
random_state : int or RandomState, default=None
|
||
|
Controls the random seed given at each `base_estimator` at each
|
||
|
boosting iteration.
|
||
|
Thus, it is only used when `base_estimator` exposes a `random_state`.
|
||
|
Pass an int for reproducible output across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
base_estimator_ : estimator
|
||
|
The base estimator from which the ensemble is grown.
|
||
|
|
||
|
estimators_ : list of classifiers
|
||
|
The collection of fitted sub-estimators.
|
||
|
|
||
|
classes_ : ndarray of shape (n_classes,)
|
||
|
The classes labels.
|
||
|
|
||
|
n_classes_ : int
|
||
|
The number of classes.
|
||
|
|
||
|
estimator_weights_ : ndarray of floats
|
||
|
Weights for each estimator in the boosted ensemble.
|
||
|
|
||
|
estimator_errors_ : ndarray of floats
|
||
|
Classification error for each estimator in the boosted
|
||
|
ensemble.
|
||
|
|
||
|
feature_importances_ : ndarray of shape (n_features,)
|
||
|
The impurity-based feature importances if supported by the
|
||
|
``base_estimator`` (when based on decision trees).
|
||
|
|
||
|
Warning: impurity-based feature importances can be misleading for
|
||
|
high cardinality features (many unique values). See
|
||
|
:func:`sklearn.inspection.permutation_importance` as an alternative.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
AdaBoostRegressor
|
||
|
An AdaBoost regressor that begins by fitting a regressor on the
|
||
|
original dataset and then fits additional copies of the regressor
|
||
|
on the same dataset but where the weights of instances are
|
||
|
adjusted according to the error of the current prediction.
|
||
|
|
||
|
GradientBoostingClassifier
|
||
|
GB builds an additive model in a forward stage-wise fashion. Regression
|
||
|
trees are fit on the negative gradient of the binomial or multinomial
|
||
|
deviance loss function. Binary classification is a special case where
|
||
|
only a single regression tree is induced.
|
||
|
|
||
|
sklearn.tree.DecisionTreeClassifier
|
||
|
A non-parametric supervised learning method used for classification.
|
||
|
Creates a model that predicts the value of a target variable by
|
||
|
learning simple decision rules inferred from the data features.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
|
||
|
on-Line Learning and an Application to Boosting", 1995.
|
||
|
|
||
|
.. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.ensemble import AdaBoostClassifier
|
||
|
>>> from sklearn.datasets import make_classification
|
||
|
>>> X, y = make_classification(n_samples=1000, n_features=4,
|
||
|
... n_informative=2, n_redundant=0,
|
||
|
... random_state=0, shuffle=False)
|
||
|
>>> clf = AdaBoostClassifier(n_estimators=100, random_state=0)
|
||
|
>>> clf.fit(X, y)
|
||
|
AdaBoostClassifier(n_estimators=100, random_state=0)
|
||
|
>>> clf.predict([[0, 0, 0, 0]])
|
||
|
array([1])
|
||
|
>>> clf.score(X, y)
|
||
|
0.983...
|
||
|
"""
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self,
|
||
|
base_estimator=None, *,
|
||
|
n_estimators=50,
|
||
|
learning_rate=1.,
|
||
|
algorithm='SAMME.R',
|
||
|
random_state=None):
|
||
|
|
||
|
super().__init__(
|
||
|
base_estimator=base_estimator,
|
||
|
n_estimators=n_estimators,
|
||
|
learning_rate=learning_rate,
|
||
|
random_state=random_state)
|
||
|
|
||
|
self.algorithm = algorithm
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Build a boosted classifier from the training set (X, y).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
The target values (class labels).
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights. If None, the sample weights are initialized to
|
||
|
``1 / n_samples``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Fitted estimator.
|
||
|
"""
|
||
|
# Check that algorithm is supported
|
||
|
if self.algorithm not in ('SAMME', 'SAMME.R'):
|
||
|
raise ValueError("algorithm %s is not supported" % self.algorithm)
|
||
|
|
||
|
# Fit
|
||
|
return super().fit(X, y, sample_weight)
|
||
|
|
||
|
def _validate_estimator(self):
|
||
|
"""Check the estimator and set the base_estimator_ attribute."""
|
||
|
super()._validate_estimator(
|
||
|
default=DecisionTreeClassifier(max_depth=1))
|
||
|
|
||
|
# SAMME-R requires predict_proba-enabled base estimators
|
||
|
if self.algorithm == 'SAMME.R':
|
||
|
if not hasattr(self.base_estimator_, 'predict_proba'):
|
||
|
raise TypeError(
|
||
|
"AdaBoostClassifier with algorithm='SAMME.R' requires "
|
||
|
"that the weak learner supports the calculation of class "
|
||
|
"probabilities with a predict_proba method.\n"
|
||
|
"Please change the base estimator or set "
|
||
|
"algorithm='SAMME' instead.")
|
||
|
if not has_fit_parameter(self.base_estimator_, "sample_weight"):
|
||
|
raise ValueError("%s doesn't support sample_weight."
|
||
|
% self.base_estimator_.__class__.__name__)
|
||
|
|
||
|
def _boost(self, iboost, X, y, sample_weight, random_state):
|
||
|
"""Implement a single boost.
|
||
|
|
||
|
Perform a single boost according to the real multi-class SAMME.R
|
||
|
algorithm or to the discrete SAMME algorithm and return the updated
|
||
|
sample weights.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
iboost : int
|
||
|
The index of the current boost iteration.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
The target values (class labels).
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,)
|
||
|
The current sample weights.
|
||
|
|
||
|
random_state : RandomState
|
||
|
The RandomState instance used if the base estimator accepts a
|
||
|
`random_state` attribute.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sample_weight : array-like of shape (n_samples,) or None
|
||
|
The reweighted sample weights.
|
||
|
If None then boosting has terminated early.
|
||
|
|
||
|
estimator_weight : float
|
||
|
The weight for the current boost.
|
||
|
If None then boosting has terminated early.
|
||
|
|
||
|
estimator_error : float
|
||
|
The classification error for the current boost.
|
||
|
If None then boosting has terminated early.
|
||
|
"""
|
||
|
if self.algorithm == 'SAMME.R':
|
||
|
return self._boost_real(iboost, X, y, sample_weight, random_state)
|
||
|
|
||
|
else: # elif self.algorithm == "SAMME":
|
||
|
return self._boost_discrete(iboost, X, y, sample_weight,
|
||
|
random_state)
|
||
|
|
||
|
def _boost_real(self, iboost, X, y, sample_weight, random_state):
|
||
|
"""Implement a single boost using the SAMME.R real algorithm."""
|
||
|
estimator = self._make_estimator(random_state=random_state)
|
||
|
|
||
|
estimator.fit(X, y, sample_weight=sample_weight)
|
||
|
|
||
|
y_predict_proba = estimator.predict_proba(X)
|
||
|
|
||
|
if iboost == 0:
|
||
|
self.classes_ = getattr(estimator, 'classes_', None)
|
||
|
self.n_classes_ = len(self.classes_)
|
||
|
|
||
|
y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1),
|
||
|
axis=0)
|
||
|
|
||
|
# Instances incorrectly classified
|
||
|
incorrect = y_predict != y
|
||
|
|
||
|
# Error fraction
|
||
|
estimator_error = np.mean(
|
||
|
np.average(incorrect, weights=sample_weight, axis=0))
|
||
|
|
||
|
# Stop if classification is perfect
|
||
|
if estimator_error <= 0:
|
||
|
return sample_weight, 1., 0.
|
||
|
|
||
|
# Construct y coding as described in Zhu et al [2]:
|
||
|
#
|
||
|
# y_k = 1 if c == k else -1 / (K - 1)
|
||
|
#
|
||
|
# where K == n_classes_ and c, k in [0, K) are indices along the second
|
||
|
# axis of the y coding with c being the index corresponding to the true
|
||
|
# class label.
|
||
|
n_classes = self.n_classes_
|
||
|
classes = self.classes_
|
||
|
y_codes = np.array([-1. / (n_classes - 1), 1.])
|
||
|
y_coding = y_codes.take(classes == y[:, np.newaxis])
|
||
|
|
||
|
# Displace zero probabilities so the log is defined.
|
||
|
# Also fix negative elements which may occur with
|
||
|
# negative sample weights.
|
||
|
proba = y_predict_proba # alias for readability
|
||
|
np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba)
|
||
|
|
||
|
# Boost weight using multi-class AdaBoost SAMME.R alg
|
||
|
estimator_weight = (-1. * self.learning_rate
|
||
|
* ((n_classes - 1.) / n_classes)
|
||
|
* xlogy(y_coding, y_predict_proba).sum(axis=1))
|
||
|
|
||
|
# Only boost the weights if it will fit again
|
||
|
if not iboost == self.n_estimators - 1:
|
||
|
# Only boost positive weights
|
||
|
sample_weight *= np.exp(estimator_weight *
|
||
|
((sample_weight > 0) |
|
||
|
(estimator_weight < 0)))
|
||
|
|
||
|
return sample_weight, 1., estimator_error
|
||
|
|
||
|
def _boost_discrete(self, iboost, X, y, sample_weight, random_state):
|
||
|
"""Implement a single boost using the SAMME discrete algorithm."""
|
||
|
estimator = self._make_estimator(random_state=random_state)
|
||
|
|
||
|
estimator.fit(X, y, sample_weight=sample_weight)
|
||
|
|
||
|
y_predict = estimator.predict(X)
|
||
|
|
||
|
if iboost == 0:
|
||
|
self.classes_ = getattr(estimator, 'classes_', None)
|
||
|
self.n_classes_ = len(self.classes_)
|
||
|
|
||
|
# Instances incorrectly classified
|
||
|
incorrect = y_predict != y
|
||
|
|
||
|
# Error fraction
|
||
|
estimator_error = np.mean(
|
||
|
np.average(incorrect, weights=sample_weight, axis=0))
|
||
|
|
||
|
# Stop if classification is perfect
|
||
|
if estimator_error <= 0:
|
||
|
return sample_weight, 1., 0.
|
||
|
|
||
|
n_classes = self.n_classes_
|
||
|
|
||
|
# Stop if the error is at least as bad as random guessing
|
||
|
if estimator_error >= 1. - (1. / n_classes):
|
||
|
self.estimators_.pop(-1)
|
||
|
if len(self.estimators_) == 0:
|
||
|
raise ValueError('BaseClassifier in AdaBoostClassifier '
|
||
|
'ensemble is worse than random, ensemble '
|
||
|
'can not be fit.')
|
||
|
return None, None, None
|
||
|
|
||
|
# Boost weight using multi-class AdaBoost SAMME alg
|
||
|
estimator_weight = self.learning_rate * (
|
||
|
np.log((1. - estimator_error) / estimator_error) +
|
||
|
np.log(n_classes - 1.))
|
||
|
|
||
|
# Only boost the weights if I will fit again
|
||
|
if not iboost == self.n_estimators - 1:
|
||
|
# Only boost positive weights
|
||
|
sample_weight *= np.exp(estimator_weight * incorrect *
|
||
|
(sample_weight > 0))
|
||
|
|
||
|
return sample_weight, estimator_weight, estimator_error
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Predict classes for X.
|
||
|
|
||
|
The predicted class of an input sample is computed as the weighted mean
|
||
|
prediction of the classifiers in the ensemble.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : ndarray of shape (n_samples,)
|
||
|
The predicted classes.
|
||
|
"""
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
pred = self.decision_function(X)
|
||
|
|
||
|
if self.n_classes_ == 2:
|
||
|
return self.classes_.take(pred > 0, axis=0)
|
||
|
|
||
|
return self.classes_.take(np.argmax(pred, axis=1), axis=0)
|
||
|
|
||
|
def staged_predict(self, X):
|
||
|
"""Return staged predictions for X.
|
||
|
|
||
|
The predicted class of an input sample is computed as the weighted mean
|
||
|
prediction of the classifiers in the ensemble.
|
||
|
|
||
|
This generator method yields the ensemble prediction after each
|
||
|
iteration of boosting and therefore allows monitoring, such as to
|
||
|
determine the prediction on a test set after each boost.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
y : generator of ndarray of shape (n_samples,)
|
||
|
The predicted classes.
|
||
|
"""
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
n_classes = self.n_classes_
|
||
|
classes = self.classes_
|
||
|
|
||
|
if n_classes == 2:
|
||
|
for pred in self.staged_decision_function(X):
|
||
|
yield np.array(classes.take(pred > 0, axis=0))
|
||
|
|
||
|
else:
|
||
|
for pred in self.staged_decision_function(X):
|
||
|
yield np.array(classes.take(
|
||
|
np.argmax(pred, axis=1), axis=0))
|
||
|
|
||
|
def decision_function(self, X):
|
||
|
"""Compute the decision function of ``X``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
score : ndarray of shape of (n_samples, k)
|
||
|
The decision function of the input samples. The order of
|
||
|
outputs is the same of that of the :term:`classes_` attribute.
|
||
|
Binary classification is a special cases with ``k == 1``,
|
||
|
otherwise ``k==n_classes``. For binary classification,
|
||
|
values closer to -1 or 1 mean more like the first or second
|
||
|
class in ``classes_``, respectively.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
n_classes = self.n_classes_
|
||
|
classes = self.classes_[:, np.newaxis]
|
||
|
|
||
|
if self.algorithm == 'SAMME.R':
|
||
|
# The weights are all 1. for SAMME.R
|
||
|
pred = sum(_samme_proba(estimator, n_classes, X)
|
||
|
for estimator in self.estimators_)
|
||
|
else: # self.algorithm == "SAMME"
|
||
|
pred = sum((estimator.predict(X) == classes).T * w
|
||
|
for estimator, w in zip(self.estimators_,
|
||
|
self.estimator_weights_))
|
||
|
|
||
|
pred /= self.estimator_weights_.sum()
|
||
|
if n_classes == 2:
|
||
|
pred[:, 0] *= -1
|
||
|
return pred.sum(axis=1)
|
||
|
return pred
|
||
|
|
||
|
def staged_decision_function(self, X):
|
||
|
"""Compute decision function of ``X`` for each boosting iteration.
|
||
|
|
||
|
This method allows monitoring (i.e. determine error on testing set)
|
||
|
after each boosting iteration.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
score : generator of ndarray of shape (n_samples, k)
|
||
|
The decision function of the input samples. The order of
|
||
|
outputs is the same of that of the :term:`classes_` attribute.
|
||
|
Binary classification is a special cases with ``k == 1``,
|
||
|
otherwise ``k==n_classes``. For binary classification,
|
||
|
values closer to -1 or 1 mean more like the first or second
|
||
|
class in ``classes_``, respectively.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
n_classes = self.n_classes_
|
||
|
classes = self.classes_[:, np.newaxis]
|
||
|
pred = None
|
||
|
norm = 0.
|
||
|
|
||
|
for weight, estimator in zip(self.estimator_weights_,
|
||
|
self.estimators_):
|
||
|
norm += weight
|
||
|
|
||
|
if self.algorithm == 'SAMME.R':
|
||
|
# The weights are all 1. for SAMME.R
|
||
|
current_pred = _samme_proba(estimator, n_classes, X)
|
||
|
else: # elif self.algorithm == "SAMME":
|
||
|
current_pred = estimator.predict(X)
|
||
|
current_pred = (current_pred == classes).T * weight
|
||
|
|
||
|
if pred is None:
|
||
|
pred = current_pred
|
||
|
else:
|
||
|
pred += current_pred
|
||
|
|
||
|
if n_classes == 2:
|
||
|
tmp_pred = np.copy(pred)
|
||
|
tmp_pred[:, 0] *= -1
|
||
|
yield (tmp_pred / norm).sum(axis=1)
|
||
|
else:
|
||
|
yield pred / norm
|
||
|
|
||
|
@staticmethod
|
||
|
def _compute_proba_from_decision(decision, n_classes):
|
||
|
"""Compute probabilities from the decision function.
|
||
|
|
||
|
This is based eq. (4) of [1] where:
|
||
|
p(y=c|X) = exp((1 / K-1) f_c(X)) / sum_k(exp((1 / K-1) f_k(X)))
|
||
|
= softmax((1 / K-1) * f(X))
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost",
|
||
|
2009.
|
||
|
"""
|
||
|
if n_classes == 2:
|
||
|
decision = np.vstack([-decision, decision]).T / 2
|
||
|
else:
|
||
|
decision /= (n_classes - 1)
|
||
|
return softmax(decision, copy=False)
|
||
|
|
||
|
def predict_proba(self, X):
|
||
|
"""Predict class probabilities for X.
|
||
|
|
||
|
The predicted class probabilities of an input sample is computed as
|
||
|
the weighted mean predicted class probabilities of the classifiers
|
||
|
in the ensemble.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : ndarray of shape (n_samples, n_classes)
|
||
|
The class probabilities of the input samples. The order of
|
||
|
outputs is the same of that of the :term:`classes_` attribute.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
n_classes = self.n_classes_
|
||
|
|
||
|
if n_classes == 1:
|
||
|
return np.ones((_num_samples(X), 1))
|
||
|
|
||
|
decision = self.decision_function(X)
|
||
|
return self._compute_proba_from_decision(decision, n_classes)
|
||
|
|
||
|
def staged_predict_proba(self, X):
|
||
|
"""Predict class probabilities for X.
|
||
|
|
||
|
The predicted class probabilities of an input sample is computed as
|
||
|
the weighted mean predicted class probabilities of the classifiers
|
||
|
in the ensemble.
|
||
|
|
||
|
This generator method yields the ensemble predicted class probabilities
|
||
|
after each iteration of boosting and therefore allows monitoring, such
|
||
|
as to determine the predicted class probabilities on a test set after
|
||
|
each boost.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Yields
|
||
|
-------
|
||
|
p : generator of ndarray of shape (n_samples,)
|
||
|
The class probabilities of the input samples. The order of
|
||
|
outputs is the same of that of the :term:`classes_` attribute.
|
||
|
"""
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
n_classes = self.n_classes_
|
||
|
|
||
|
for decision in self.staged_decision_function(X):
|
||
|
yield self._compute_proba_from_decision(decision, n_classes)
|
||
|
|
||
|
def predict_log_proba(self, X):
|
||
|
"""Predict class log-probabilities for X.
|
||
|
|
||
|
The predicted class log-probabilities of an input sample is computed as
|
||
|
the weighted mean predicted class log-probabilities of the classifiers
|
||
|
in the ensemble.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
p : ndarray of shape (n_samples, n_classes)
|
||
|
The class probabilities of the input samples. The order of
|
||
|
outputs is the same of that of the :term:`classes_` attribute.
|
||
|
"""
|
||
|
X = self._check_X(X)
|
||
|
return np.log(self.predict_proba(X))
|
||
|
|
||
|
|
||
|
class AdaBoostRegressor(RegressorMixin, BaseWeightBoosting):
|
||
|
"""An AdaBoost regressor.
|
||
|
|
||
|
An AdaBoost [1] regressor is a meta-estimator that begins by fitting a
|
||
|
regressor on the original dataset and then fits additional copies of the
|
||
|
regressor on the same dataset but where the weights of instances are
|
||
|
adjusted according to the error of the current prediction. As such,
|
||
|
subsequent regressors focus more on difficult cases.
|
||
|
|
||
|
This class implements the algorithm known as AdaBoost.R2 [2].
|
||
|
|
||
|
Read more in the :ref:`User Guide <adaboost>`.
|
||
|
|
||
|
.. versionadded:: 0.14
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base_estimator : object, default=None
|
||
|
The base estimator from which the boosted ensemble is built.
|
||
|
If ``None``, then the base estimator is
|
||
|
``DecisionTreeRegressor(max_depth=3)``.
|
||
|
|
||
|
n_estimators : int, default=50
|
||
|
The maximum number of estimators at which boosting is terminated.
|
||
|
In case of perfect fit, the learning procedure is stopped early.
|
||
|
|
||
|
learning_rate : float, default=1.
|
||
|
Learning rate shrinks the contribution of each regressor by
|
||
|
``learning_rate``. There is a trade-off between ``learning_rate`` and
|
||
|
``n_estimators``.
|
||
|
|
||
|
loss : {'linear', 'square', 'exponential'}, default='linear'
|
||
|
The loss function to use when updating the weights after each
|
||
|
boosting iteration.
|
||
|
|
||
|
random_state : int or RandomState, default=None
|
||
|
Controls the random seed given at each `base_estimator` at each
|
||
|
boosting iteration.
|
||
|
Thus, it is only used when `base_estimator` exposes a `random_state`.
|
||
|
In addition, it controls the bootstrap of the weights used to train the
|
||
|
`base_estimator` at each boosting iteration.
|
||
|
Pass an int for reproducible output across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
base_estimator_ : estimator
|
||
|
The base estimator from which the ensemble is grown.
|
||
|
|
||
|
estimators_ : list of classifiers
|
||
|
The collection of fitted sub-estimators.
|
||
|
|
||
|
estimator_weights_ : ndarray of floats
|
||
|
Weights for each estimator in the boosted ensemble.
|
||
|
|
||
|
estimator_errors_ : ndarray of floats
|
||
|
Regression error for each estimator in the boosted ensemble.
|
||
|
|
||
|
feature_importances_ : ndarray of shape (n_features,)
|
||
|
The impurity-based feature importances if supported by the
|
||
|
``base_estimator`` (when based on decision trees).
|
||
|
|
||
|
Warning: impurity-based feature importances can be misleading for
|
||
|
high cardinality features (many unique values). See
|
||
|
:func:`sklearn.inspection.permutation_importance` as an alternative.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.ensemble import AdaBoostRegressor
|
||
|
>>> from sklearn.datasets import make_regression
|
||
|
>>> X, y = make_regression(n_features=4, n_informative=2,
|
||
|
... random_state=0, shuffle=False)
|
||
|
>>> regr = AdaBoostRegressor(random_state=0, n_estimators=100)
|
||
|
>>> regr.fit(X, y)
|
||
|
AdaBoostRegressor(n_estimators=100, random_state=0)
|
||
|
>>> regr.predict([[0, 0, 0, 0]])
|
||
|
array([4.7972...])
|
||
|
>>> regr.score(X, y)
|
||
|
0.9771...
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
AdaBoostClassifier, GradientBoostingRegressor,
|
||
|
sklearn.tree.DecisionTreeRegressor
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
|
||
|
on-Line Learning and an Application to Boosting", 1995.
|
||
|
|
||
|
.. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997.
|
||
|
|
||
|
"""
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self,
|
||
|
base_estimator=None, *,
|
||
|
n_estimators=50,
|
||
|
learning_rate=1.,
|
||
|
loss='linear',
|
||
|
random_state=None):
|
||
|
|
||
|
super().__init__(
|
||
|
base_estimator=base_estimator,
|
||
|
n_estimators=n_estimators,
|
||
|
learning_rate=learning_rate,
|
||
|
random_state=random_state)
|
||
|
|
||
|
self.loss = loss
|
||
|
self.random_state = random_state
|
||
|
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
"""Build a boosted regressor from the training set (X, y).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
The target values (real numbers).
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,), default=None
|
||
|
Sample weights. If None, the sample weights are initialized to
|
||
|
1 / n_samples.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
"""
|
||
|
# Check loss
|
||
|
if self.loss not in ('linear', 'square', 'exponential'):
|
||
|
raise ValueError(
|
||
|
"loss must be 'linear', 'square', or 'exponential'")
|
||
|
|
||
|
# Fit
|
||
|
return super().fit(X, y, sample_weight)
|
||
|
|
||
|
def _validate_estimator(self):
|
||
|
"""Check the estimator and set the base_estimator_ attribute."""
|
||
|
super()._validate_estimator(
|
||
|
default=DecisionTreeRegressor(max_depth=3))
|
||
|
|
||
|
def _boost(self, iboost, X, y, sample_weight, random_state):
|
||
|
"""Implement a single boost for regression
|
||
|
|
||
|
Perform a single boost according to the AdaBoost.R2 algorithm and
|
||
|
return the updated sample weights.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
iboost : int
|
||
|
The index of the current boost iteration.
|
||
|
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples.
|
||
|
|
||
|
y : array-like of shape (n_samples,)
|
||
|
The target values (class labels in classification, real numbers in
|
||
|
regression).
|
||
|
|
||
|
sample_weight : array-like of shape (n_samples,)
|
||
|
The current sample weights.
|
||
|
|
||
|
random_state : RandomState
|
||
|
The RandomState instance used if the base estimator accepts a
|
||
|
`random_state` attribute.
|
||
|
Controls also the bootstrap of the weights used to train the weak
|
||
|
learner.
|
||
|
replacement.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sample_weight : array-like of shape (n_samples,) or None
|
||
|
The reweighted sample weights.
|
||
|
If None then boosting has terminated early.
|
||
|
|
||
|
estimator_weight : float
|
||
|
The weight for the current boost.
|
||
|
If None then boosting has terminated early.
|
||
|
|
||
|
estimator_error : float
|
||
|
The regression error for the current boost.
|
||
|
If None then boosting has terminated early.
|
||
|
"""
|
||
|
estimator = self._make_estimator(random_state=random_state)
|
||
|
|
||
|
# Weighted sampling of the training set with replacement
|
||
|
bootstrap_idx = random_state.choice(
|
||
|
np.arange(_num_samples(X)), size=_num_samples(X), replace=True,
|
||
|
p=sample_weight
|
||
|
)
|
||
|
|
||
|
# Fit on the bootstrapped sample and obtain a prediction
|
||
|
# for all samples in the training set
|
||
|
X_ = _safe_indexing(X, bootstrap_idx)
|
||
|
y_ = _safe_indexing(y, bootstrap_idx)
|
||
|
estimator.fit(X_, y_)
|
||
|
y_predict = estimator.predict(X)
|
||
|
|
||
|
error_vect = np.abs(y_predict - y)
|
||
|
sample_mask = sample_weight > 0
|
||
|
masked_sample_weight = sample_weight[sample_mask]
|
||
|
masked_error_vector = error_vect[sample_mask]
|
||
|
|
||
|
error_max = masked_error_vector.max()
|
||
|
if error_max != 0:
|
||
|
masked_error_vector /= error_max
|
||
|
|
||
|
if self.loss == 'square':
|
||
|
masked_error_vector **= 2
|
||
|
elif self.loss == 'exponential':
|
||
|
masked_error_vector = 1. - np.exp(-masked_error_vector)
|
||
|
|
||
|
# Calculate the average loss
|
||
|
estimator_error = (masked_sample_weight * masked_error_vector).sum()
|
||
|
|
||
|
if estimator_error <= 0:
|
||
|
# Stop if fit is perfect
|
||
|
return sample_weight, 1., 0.
|
||
|
|
||
|
elif estimator_error >= 0.5:
|
||
|
# Discard current estimator only if it isn't the only one
|
||
|
if len(self.estimators_) > 1:
|
||
|
self.estimators_.pop(-1)
|
||
|
return None, None, None
|
||
|
|
||
|
beta = estimator_error / (1. - estimator_error)
|
||
|
|
||
|
# Boost weight using AdaBoost.R2 alg
|
||
|
estimator_weight = self.learning_rate * np.log(1. / beta)
|
||
|
|
||
|
if not iboost == self.n_estimators - 1:
|
||
|
sample_weight[sample_mask] *= np.power(
|
||
|
beta, (1. - masked_error_vector) * self.learning_rate
|
||
|
)
|
||
|
|
||
|
return sample_weight, estimator_weight, estimator_error
|
||
|
|
||
|
def _get_median_predict(self, X, limit):
|
||
|
# Evaluate predictions of all estimators
|
||
|
predictions = np.array([
|
||
|
est.predict(X) for est in self.estimators_[:limit]]).T
|
||
|
|
||
|
# Sort the predictions
|
||
|
sorted_idx = np.argsort(predictions, axis=1)
|
||
|
|
||
|
# Find index of median prediction for each sample
|
||
|
weight_cdf = stable_cumsum(self.estimator_weights_[sorted_idx], axis=1)
|
||
|
median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis]
|
||
|
median_idx = median_or_above.argmax(axis=1)
|
||
|
|
||
|
median_estimators = sorted_idx[np.arange(_num_samples(X)), median_idx]
|
||
|
|
||
|
# Return median predictions
|
||
|
return predictions[np.arange(_num_samples(X)), median_estimators]
|
||
|
|
||
|
def predict(self, X):
|
||
|
"""Predict regression value for X.
|
||
|
|
||
|
The predicted regression value of an input sample is computed
|
||
|
as the weighted median prediction of the classifiers in the ensemble.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples. Sparse matrix can be CSC, CSR, COO,
|
||
|
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
y : ndarray of shape (n_samples,)
|
||
|
The predicted regression values.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
return self._get_median_predict(X, len(self.estimators_))
|
||
|
|
||
|
def staged_predict(self, X):
|
||
|
"""Return staged predictions for X.
|
||
|
|
||
|
The predicted regression value of an input sample is computed
|
||
|
as the weighted median prediction of the classifiers in the ensemble.
|
||
|
|
||
|
This generator method yields the ensemble prediction after each
|
||
|
iteration of boosting and therefore allows monitoring, such as to
|
||
|
determine the prediction on a test set after each boost.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
The training input samples.
|
||
|
|
||
|
Yields
|
||
|
-------
|
||
|
y : generator of ndarray of shape (n_samples,)
|
||
|
The predicted regression values.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._check_X(X)
|
||
|
|
||
|
for i, _ in enumerate(self.estimators_, 1):
|
||
|
yield self._get_median_predict(X, limit=i)
|