122 lines
4.9 KiB
Python
122 lines
4.9 KiB
Python
|
import unittest
|
||
|
import numpy as np
|
||
|
from skimage._shared.testing import assert_equal
|
||
|
from scipy.ndimage import binary_dilation, binary_erosion
|
||
|
import skimage.feature as F
|
||
|
from skimage import data, img_as_float
|
||
|
|
||
|
|
||
|
class TestCanny(unittest.TestCase):
|
||
|
def test_00_00_zeros(self):
|
||
|
'''Test that the Canny filter finds no points for a blank field'''
|
||
|
result = F.canny(np.zeros((20, 20)), 4, 0, 0, np.ones((20, 20), bool))
|
||
|
self.assertFalse(np.any(result))
|
||
|
|
||
|
def test_00_01_zeros_mask(self):
|
||
|
'''Test that the Canny filter finds no points in a masked image'''
|
||
|
result = (F.canny(np.random.uniform(size=(20, 20)), 4, 0, 0,
|
||
|
np.zeros((20, 20), bool)))
|
||
|
self.assertFalse(np.any(result))
|
||
|
|
||
|
def test_01_01_circle(self):
|
||
|
'''Test that the Canny filter finds the outlines of a circle'''
|
||
|
i, j = np.mgrid[-200:200, -200:200].astype(float) / 200
|
||
|
c = np.abs(np.sqrt(i * i + j * j) - .5) < .02
|
||
|
result = F.canny(c.astype(float), 4, 0, 0, np.ones(c.shape, bool))
|
||
|
#
|
||
|
# erode and dilate the circle to get rings that should contain the
|
||
|
# outlines
|
||
|
#
|
||
|
cd = binary_dilation(c, iterations=3)
|
||
|
ce = binary_erosion(c, iterations=3)
|
||
|
cde = np.logical_and(cd, np.logical_not(ce))
|
||
|
self.assertTrue(np.all(cde[result]))
|
||
|
#
|
||
|
# The circle has a radius of 100. There are two rings here, one
|
||
|
# for the inside edge and one for the outside. So that's
|
||
|
# 100 * 2 * 2 * 3 for those places where pi is still 3.
|
||
|
# The edge contains both pixels if there's a tie, so we
|
||
|
# bump the count a little.
|
||
|
point_count = np.sum(result)
|
||
|
self.assertTrue(point_count > 1200)
|
||
|
self.assertTrue(point_count < 1600)
|
||
|
|
||
|
def test_01_02_circle_with_noise(self):
|
||
|
'''Test that the Canny filter finds the circle outlines
|
||
|
in a noisy image'''
|
||
|
np.random.seed(0)
|
||
|
i, j = np.mgrid[-200:200, -200:200].astype(float) / 200
|
||
|
c = np.abs(np.sqrt(i * i + j * j) - .5) < .02
|
||
|
cf = c.astype(float) * .5 + np.random.uniform(size=c.shape) * .5
|
||
|
result = F.canny(cf, 4, .1, .2, np.ones(c.shape, bool))
|
||
|
#
|
||
|
# erode and dilate the circle to get rings that should contain the
|
||
|
# outlines
|
||
|
#
|
||
|
cd = binary_dilation(c, iterations=4)
|
||
|
ce = binary_erosion(c, iterations=4)
|
||
|
cde = np.logical_and(cd, np.logical_not(ce))
|
||
|
self.assertTrue(np.all(cde[result]))
|
||
|
point_count = np.sum(result)
|
||
|
self.assertTrue(point_count > 1200)
|
||
|
self.assertTrue(point_count < 1600)
|
||
|
|
||
|
def test_image_shape(self):
|
||
|
self.assertRaises(ValueError, F.canny, np.zeros((20, 20, 20)), 4, 0, 0)
|
||
|
|
||
|
def test_mask_none(self):
|
||
|
result1 = F.canny(np.zeros((20, 20)), 4, 0, 0, np.ones((20, 20), bool))
|
||
|
result2 = F.canny(np.zeros((20, 20)), 4, 0, 0)
|
||
|
self.assertTrue(np.all(result1 == result2))
|
||
|
|
||
|
def test_use_quantiles(self):
|
||
|
image = img_as_float(data.camera()[::50, ::50])
|
||
|
|
||
|
# Correct output produced manually with quantiles
|
||
|
# of 0.8 and 0.6 for high and low respectively
|
||
|
correct_output = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
|
||
|
[0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0],
|
||
|
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
|
||
|
[0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
|
||
|
|
||
|
result = F.canny(image, low_threshold=0.6, high_threshold=0.8, use_quantiles=True)
|
||
|
|
||
|
assert_equal(result, correct_output)
|
||
|
|
||
|
def test_invalid_use_quantiles(self):
|
||
|
image = img_as_float(data.camera()[::50, ::50])
|
||
|
|
||
|
self.assertRaises(ValueError, F.canny, image, use_quantiles=True,
|
||
|
low_threshold=0.5, high_threshold=3.6)
|
||
|
|
||
|
self.assertRaises(ValueError, F.canny, image, use_quantiles=True,
|
||
|
low_threshold=-5, high_threshold=0.5)
|
||
|
|
||
|
self.assertRaises(ValueError, F.canny, image, use_quantiles=True,
|
||
|
low_threshold=99, high_threshold=0.9)
|
||
|
|
||
|
self.assertRaises(ValueError, F.canny, image, use_quantiles=True,
|
||
|
low_threshold=0.5, high_threshold=-100)
|
||
|
|
||
|
# Example from issue #4282
|
||
|
image = data.camera()
|
||
|
self.assertRaises(ValueError, F.canny, image, use_quantiles=True,
|
||
|
low_threshold=50, high_threshold=150)
|
||
|
|
||
|
def test_dtype(self):
|
||
|
"""Check that the same output is produced regardless of image dtype."""
|
||
|
image_uint8 = data.camera()
|
||
|
image_float = img_as_float(image_uint8)
|
||
|
|
||
|
result_uint8 = F.canny(image_uint8)
|
||
|
result_float = F.canny(image_float)
|
||
|
|
||
|
assert_equal(result_uint8, result_float)
|