Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/linear_model/_glm/glm.py

616 lines
23 KiB
Python
Raw Normal View History

2020-11-12 16:05:57 +00:00
"""
Generalized Linear Models with Exponential Dispersion Family
"""
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
# some parts and tricks stolen from other sklearn files.
# License: BSD 3 clause
import numbers
import numpy as np
import scipy.optimize
from ...base import BaseEstimator, RegressorMixin
from ...utils import check_array, check_X_y
from ...utils.optimize import _check_optimize_result
from ...utils.validation import check_is_fitted, _check_sample_weight
from ..._loss.glm_distribution import (
ExponentialDispersionModel,
TweedieDistribution,
EDM_DISTRIBUTIONS
)
from .link import (
BaseLink,
IdentityLink,
LogLink,
)
def _safe_lin_pred(X, coef):
"""Compute the linear predictor taking care if intercept is present."""
if coef.size == X.shape[1] + 1:
return X @ coef[1:] + coef[0]
else:
return X @ coef
def _y_pred_deviance_derivative(coef, X, y, weights, family, link):
"""Compute y_pred and the derivative of the deviance w.r.t coef."""
lin_pred = _safe_lin_pred(X, coef)
y_pred = link.inverse(lin_pred)
d1 = link.inverse_derivative(lin_pred)
temp = d1 * family.deviance_derivative(y, y_pred, weights)
if coef.size == X.shape[1] + 1:
devp = np.concatenate(([temp.sum()], temp @ X))
else:
devp = temp @ X # same as X.T @ temp
return y_pred, devp
class GeneralizedLinearRegressor(BaseEstimator, RegressorMixin):
"""Regression via a penalized Generalized Linear Model (GLM).
GLMs based on a reproductive Exponential Dispersion Model (EDM) aim at
fitting and predicting the mean of the target y as y_pred=h(X*w).
Therefore, the fit minimizes the following objective function with L2
priors as regularizer::
1/(2*sum(s)) * deviance(y, h(X*w); s)
+ 1/2 * alpha * |w|_2
with inverse link function h and s=sample_weight.
The parameter ``alpha`` corresponds to the lambda parameter in glmnet.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
family : {'normal', 'poisson', 'gamma', 'inverse-gaussian'} \
or an ExponentialDispersionModel instance, default='normal'
The distributional assumption of the GLM, i.e. which distribution from
the EDM, specifies the loss function to be minimized.
link : {'auto', 'identity', 'log'} or an instance of class BaseLink, \
default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
the link depending on the chosen family as follows:
- 'identity' for Normal distribution
- 'log' for Poisson, Gamma and Inverse Gaussian distributions
solver : 'lbfgs', default='lbfgs'
Algorithm to use in the optimization problem:
'lbfgs'
Calls scipy's L-BFGS-B optimizer.
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_``.
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0,
fit_intercept=True, family='normal', link='auto',
solver='lbfgs', max_iter=100, tol=1e-4, warm_start=False,
verbose=0):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.family = family
self.link = link
self.solver = solver
self.max_iter = max_iter
self.tol = tol
self.warm_start = warm_start
self.verbose = verbose
def fit(self, X, y, sample_weight=None):
"""Fit a Generalized Linear Model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
self : returns an instance of self.
"""
if isinstance(self.family, ExponentialDispersionModel):
self._family_instance = self.family
elif self.family in EDM_DISTRIBUTIONS:
self._family_instance = EDM_DISTRIBUTIONS[self.family]()
else:
raise ValueError(
"The family must be an instance of class"
" ExponentialDispersionModel or an element of"
" ['normal', 'poisson', 'gamma', 'inverse-gaussian']"
"; got (family={0})".format(self.family))
# Guarantee that self._link_instance is set to an instance of
# class BaseLink
if isinstance(self.link, BaseLink):
self._link_instance = self.link
else:
if self.link == 'auto':
if isinstance(self._family_instance, TweedieDistribution):
if self._family_instance.power <= 0:
self._link_instance = IdentityLink()
if self._family_instance.power >= 1:
self._link_instance = LogLink()
else:
raise ValueError("No default link known for the "
"specified distribution family. Please "
"set link manually, i.e. not to 'auto'; "
"got (link='auto', family={})"
.format(self.family))
elif self.link == 'identity':
self._link_instance = IdentityLink()
elif self.link == 'log':
self._link_instance = LogLink()
else:
raise ValueError(
"The link must be an instance of class Link or "
"an element of ['auto', 'identity', 'log']; "
"got (link={0})".format(self.link))
if not isinstance(self.alpha, numbers.Number) or self.alpha < 0:
raise ValueError("Penalty term must be a non-negative number;"
" got (alpha={0})".format(self.alpha))
if not isinstance(self.fit_intercept, bool):
raise ValueError("The argument fit_intercept must be bool;"
" got {0}".format(self.fit_intercept))
if self.solver not in ['lbfgs']:
raise ValueError("GeneralizedLinearRegressor supports only solvers"
"'lbfgs'; got {0}".format(self.solver))
solver = self.solver
if (not isinstance(self.max_iter, numbers.Integral)
or self.max_iter <= 0):
raise ValueError("Maximum number of iteration must be a positive "
"integer;"
" got (max_iter={0!r})".format(self.max_iter))
if not isinstance(self.tol, numbers.Number) or self.tol <= 0:
raise ValueError("Tolerance for stopping criteria must be "
"positive; got (tol={0!r})".format(self.tol))
if not isinstance(self.warm_start, bool):
raise ValueError("The argument warm_start must be bool;"
" got {0}".format(self.warm_start))
family = self._family_instance
link = self._link_instance
X, y = check_X_y(X, y, accept_sparse=['csc', 'csr'],
dtype=[np.float64, np.float32],
y_numeric=True, multi_output=False)
weights = _check_sample_weight(sample_weight, X)
_, n_features = X.shape
if not np.all(family.in_y_range(y)):
raise ValueError("Some value(s) of y are out of the valid "
"range for family {0}"
.format(family.__class__.__name__))
# TODO: if alpha=0 check that X is not rank deficient
# rescaling of sample_weight
#
# IMPORTANT NOTE: Since we want to minimize
# 1/(2*sum(sample_weight)) * deviance + L2,
# deviance = sum(sample_weight * unit_deviance),
# we rescale weights such that sum(weights) = 1 and this becomes
# 1/2*deviance + L2 with deviance=sum(weights * unit_deviance)
weights = weights / weights.sum()
if self.warm_start and hasattr(self, 'coef_'):
if self.fit_intercept:
coef = np.concatenate((np.array([self.intercept_]),
self.coef_))
else:
coef = self.coef_
else:
if self.fit_intercept:
coef = np.zeros(n_features+1)
coef[0] = link(np.average(y, weights=weights))
else:
coef = np.zeros(n_features)
# algorithms for optimization
if solver == 'lbfgs':
def func(coef, X, y, weights, alpha, family, link):
y_pred, devp = _y_pred_deviance_derivative(
coef, X, y, weights, family, link
)
dev = family.deviance(y, y_pred, weights)
# offset if coef[0] is intercept
offset = 1 if self.fit_intercept else 0
coef_scaled = alpha * coef[offset:]
obj = 0.5 * dev + 0.5 * (coef[offset:] @ coef_scaled)
objp = 0.5 * devp
objp[offset:] += coef_scaled
return obj, objp
args = (X, y, weights, self.alpha, family, link)
opt_res = scipy.optimize.minimize(
func, coef, method="L-BFGS-B", jac=True,
options={
"maxiter": self.max_iter,
"iprint": (self.verbose > 0) - 1,
"gtol": self.tol,
"ftol": 1e3*np.finfo(float).eps,
},
args=args)
self.n_iter_ = _check_optimize_result("lbfgs", opt_res)
coef = opt_res.x
if self.fit_intercept:
self.intercept_ = coef[0]
self.coef_ = coef[1:]
else:
# set intercept to zero as the other linear models do
self.intercept_ = 0.
self.coef_ = coef
return self
def _linear_predictor(self, X):
"""Compute the linear_predictor = `X @ coef_ + intercept_`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values of linear predictor.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'],
dtype=[np.float64, np.float32], ensure_2d=True,
allow_nd=False)
return X @ self.coef_ + self.intercept_
def predict(self, X):
"""Predict using GLM with feature matrix X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_pred : array of shape (n_samples,)
Returns predicted values.
"""
# check_array is done in _linear_predictor
eta = self._linear_predictor(X)
y_pred = self._link_instance.inverse(eta)
return y_pred
def score(self, X, y, sample_weight=None):
"""Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2.
R^2 uses squared error and D^2 deviance. Note that those two are equal
for ``family='normal'``.
D^2 is defined as
:math:`D^2 = 1-\\frac{D(y_{true},y_{pred})}{D_{null}}`,
:math:`D_{null}` is the null deviance, i.e. the deviance of a model
with intercept alone, which corresponds to :math:`y_{pred} = \\bar{y}`.
The mean :math:`\\bar{y}` is averaged by sample_weight.
Best possible score is 1.0 and it can be negative (because the model
can be arbitrarily worse).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,)
True values of target.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
D^2 of self.predict(X) w.r.t. y.
"""
# Note, default score defined in RegressorMixin is R^2 score.
# TODO: make D^2 a score function in module metrics (and thereby get
# input validation and so on)
weights = _check_sample_weight(sample_weight, X)
y_pred = self.predict(X)
dev = self._family_instance.deviance(y, y_pred, weights=weights)
y_mean = np.average(y, weights=weights)
dev_null = self._family_instance.deviance(y, y_mean, weights=weights)
return 1 - dev / dev_null
def _more_tags(self):
# create the _family_instance if fit wasn't called yet.
if hasattr(self, '_family_instance'):
_family_instance = self._family_instance
elif isinstance(self.family, ExponentialDispersionModel):
_family_instance = self.family
elif self.family in EDM_DISTRIBUTIONS:
_family_instance = EDM_DISTRIBUTIONS[self.family]()
else:
raise ValueError
return {"requires_positive_y": not _family_instance.in_y_range(-1.0)}
class PoissonRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Poisson distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0, fit_intercept=True, max_iter=100,
tol=1e-4, warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family="poisson", link='log', max_iter=max_iter,
tol=tol, warm_start=warm_start, verbose=verbose)
@property
def family(self):
# Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
return "poisson"
@family.setter
def family(self, value):
if value != "poisson":
raise ValueError("PoissonRegressor.family must be 'poisson'!")
class GammaRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Gamma distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X * coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, alpha=1.0, fit_intercept=True, max_iter=100,
tol=1e-4, warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family="gamma", link='log', max_iter=max_iter,
tol=tol, warm_start=warm_start, verbose=verbose)
@property
def family(self):
# Make this attribute read-only to avoid mis-uses e.g. in GridSearch.
return "gamma"
@family.setter
def family(self, value):
if value != "gamma":
raise ValueError("GammaRegressor.family must be 'gamma'!")
class TweedieRegressor(GeneralizedLinearRegressor):
"""Generalized Linear Model with a Tweedie distribution.
This estimator can be used to model different GLMs depending on the
``power`` parameter, which determines the underlying distribution.
Read more in the :ref:`User Guide <Generalized_linear_regression>`.
Parameters
----------
power : float, default=0
The power determines the underlying target distribution according
to the following table:
+-------+------------------------+
| Power | Distribution |
+=======+========================+
| 0 | Normal |
+-------+------------------------+
| 1 | Poisson |
+-------+------------------------+
| (1,2) | Compound Poisson Gamma |
+-------+------------------------+
| 2 | Gamma |
+-------+------------------------+
| 3 | Inverse Gaussian |
+-------+------------------------+
For ``0 < power < 1``, no distribution exists.
alpha : float, default=1
Constant that multiplies the penalty term and thus determines the
regularization strength. ``alpha = 0`` is equivalent to unpenalized
GLMs. In this case, the design matrix `X` must have full column rank
(no collinearities).
link : {'auto', 'identity', 'log'}, default='auto'
The link function of the GLM, i.e. mapping from linear predictor
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
the link depending on the chosen family as follows:
- 'identity' for Normal distribution
- 'log' for Poisson, Gamma and Inverse Gaussian distributions
fit_intercept : bool, default=True
Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).
max_iter : int, default=100
The maximal number of iterations for the solver.
tol : float, default=1e-4
Stopping criterion. For the lbfgs solver,
the iteration will stop when ``max{|g_j|, j = 1, ..., d} <= tol``
where ``g_j`` is the j-th component of the gradient (derivative) of
the objective function.
warm_start : bool, default=False
If set to ``True``, reuse the solution of the previous call to ``fit``
as initialization for ``coef_`` and ``intercept_`` .
verbose : int, default=0
For the lbfgs solver set verbose to any positive number for verbosity.
Attributes
----------
coef_ : array of shape (n_features,)
Estimated coefficients for the linear predictor (`X @ coef_ +
intercept_`) in the GLM.
intercept_ : float
Intercept (a.k.a. bias) added to linear predictor.
n_iter_ : int
Actual number of iterations used in the solver.
"""
def __init__(self, *, power=0.0, alpha=1.0, fit_intercept=True,
link='auto', max_iter=100, tol=1e-4,
warm_start=False, verbose=0):
super().__init__(alpha=alpha, fit_intercept=fit_intercept,
family=TweedieDistribution(power=power), link=link,
max_iter=max_iter, tol=tol,
warm_start=warm_start, verbose=verbose)
@property
def family(self):
# We use a property with a setter to make sure that the family is
# always a Tweedie distribution, and that self.power and
# self.family.power are identical by construction.
dist = TweedieDistribution(power=self.power)
# TODO: make the returned object immutable
return dist
@family.setter
def family(self, value):
if isinstance(value, TweedieDistribution):
self.power = value.power
else:
raise TypeError("TweedieRegressor.family must be of type "
"TweedieDistribution!")