446 lines
11 KiB
Python
446 lines
11 KiB
Python
|
import numpy as np
|
||
|
from skimage.draw import disk
|
||
|
from skimage.draw.draw3d import ellipsoid
|
||
|
from skimage.feature import blob_dog, blob_log, blob_doh
|
||
|
from skimage.feature.blob import _blob_overlap
|
||
|
import math
|
||
|
from numpy.testing import assert_almost_equal
|
||
|
|
||
|
|
||
|
def test_blob_dog():
|
||
|
r2 = math.sqrt(2)
|
||
|
img = np.ones((512, 512))
|
||
|
|
||
|
xs, ys = disk((400, 130), 5)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((100, 300), 25)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((200, 350), 45)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
blobs = blob_dog(img, min_sigma=5, max_sigma=50)
|
||
|
radius = lambda x: r2 * x[2]
|
||
|
s = sorted(blobs, key=radius)
|
||
|
thresh = 5
|
||
|
|
||
|
b = s[0]
|
||
|
assert abs(b[0] - 400) <= thresh
|
||
|
assert abs(b[1] - 130) <= thresh
|
||
|
assert abs(radius(b) - 5) <= thresh
|
||
|
|
||
|
b = s[1]
|
||
|
assert abs(b[0] - 100) <= thresh
|
||
|
assert abs(b[1] - 300) <= thresh
|
||
|
assert abs(radius(b) - 25) <= thresh
|
||
|
|
||
|
b = s[2]
|
||
|
assert abs(b[0] - 200) <= thresh
|
||
|
assert abs(b[1] - 350) <= thresh
|
||
|
assert abs(radius(b) - 45) <= thresh
|
||
|
|
||
|
# Testing no peaks
|
||
|
img_empty = np.zeros((100,100))
|
||
|
assert blob_dog(img_empty).size == 0
|
||
|
|
||
|
# Testing 3D
|
||
|
r = 10
|
||
|
pad = 10
|
||
|
im3 = ellipsoid(r, r, r)
|
||
|
im3 = np.pad(im3, pad, mode='constant')
|
||
|
|
||
|
blobs = blob_dog(im3, min_sigma=3, max_sigma=10,
|
||
|
sigma_ratio=1.2, threshold=0.1)
|
||
|
b = blobs[0]
|
||
|
|
||
|
assert b.shape == (4,)
|
||
|
assert b[0] == r + pad + 1
|
||
|
assert b[1] == r + pad + 1
|
||
|
assert b[2] == r + pad + 1
|
||
|
assert abs(math.sqrt(3) * b[3] - r) < 1
|
||
|
|
||
|
# Testing 3D anisotropic
|
||
|
r = 10
|
||
|
pad = 10
|
||
|
im3 = ellipsoid(r / 2, r, r)
|
||
|
im3 = np.pad(im3, pad, mode='constant')
|
||
|
|
||
|
blobs = blob_dog(
|
||
|
im3,
|
||
|
min_sigma=[1.5, 3, 3],
|
||
|
max_sigma=[5, 10, 10],
|
||
|
sigma_ratio=1.2,
|
||
|
threshold=0.1
|
||
|
)
|
||
|
b = blobs[0]
|
||
|
|
||
|
assert b.shape == (6,)
|
||
|
assert b[0] == r / 2 + pad + 1
|
||
|
assert b[1] == r + pad + 1
|
||
|
assert b[2] == r + pad + 1
|
||
|
assert abs(math.sqrt(3) * b[3] - r / 2) < 1
|
||
|
assert abs(math.sqrt(3) * b[4] - r) < 1
|
||
|
assert abs(math.sqrt(3) * b[5] - r) < 1
|
||
|
|
||
|
# Testing exclude border
|
||
|
|
||
|
# image where blob is 5 px from borders, radius 5
|
||
|
img = np.ones((512, 512))
|
||
|
xs, ys = disk((5, 5), 5)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
|
||
|
def test_blob_dog_excl_border():
|
||
|
img = np.ones((512, 512))
|
||
|
xs, ys = disk((5, 5), 5)
|
||
|
img[xs, ys] = 255
|
||
|
blobs = blob_dog(
|
||
|
img,
|
||
|
min_sigma=1.5,
|
||
|
max_sigma=5,
|
||
|
sigma_ratio=1.2,
|
||
|
)
|
||
|
assert blobs.shape[0] == 1
|
||
|
b = blobs[0]
|
||
|
assert b[0] == b[1] == 5, "blob should be 5 px from x and y borders"
|
||
|
|
||
|
blobs = blob_dog(
|
||
|
img,
|
||
|
min_sigma=1.5,
|
||
|
max_sigma=5,
|
||
|
sigma_ratio=1.2,
|
||
|
exclude_border=6,
|
||
|
)
|
||
|
msg = "zero blobs should be detected, as only blob is 5 px from border"
|
||
|
assert blobs.shape[0] == 0, msg
|
||
|
|
||
|
|
||
|
def test_blob_log():
|
||
|
r2 = math.sqrt(2)
|
||
|
img = np.ones((256, 256))
|
||
|
|
||
|
xs, ys = disk((200, 65), 5)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((80, 25), 15)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((50, 150), 25)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((100, 175), 30)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
blobs = blob_log(img, min_sigma=5, max_sigma=20, threshold=1)
|
||
|
|
||
|
radius = lambda x: r2 * x[2]
|
||
|
s = sorted(blobs, key=radius)
|
||
|
thresh = 3
|
||
|
|
||
|
b = s[0]
|
||
|
assert abs(b[0] - 200) <= thresh
|
||
|
assert abs(b[1] - 65) <= thresh
|
||
|
assert abs(radius(b) - 5) <= thresh
|
||
|
|
||
|
b = s[1]
|
||
|
assert abs(b[0] - 80) <= thresh
|
||
|
assert abs(b[1] - 25) <= thresh
|
||
|
assert abs(radius(b) - 15) <= thresh
|
||
|
|
||
|
b = s[2]
|
||
|
assert abs(b[0] - 50) <= thresh
|
||
|
assert abs(b[1] - 150) <= thresh
|
||
|
assert abs(radius(b) - 25) <= thresh
|
||
|
|
||
|
b = s[3]
|
||
|
assert abs(b[0] - 100) <= thresh
|
||
|
assert abs(b[1] - 175) <= thresh
|
||
|
assert abs(radius(b) - 30) <= thresh
|
||
|
|
||
|
# Testing log scale
|
||
|
blobs = blob_log(
|
||
|
img,
|
||
|
min_sigma=5,
|
||
|
max_sigma=20,
|
||
|
threshold=1,
|
||
|
log_scale=True)
|
||
|
|
||
|
b = s[0]
|
||
|
assert abs(b[0] - 200) <= thresh
|
||
|
assert abs(b[1] - 65) <= thresh
|
||
|
assert abs(radius(b) - 5) <= thresh
|
||
|
|
||
|
b = s[1]
|
||
|
assert abs(b[0] - 80) <= thresh
|
||
|
assert abs(b[1] - 25) <= thresh
|
||
|
assert abs(radius(b) - 15) <= thresh
|
||
|
|
||
|
b = s[2]
|
||
|
assert abs(b[0] - 50) <= thresh
|
||
|
assert abs(b[1] - 150) <= thresh
|
||
|
assert abs(radius(b) - 25) <= thresh
|
||
|
|
||
|
b = s[3]
|
||
|
assert abs(b[0] - 100) <= thresh
|
||
|
assert abs(b[1] - 175) <= thresh
|
||
|
assert abs(radius(b) - 30) <= thresh
|
||
|
|
||
|
# Testing no peaks
|
||
|
img_empty = np.zeros((100,100))
|
||
|
assert blob_log(img_empty).size == 0
|
||
|
|
||
|
|
||
|
def test_blob_log_3d():
|
||
|
# Testing 3D
|
||
|
r = 6
|
||
|
pad = 10
|
||
|
im3 = ellipsoid(r, r, r)
|
||
|
im3 = np.pad(im3, pad, mode='constant')
|
||
|
|
||
|
blobs = blob_log(im3, min_sigma=3, max_sigma=10)
|
||
|
b = blobs[0]
|
||
|
|
||
|
assert b.shape == (4,)
|
||
|
assert b[0] == r + pad + 1
|
||
|
assert b[1] == r + pad + 1
|
||
|
assert b[2] == r + pad + 1
|
||
|
assert abs(math.sqrt(3) * b[3] - r) < 1
|
||
|
|
||
|
|
||
|
def test_blob_log_3d_anisotropic():
|
||
|
# Testing 3D anisotropic
|
||
|
r = 6
|
||
|
pad = 10
|
||
|
im3 = ellipsoid(r / 2, r, r)
|
||
|
im3 = np.pad(im3, pad, mode='constant')
|
||
|
|
||
|
blobs = blob_log(
|
||
|
im3,
|
||
|
min_sigma=[1, 2, 2],
|
||
|
max_sigma=[5, 10, 10],
|
||
|
)
|
||
|
|
||
|
b = blobs[0]
|
||
|
assert b.shape == (6,)
|
||
|
assert b[0] == r / 2 + pad + 1
|
||
|
assert b[1] == r + pad + 1
|
||
|
assert b[2] == r + pad + 1
|
||
|
assert abs(math.sqrt(3) * b[3] - r / 2) < 1
|
||
|
assert abs(math.sqrt(3) * b[4] - r) < 1
|
||
|
assert abs(math.sqrt(3) * b[5] - r) < 1
|
||
|
|
||
|
|
||
|
def test_blob_log_exclude_border():
|
||
|
# image where blob is 5 px from borders, radius 5
|
||
|
img = np.ones((512, 512))
|
||
|
xs, ys = disk((5, 5), 5)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
blobs = blob_log(
|
||
|
img,
|
||
|
min_sigma=1.5,
|
||
|
max_sigma=5,
|
||
|
)
|
||
|
assert blobs.shape[0] == 1
|
||
|
b = blobs[0]
|
||
|
assert b[0] == b[1] == 5, "blob should be 5 px from x and y borders"
|
||
|
|
||
|
blobs = blob_log(
|
||
|
img,
|
||
|
min_sigma=1.5,
|
||
|
max_sigma=5,
|
||
|
exclude_border=6,
|
||
|
)
|
||
|
msg = "zero blobs should be detected, as only blob is 5 px from border"
|
||
|
assert blobs.shape[0] == 0, msg
|
||
|
|
||
|
|
||
|
def test_blob_doh():
|
||
|
img = np.ones((512, 512), dtype=np.uint8)
|
||
|
|
||
|
xs, ys = disk((400, 130), 20)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((460, 50), 30)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((100, 300), 40)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((200, 350), 50)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
blobs = blob_doh(
|
||
|
img,
|
||
|
min_sigma=1,
|
||
|
max_sigma=60,
|
||
|
num_sigma=10,
|
||
|
threshold=.05)
|
||
|
|
||
|
radius = lambda x: x[2]
|
||
|
s = sorted(blobs, key=radius)
|
||
|
thresh = 4
|
||
|
|
||
|
b = s[0]
|
||
|
assert abs(b[0] - 400) <= thresh
|
||
|
assert abs(b[1] - 130) <= thresh
|
||
|
assert abs(radius(b) - 20) <= thresh
|
||
|
|
||
|
b = s[1]
|
||
|
assert abs(b[0] - 460) <= thresh
|
||
|
assert abs(b[1] - 50) <= thresh
|
||
|
assert abs(radius(b) - 30) <= thresh
|
||
|
|
||
|
b = s[2]
|
||
|
assert abs(b[0] - 100) <= thresh
|
||
|
assert abs(b[1] - 300) <= thresh
|
||
|
assert abs(radius(b) - 40) <= thresh
|
||
|
|
||
|
b = s[3]
|
||
|
assert abs(b[0] - 200) <= thresh
|
||
|
assert abs(b[1] - 350) <= thresh
|
||
|
assert abs(radius(b) - 50) <= thresh
|
||
|
|
||
|
|
||
|
def test_blob_doh_log_scale():
|
||
|
img = np.ones((512, 512), dtype=np.uint8)
|
||
|
|
||
|
xs, ys = disk((400, 130), 20)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((460, 50), 30)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((100, 300), 40)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((200, 350), 50)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
blobs = blob_doh(
|
||
|
img,
|
||
|
min_sigma=1,
|
||
|
max_sigma=60,
|
||
|
num_sigma=10,
|
||
|
log_scale=True,
|
||
|
threshold=.05)
|
||
|
|
||
|
radius = lambda x: x[2]
|
||
|
s = sorted(blobs, key=radius)
|
||
|
thresh = 10
|
||
|
|
||
|
b = s[0]
|
||
|
assert abs(b[0] - 400) <= thresh
|
||
|
assert abs(b[1] - 130) <= thresh
|
||
|
assert abs(radius(b) - 20) <= thresh
|
||
|
|
||
|
b = s[2]
|
||
|
assert abs(b[0] - 460) <= thresh
|
||
|
assert abs(b[1] - 50) <= thresh
|
||
|
assert abs(radius(b) - 30) <= thresh
|
||
|
|
||
|
b = s[1]
|
||
|
assert abs(b[0] - 100) <= thresh
|
||
|
assert abs(b[1] - 300) <= thresh
|
||
|
assert abs(radius(b) - 40) <= thresh
|
||
|
|
||
|
b = s[3]
|
||
|
assert abs(b[0] - 200) <= thresh
|
||
|
assert abs(b[1] - 350) <= thresh
|
||
|
assert abs(radius(b) - 50) <= thresh
|
||
|
|
||
|
|
||
|
def test_blob_doh_no_peaks():
|
||
|
# Testing no peaks
|
||
|
img_empty = np.zeros((100,100))
|
||
|
assert blob_doh(img_empty).size == 0
|
||
|
|
||
|
|
||
|
def test_blob_doh_overlap():
|
||
|
img = np.ones((256, 256), dtype=np.uint8)
|
||
|
|
||
|
xs, ys = disk((100, 100), 20)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
xs, ys = disk((120, 100), 30)
|
||
|
img[xs, ys] = 255
|
||
|
|
||
|
blobs = blob_doh(
|
||
|
img,
|
||
|
min_sigma=1,
|
||
|
max_sigma=60,
|
||
|
num_sigma=10,
|
||
|
threshold=.05
|
||
|
)
|
||
|
|
||
|
assert len(blobs) == 1
|
||
|
|
||
|
|
||
|
def test_blob_log_overlap_3d():
|
||
|
r1, r2 = 7, 6
|
||
|
pad1, pad2 = 11, 12
|
||
|
blob1 = ellipsoid(r1, r1, r1)
|
||
|
blob1 = np.pad(blob1, pad1, mode='constant')
|
||
|
blob2 = ellipsoid(r2, r2, r2)
|
||
|
blob2 = np.pad(blob2, [(pad2, pad2), (pad2 - 9, pad2 + 9),
|
||
|
(pad2, pad2)],
|
||
|
mode='constant')
|
||
|
im3 = np.logical_or(blob1, blob2)
|
||
|
|
||
|
blobs = blob_log(im3, min_sigma=2, max_sigma=10, overlap=0.1)
|
||
|
assert len(blobs) == 1
|
||
|
|
||
|
|
||
|
def test_blob_overlap_3d_anisotropic():
|
||
|
# Two spheres with distance between centers equal to radius
|
||
|
# One sphere is much smaller than the other so about half of it is within
|
||
|
# the bigger sphere.
|
||
|
s3 = math.sqrt(3)
|
||
|
overlap = _blob_overlap(np.array([0, 0, 0, 2 / s3, 10 / s3, 10 / s3]),
|
||
|
np.array([0, 0, 10, 0.2 / s3, 1 / s3, 1 / s3]),
|
||
|
sigma_dim=3)
|
||
|
assert_almost_equal(overlap, 0.48125)
|
||
|
overlap = _blob_overlap(np.array([0, 0, 0, 2 / s3, 10 / s3, 10 / s3]),
|
||
|
np.array([2, 0, 0, 0.2 / s3, 1 / s3, 1 / s3]),
|
||
|
sigma_dim=3)
|
||
|
assert_almost_equal(overlap, 0.48125)
|
||
|
|
||
|
|
||
|
def test_blob_log_anisotropic():
|
||
|
image = np.zeros((50, 50))
|
||
|
image[20, 10:20] = 1
|
||
|
isotropic_blobs = blob_log(image, min_sigma=0.5, max_sigma=2, num_sigma=3)
|
||
|
assert len(isotropic_blobs) > 1 # many small blobs found in line
|
||
|
ani_blobs = blob_log(image, min_sigma=[0.5, 5], max_sigma=[2, 20],
|
||
|
num_sigma=3) # 10x anisotropy, line is 1x10
|
||
|
assert len(ani_blobs) == 1 # single anisotropic blob found
|
||
|
|
||
|
|
||
|
def test_blob_log_overlap_3d_anisotropic():
|
||
|
r1, r2 = 7, 6
|
||
|
pad1, pad2 = 11, 12
|
||
|
blob1 = ellipsoid(r1, r1, r1)
|
||
|
blob1 = np.pad(blob1, pad1, mode='constant')
|
||
|
blob2 = ellipsoid(r2, r2, r2)
|
||
|
blob2 = np.pad(blob2, [(pad2, pad2), (pad2 - 9, pad2 + 9),
|
||
|
(pad2, pad2)],
|
||
|
mode='constant')
|
||
|
im3 = np.logical_or(blob1, blob2)
|
||
|
|
||
|
blobs = blob_log(im3, min_sigma=[2, 2.01, 2.005],
|
||
|
max_sigma=10, overlap=0.1)
|
||
|
assert len(blobs) == 1
|
||
|
|
||
|
# Two circles with distance between centers equal to radius
|
||
|
overlap = _blob_overlap(np.array([0, 0, 10 / math.sqrt(2)]),
|
||
|
np.array([0, 10, 10 / math.sqrt(2)]))
|
||
|
assert_almost_equal(overlap,
|
||
|
1./math.pi * (2 * math.acos(1./2) - math.sqrt(3)/2.))
|
||
|
|
||
|
|
||
|
def test_no_blob():
|
||
|
im = np.zeros((10, 10))
|
||
|
blobs = blob_log(im, min_sigma=2, max_sigma=5, num_sigma=4)
|
||
|
assert len(blobs) == 0
|