1216 lines
43 KiB
Python
1216 lines
43 KiB
Python
|
"""Tests for input validation functions"""
|
||
|
|
||
|
import warnings
|
||
|
import os
|
||
|
|
||
|
from tempfile import NamedTemporaryFile
|
||
|
from itertools import product
|
||
|
from operator import itemgetter
|
||
|
|
||
|
import pytest
|
||
|
from pytest import importorskip
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
from sklearn.utils._testing import assert_no_warnings
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
from sklearn.utils._testing import SkipTest
|
||
|
from sklearn.utils._testing import assert_array_equal
|
||
|
from sklearn.utils._testing import assert_allclose_dense_sparse
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
from sklearn.utils import as_float_array, check_array, check_symmetric
|
||
|
from sklearn.utils import check_X_y
|
||
|
from sklearn.utils import deprecated
|
||
|
from sklearn.utils._mocking import MockDataFrame
|
||
|
from sklearn.utils.estimator_checks import _NotAnArray
|
||
|
from sklearn.random_projection import _sparse_random_matrix
|
||
|
from sklearn.linear_model import ARDRegression
|
||
|
from sklearn.neighbors import KNeighborsClassifier
|
||
|
from sklearn.ensemble import RandomForestRegressor
|
||
|
from sklearn.svm import SVR
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.utils import _safe_indexing
|
||
|
from sklearn.utils.validation import (
|
||
|
has_fit_parameter,
|
||
|
check_is_fitted,
|
||
|
check_consistent_length,
|
||
|
assert_all_finite,
|
||
|
check_memory,
|
||
|
check_non_negative,
|
||
|
_num_samples,
|
||
|
check_scalar,
|
||
|
_check_psd_eigenvalues,
|
||
|
_deprecate_positional_args,
|
||
|
_check_sample_weight,
|
||
|
_allclose_dense_sparse,
|
||
|
FLOAT_DTYPES)
|
||
|
from sklearn.utils.validation import _check_fit_params
|
||
|
|
||
|
import sklearn
|
||
|
|
||
|
from sklearn.exceptions import NotFittedError, PositiveSpectrumWarning
|
||
|
|
||
|
from sklearn.utils._testing import TempMemmap
|
||
|
|
||
|
|
||
|
def test_as_float_array():
|
||
|
# Test function for as_float_array
|
||
|
X = np.ones((3, 10), dtype=np.int32)
|
||
|
X = X + np.arange(10, dtype=np.int32)
|
||
|
X2 = as_float_array(X, copy=False)
|
||
|
assert X2.dtype == np.float32
|
||
|
# Another test
|
||
|
X = X.astype(np.int64)
|
||
|
X2 = as_float_array(X, copy=True)
|
||
|
# Checking that the array wasn't overwritten
|
||
|
assert as_float_array(X, copy=False) is not X
|
||
|
assert X2.dtype == np.float64
|
||
|
# Test int dtypes <= 32bit
|
||
|
tested_dtypes = [np.bool,
|
||
|
np.int8, np.int16, np.int32,
|
||
|
np.uint8, np.uint16, np.uint32]
|
||
|
for dtype in tested_dtypes:
|
||
|
X = X.astype(dtype)
|
||
|
X2 = as_float_array(X)
|
||
|
assert X2.dtype == np.float32
|
||
|
|
||
|
# Test object dtype
|
||
|
X = X.astype(object)
|
||
|
X2 = as_float_array(X, copy=True)
|
||
|
assert X2.dtype == np.float64
|
||
|
|
||
|
# Here, X is of the right type, it shouldn't be modified
|
||
|
X = np.ones((3, 2), dtype=np.float32)
|
||
|
assert as_float_array(X, copy=False) is X
|
||
|
# Test that if X is fortran ordered it stays
|
||
|
X = np.asfortranarray(X)
|
||
|
assert np.isfortran(as_float_array(X, copy=True))
|
||
|
|
||
|
# Test the copy parameter with some matrices
|
||
|
matrices = [
|
||
|
np.matrix(np.arange(5)),
|
||
|
sp.csc_matrix(np.arange(5)).toarray(),
|
||
|
_sparse_random_matrix(10, 10, density=0.10).toarray()
|
||
|
]
|
||
|
for M in matrices:
|
||
|
N = as_float_array(M, copy=True)
|
||
|
N[0, 0] = np.nan
|
||
|
assert not np.isnan(M).any()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X",
|
||
|
[(np.random.random((10, 2))),
|
||
|
(sp.rand(10, 2).tocsr())])
|
||
|
def test_as_float_array_nan(X):
|
||
|
X[5, 0] = np.nan
|
||
|
X[6, 1] = np.nan
|
||
|
X_converted = as_float_array(X, force_all_finite='allow-nan')
|
||
|
assert_allclose_dense_sparse(X_converted, X)
|
||
|
|
||
|
|
||
|
def test_np_matrix():
|
||
|
# Confirm that input validation code does not return np.matrix
|
||
|
X = np.arange(12).reshape(3, 4)
|
||
|
|
||
|
assert not isinstance(as_float_array(X), np.matrix)
|
||
|
assert not isinstance(as_float_array(np.matrix(X)), np.matrix)
|
||
|
assert not isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)
|
||
|
|
||
|
|
||
|
def test_memmap():
|
||
|
# Confirm that input validation code doesn't copy memory mapped arrays
|
||
|
|
||
|
asflt = lambda x: as_float_array(x, copy=False)
|
||
|
|
||
|
with NamedTemporaryFile(prefix='sklearn-test') as tmp:
|
||
|
M = np.memmap(tmp, shape=(10, 10), dtype=np.float32)
|
||
|
M[:] = 0
|
||
|
|
||
|
for f in (check_array, np.asarray, asflt):
|
||
|
X = f(M)
|
||
|
X[:] = 1
|
||
|
assert_array_equal(X.ravel(), M.ravel())
|
||
|
X[:] = 0
|
||
|
|
||
|
|
||
|
def test_ordering():
|
||
|
# Check that ordering is enforced correctly by validation utilities.
|
||
|
# We need to check each validation utility, because a 'copy' without
|
||
|
# 'order=K' will kill the ordering.
|
||
|
X = np.ones((10, 5))
|
||
|
for A in X, X.T:
|
||
|
for copy in (True, False):
|
||
|
B = check_array(A, order='C', copy=copy)
|
||
|
assert B.flags['C_CONTIGUOUS']
|
||
|
B = check_array(A, order='F', copy=copy)
|
||
|
assert B.flags['F_CONTIGUOUS']
|
||
|
if copy:
|
||
|
assert A is not B
|
||
|
|
||
|
X = sp.csr_matrix(X)
|
||
|
X.data = X.data[::-1]
|
||
|
assert not X.data.flags['C_CONTIGUOUS']
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"value, force_all_finite",
|
||
|
[(np.inf, False), (np.nan, 'allow-nan'), (np.nan, False)]
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"retype",
|
||
|
[np.asarray, sp.csr_matrix]
|
||
|
)
|
||
|
def test_check_array_force_all_finite_valid(value, force_all_finite, retype):
|
||
|
X = retype(np.arange(4).reshape(2, 2).astype(np.float))
|
||
|
X[0, 0] = value
|
||
|
X_checked = check_array(X, force_all_finite=force_all_finite,
|
||
|
accept_sparse=True)
|
||
|
assert_allclose_dense_sparse(X, X_checked)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"value, force_all_finite, match_msg",
|
||
|
[(np.inf, True, 'Input contains NaN, infinity'),
|
||
|
(np.inf, 'allow-nan', 'Input contains infinity'),
|
||
|
(np.nan, True, 'Input contains NaN, infinity'),
|
||
|
(np.nan, 'allow-inf', 'force_all_finite should be a bool or "allow-nan"'),
|
||
|
(np.nan, 1, 'Input contains NaN, infinity')]
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"retype",
|
||
|
[np.asarray, sp.csr_matrix]
|
||
|
)
|
||
|
def test_check_array_force_all_finiteinvalid(value, force_all_finite,
|
||
|
match_msg, retype):
|
||
|
X = retype(np.arange(4).reshape(2, 2).astype(np.float))
|
||
|
X[0, 0] = value
|
||
|
with pytest.raises(ValueError, match=match_msg):
|
||
|
check_array(X, force_all_finite=force_all_finite,
|
||
|
accept_sparse=True)
|
||
|
|
||
|
|
||
|
def test_check_array_force_all_finite_object():
|
||
|
X = np.array([['a', 'b', np.nan]], dtype=object).T
|
||
|
|
||
|
X_checked = check_array(X, dtype=None, force_all_finite='allow-nan')
|
||
|
assert X is X_checked
|
||
|
|
||
|
X_checked = check_array(X, dtype=None, force_all_finite=False)
|
||
|
assert X is X_checked
|
||
|
|
||
|
with pytest.raises(ValueError, match='Input contains NaN'):
|
||
|
check_array(X, dtype=None, force_all_finite=True)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X, err_msg",
|
||
|
[(np.array([[1, np.nan]]),
|
||
|
"Input contains NaN, infinity or a value too large for.*int"),
|
||
|
(np.array([[1, np.nan]]),
|
||
|
"Input contains NaN, infinity or a value too large for.*int"),
|
||
|
(np.array([[1, np.inf]]),
|
||
|
"Input contains NaN, infinity or a value too large for.*int"),
|
||
|
(np.array([[1, np.nan]], dtype=np.object),
|
||
|
"cannot convert float NaN to integer")]
|
||
|
)
|
||
|
@pytest.mark.parametrize("force_all_finite", [True, False])
|
||
|
def test_check_array_force_all_finite_object_unsafe_casting(
|
||
|
X, err_msg, force_all_finite):
|
||
|
# casting a float array containing NaN or inf to int dtype should
|
||
|
# raise an error irrespective of the force_all_finite parameter.
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
check_array(X, dtype=np.int, force_all_finite=force_all_finite)
|
||
|
|
||
|
|
||
|
@ignore_warnings
|
||
|
def test_check_array():
|
||
|
# accept_sparse == False
|
||
|
# raise error on sparse inputs
|
||
|
X = [[1, 2], [3, 4]]
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
with pytest.raises(TypeError):
|
||
|
check_array(X_csr)
|
||
|
|
||
|
# ensure_2d=False
|
||
|
X_array = check_array([0, 1, 2], ensure_2d=False)
|
||
|
assert X_array.ndim == 1
|
||
|
# ensure_2d=True with 1d array
|
||
|
with pytest.raises(ValueError, match="Expected 2D array,"
|
||
|
" got 1D array instead"):
|
||
|
check_array([0, 1, 2], ensure_2d=True)
|
||
|
|
||
|
# ensure_2d=True with scalar array
|
||
|
with pytest.raises(ValueError, match="Expected 2D array,"
|
||
|
" got scalar array instead"):
|
||
|
check_array(10, ensure_2d=True)
|
||
|
|
||
|
# don't allow ndim > 3
|
||
|
X_ndim = np.arange(8).reshape(2, 2, 2)
|
||
|
with pytest.raises(ValueError):
|
||
|
check_array(X_ndim)
|
||
|
check_array(X_ndim, allow_nd=True) # doesn't raise
|
||
|
|
||
|
# dtype and order enforcement.
|
||
|
X_C = np.arange(4).reshape(2, 2).copy("C")
|
||
|
X_F = X_C.copy("F")
|
||
|
X_int = X_C.astype(np.int)
|
||
|
X_float = X_C.astype(np.float)
|
||
|
Xs = [X_C, X_F, X_int, X_float]
|
||
|
dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object]
|
||
|
orders = ['C', 'F', None]
|
||
|
copys = [True, False]
|
||
|
|
||
|
for X, dtype, order, copy in product(Xs, dtypes, orders, copys):
|
||
|
X_checked = check_array(X, dtype=dtype, order=order, copy=copy)
|
||
|
if dtype is not None:
|
||
|
assert X_checked.dtype == dtype
|
||
|
else:
|
||
|
assert X_checked.dtype == X.dtype
|
||
|
if order == 'C':
|
||
|
assert X_checked.flags['C_CONTIGUOUS']
|
||
|
assert not X_checked.flags['F_CONTIGUOUS']
|
||
|
elif order == 'F':
|
||
|
assert X_checked.flags['F_CONTIGUOUS']
|
||
|
assert not X_checked.flags['C_CONTIGUOUS']
|
||
|
if copy:
|
||
|
assert X is not X_checked
|
||
|
else:
|
||
|
# doesn't copy if it was already good
|
||
|
if (X.dtype == X_checked.dtype and
|
||
|
X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS']
|
||
|
and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']):
|
||
|
assert X is X_checked
|
||
|
|
||
|
# allowed sparse != None
|
||
|
X_csc = sp.csc_matrix(X_C)
|
||
|
X_coo = X_csc.tocoo()
|
||
|
X_dok = X_csc.todok()
|
||
|
X_int = X_csc.astype(np.int)
|
||
|
X_float = X_csc.astype(np.float)
|
||
|
|
||
|
Xs = [X_csc, X_coo, X_dok, X_int, X_float]
|
||
|
accept_sparses = [['csr', 'coo'], ['coo', 'dok']]
|
||
|
for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses,
|
||
|
copys):
|
||
|
with warnings.catch_warnings(record=True) as w:
|
||
|
X_checked = check_array(X, dtype=dtype,
|
||
|
accept_sparse=accept_sparse, copy=copy)
|
||
|
if (dtype is object or sp.isspmatrix_dok(X)) and len(w):
|
||
|
# XXX unreached code as of v0.22
|
||
|
message = str(w[0].message)
|
||
|
messages = ["object dtype is not supported by sparse matrices",
|
||
|
"Can't check dok sparse matrix for nan or inf."]
|
||
|
assert message in messages
|
||
|
else:
|
||
|
assert len(w) == 0
|
||
|
if dtype is not None:
|
||
|
assert X_checked.dtype == dtype
|
||
|
else:
|
||
|
assert X_checked.dtype == X.dtype
|
||
|
if X.format in accept_sparse:
|
||
|
# no change if allowed
|
||
|
assert X.format == X_checked.format
|
||
|
else:
|
||
|
# got converted
|
||
|
assert X_checked.format == accept_sparse[0]
|
||
|
if copy:
|
||
|
assert X is not X_checked
|
||
|
else:
|
||
|
# doesn't copy if it was already good
|
||
|
if X.dtype == X_checked.dtype and X.format == X_checked.format:
|
||
|
assert X is X_checked
|
||
|
|
||
|
# other input formats
|
||
|
# convert lists to arrays
|
||
|
X_dense = check_array([[1, 2], [3, 4]])
|
||
|
assert isinstance(X_dense, np.ndarray)
|
||
|
# raise on too deep lists
|
||
|
with pytest.raises(ValueError):
|
||
|
check_array(X_ndim.tolist())
|
||
|
check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise
|
||
|
|
||
|
# convert weird stuff to arrays
|
||
|
X_no_array = _NotAnArray(X_dense)
|
||
|
result = check_array(X_no_array)
|
||
|
assert isinstance(result, np.ndarray)
|
||
|
|
||
|
# deprecation warning if string-like array with dtype="numeric"
|
||
|
expected_warn_regex = r"converted to decimal numbers if dtype='numeric'"
|
||
|
X_str = [['11', '12'], ['13', 'xx']]
|
||
|
for X in [X_str, np.array(X_str, dtype='U'), np.array(X_str, dtype='S')]:
|
||
|
with pytest.warns(FutureWarning, match=expected_warn_regex):
|
||
|
check_array(X, dtype="numeric")
|
||
|
|
||
|
# deprecation warning if byte-like array with dtype="numeric"
|
||
|
X_bytes = [[b'a', b'b'], [b'c', b'd']]
|
||
|
for X in [X_bytes, np.array(X_bytes, dtype='V1')]:
|
||
|
with pytest.warns(FutureWarning, match=expected_warn_regex):
|
||
|
check_array(X, dtype="numeric")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("pd_dtype", ["Int8", "Int16", "UInt8", "UInt16"])
|
||
|
@pytest.mark.parametrize("dtype, expected_dtype", [
|
||
|
([np.float32, np.float64], np.float32),
|
||
|
(np.float64, np.float64),
|
||
|
("numeric", np.float64),
|
||
|
])
|
||
|
def test_check_array_pandas_na_support(pd_dtype, dtype, expected_dtype):
|
||
|
# Test pandas IntegerArray with pd.NA
|
||
|
pd = pytest.importorskip('pandas', minversion="1.0")
|
||
|
|
||
|
X_np = np.array([[1, 2, 3, np.nan, np.nan],
|
||
|
[np.nan, np.nan, 8, 4, 6],
|
||
|
[1, 2, 3, 4, 5]]).T
|
||
|
|
||
|
# Creates dataframe with IntegerArrays with pd.NA
|
||
|
X = pd.DataFrame(X_np, dtype=pd_dtype, columns=['a', 'b', 'c'])
|
||
|
# column c has no nans
|
||
|
X['c'] = X['c'].astype('float')
|
||
|
X_checked = check_array(X, force_all_finite='allow-nan', dtype=dtype)
|
||
|
assert_allclose(X_checked, X_np)
|
||
|
assert X_checked.dtype == expected_dtype
|
||
|
|
||
|
X_checked = check_array(X, force_all_finite=False, dtype=dtype)
|
||
|
assert_allclose(X_checked, X_np)
|
||
|
assert X_checked.dtype == expected_dtype
|
||
|
|
||
|
msg = "Input contains NaN, infinity"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_array(X, force_all_finite=True)
|
||
|
|
||
|
|
||
|
def test_check_array_pandas_dtype_object_conversion():
|
||
|
# test that data-frame like objects with dtype object
|
||
|
# get converted
|
||
|
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object)
|
||
|
X_df = MockDataFrame(X)
|
||
|
assert check_array(X_df).dtype.kind == "f"
|
||
|
assert check_array(X_df, ensure_2d=False).dtype.kind == "f"
|
||
|
# smoke-test against dataframes with column named "dtype"
|
||
|
X_df.dtype = "Hans"
|
||
|
assert check_array(X_df, ensure_2d=False).dtype.kind == "f"
|
||
|
|
||
|
|
||
|
def test_check_array_pandas_dtype_casting():
|
||
|
# test that data-frames with homogeneous dtype are not upcast
|
||
|
pd = pytest.importorskip('pandas')
|
||
|
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
|
||
|
X_df = pd.DataFrame(X)
|
||
|
assert check_array(X_df).dtype == np.float32
|
||
|
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32
|
||
|
|
||
|
X_df.iloc[:, 0] = X_df.iloc[:, 0].astype(np.float16)
|
||
|
assert_array_equal(X_df.dtypes,
|
||
|
(np.float16, np.float32, np.float32))
|
||
|
assert check_array(X_df).dtype == np.float32
|
||
|
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32
|
||
|
|
||
|
X_df.iloc[:, 1] = X_df.iloc[:, 1].astype(np.int16)
|
||
|
# float16, int16, float32 casts to float32
|
||
|
assert check_array(X_df).dtype == np.float32
|
||
|
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32
|
||
|
|
||
|
X_df.iloc[:, 2] = X_df.iloc[:, 2].astype(np.float16)
|
||
|
# float16, int16, float16 casts to float32
|
||
|
assert check_array(X_df).dtype == np.float32
|
||
|
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float32
|
||
|
|
||
|
X_df = X_df.astype(np.int16)
|
||
|
assert check_array(X_df).dtype == np.int16
|
||
|
# we're not using upcasting rules for determining
|
||
|
# the target type yet, so we cast to the default of float64
|
||
|
assert check_array(X_df, dtype=FLOAT_DTYPES).dtype == np.float64
|
||
|
|
||
|
# check that we handle pandas dtypes in a semi-reasonable way
|
||
|
# this is actually tricky because we can't really know that this
|
||
|
# should be integer ahead of converting it.
|
||
|
cat_df = pd.DataFrame([pd.Categorical([1, 2, 3])])
|
||
|
assert (check_array(cat_df).dtype == np.int64)
|
||
|
assert (check_array(cat_df, dtype=FLOAT_DTYPES).dtype
|
||
|
== np.float64)
|
||
|
|
||
|
|
||
|
def test_check_array_on_mock_dataframe():
|
||
|
arr = np.array([[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]])
|
||
|
mock_df = MockDataFrame(arr)
|
||
|
checked_arr = check_array(mock_df)
|
||
|
assert checked_arr.dtype == arr.dtype
|
||
|
checked_arr = check_array(mock_df, dtype=np.float32)
|
||
|
assert checked_arr.dtype == np.dtype(np.float32)
|
||
|
|
||
|
|
||
|
def test_check_array_dtype_stability():
|
||
|
# test that lists with ints don't get converted to floats
|
||
|
X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
||
|
assert check_array(X).dtype.kind == "i"
|
||
|
assert check_array(X, ensure_2d=False).dtype.kind == "i"
|
||
|
|
||
|
|
||
|
def test_check_array_dtype_warning():
|
||
|
X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
||
|
X_float32 = np.asarray(X_int_list, dtype=np.float32)
|
||
|
X_int64 = np.asarray(X_int_list, dtype=np.int64)
|
||
|
X_csr_float32 = sp.csr_matrix(X_float32)
|
||
|
X_csc_float32 = sp.csc_matrix(X_float32)
|
||
|
X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32)
|
||
|
integer_data = [X_int64, X_csc_int32]
|
||
|
float32_data = [X_float32, X_csr_float32, X_csc_float32]
|
||
|
for X in integer_data:
|
||
|
X_checked = assert_no_warnings(check_array, X, dtype=np.float64,
|
||
|
accept_sparse=True)
|
||
|
assert X_checked.dtype == np.float64
|
||
|
|
||
|
for X in float32_data:
|
||
|
X_checked = assert_no_warnings(check_array, X,
|
||
|
dtype=[np.float64, np.float32],
|
||
|
accept_sparse=True)
|
||
|
assert X_checked.dtype == np.float32
|
||
|
assert X_checked is X
|
||
|
|
||
|
X_checked = assert_no_warnings(check_array, X,
|
||
|
dtype=[np.float64, np.float32],
|
||
|
accept_sparse=['csr', 'dok'],
|
||
|
copy=True)
|
||
|
assert X_checked.dtype == np.float32
|
||
|
assert X_checked is not X
|
||
|
|
||
|
X_checked = assert_no_warnings(check_array, X_csc_float32,
|
||
|
dtype=[np.float64, np.float32],
|
||
|
accept_sparse=['csr', 'dok'],
|
||
|
copy=False)
|
||
|
assert X_checked.dtype == np.float32
|
||
|
assert X_checked is not X_csc_float32
|
||
|
assert X_checked.format == 'csr'
|
||
|
|
||
|
|
||
|
def test_check_array_accept_sparse_type_exception():
|
||
|
X = [[1, 2], [3, 4]]
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
invalid_type = SVR()
|
||
|
|
||
|
msg = ("A sparse matrix was passed, but dense data is required. "
|
||
|
r"Use X.toarray\(\) to convert to a dense numpy array.")
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
check_array(X_csr, accept_sparse=False)
|
||
|
|
||
|
msg = ("Parameter 'accept_sparse' should be a string, "
|
||
|
"boolean or list of strings. You provided 'accept_sparse=.*'.")
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_array(X_csr, accept_sparse=invalid_type)
|
||
|
|
||
|
msg = ("When providing 'accept_sparse' as a tuple or list, "
|
||
|
"it must contain at least one string value.")
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_array(X_csr, accept_sparse=[])
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_array(X_csr, accept_sparse=())
|
||
|
with pytest.raises(TypeError, match="SVR"):
|
||
|
check_array(X_csr, accept_sparse=[invalid_type])
|
||
|
|
||
|
|
||
|
def test_check_array_accept_sparse_no_exception():
|
||
|
X = [[1, 2], [3, 4]]
|
||
|
X_csr = sp.csr_matrix(X)
|
||
|
|
||
|
check_array(X_csr, accept_sparse=True)
|
||
|
check_array(X_csr, accept_sparse='csr')
|
||
|
check_array(X_csr, accept_sparse=['csr'])
|
||
|
check_array(X_csr, accept_sparse=('csr',))
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=['csr', 'csc', 'coo', 'bsr'])
|
||
|
def X_64bit(request):
|
||
|
X = sp.rand(20, 10, format=request.param)
|
||
|
for attr in ['indices', 'indptr', 'row', 'col']:
|
||
|
if hasattr(X, attr):
|
||
|
setattr(X, attr, getattr(X, attr).astype('int64'))
|
||
|
yield X
|
||
|
|
||
|
|
||
|
def test_check_array_accept_large_sparse_no_exception(X_64bit):
|
||
|
# When large sparse are allowed
|
||
|
check_array(X_64bit, accept_large_sparse=True, accept_sparse=True)
|
||
|
|
||
|
|
||
|
def test_check_array_accept_large_sparse_raise_exception(X_64bit):
|
||
|
# When large sparse are not allowed
|
||
|
msg = ("Only sparse matrices with 32-bit integer indices "
|
||
|
"are accepted. Got int64 indices.")
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_array(X_64bit, accept_sparse=True, accept_large_sparse=False)
|
||
|
|
||
|
|
||
|
def test_check_array_min_samples_and_features_messages():
|
||
|
# empty list is considered 2D by default:
|
||
|
msg = r"0 feature\(s\) \(shape=\(1, 0\)\) while a minimum of 1 is" \
|
||
|
" required."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_array([[]])
|
||
|
|
||
|
# If considered a 1D collection when ensure_2d=False, then the minimum
|
||
|
# number of samples will break:
|
||
|
msg = r"0 sample\(s\) \(shape=\(0,\)\) while a minimum of 1 is required."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_array([], ensure_2d=False)
|
||
|
|
||
|
# Invalid edge case when checking the default minimum sample of a scalar
|
||
|
msg = r"Singleton array array\(42\) cannot be considered a valid" \
|
||
|
" collection."
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
check_array(42, ensure_2d=False)
|
||
|
|
||
|
# Simulate a model that would need at least 2 samples to be well defined
|
||
|
X = np.ones((1, 10))
|
||
|
y = np.ones(1)
|
||
|
msg = r"1 sample\(s\) \(shape=\(1, 10\)\) while a minimum of 2 is" \
|
||
|
" required."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_X_y(X, y, ensure_min_samples=2)
|
||
|
|
||
|
# The same message is raised if the data has 2 dimensions even if this is
|
||
|
# not mandatory
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_X_y(X, y, ensure_min_samples=2, ensure_2d=False)
|
||
|
|
||
|
# Simulate a model that would require at least 3 features (e.g. SelectKBest
|
||
|
# with k=3)
|
||
|
X = np.ones((10, 2))
|
||
|
y = np.ones(2)
|
||
|
msg = r"2 feature\(s\) \(shape=\(10, 2\)\) while a minimum of 3 is" \
|
||
|
" required."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_X_y(X, y, ensure_min_features=3)
|
||
|
|
||
|
# Only the feature check is enabled whenever the number of dimensions is 2
|
||
|
# even if allow_nd is enabled:
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_X_y(X, y, ensure_min_features=3, allow_nd=True)
|
||
|
|
||
|
# Simulate a case where a pipeline stage as trimmed all the features of a
|
||
|
# 2D dataset.
|
||
|
X = np.empty(0).reshape(10, 0)
|
||
|
y = np.ones(10)
|
||
|
msg = r"0 feature\(s\) \(shape=\(10, 0\)\) while a minimum of 1 is" \
|
||
|
" required."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_X_y(X, y)
|
||
|
|
||
|
# nd-data is not checked for any minimum number of features by default:
|
||
|
X = np.ones((10, 0, 28, 28))
|
||
|
y = np.ones(10)
|
||
|
X_checked, y_checked = check_X_y(X, y, allow_nd=True)
|
||
|
assert_array_equal(X, X_checked)
|
||
|
assert_array_equal(y, y_checked)
|
||
|
|
||
|
|
||
|
def test_check_array_complex_data_error():
|
||
|
X = np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]])
|
||
|
with pytest.raises(ValueError, match="Complex data not supported"):
|
||
|
check_array(X)
|
||
|
|
||
|
# list of lists
|
||
|
X = [[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]]
|
||
|
with pytest.raises(ValueError, match="Complex data not supported"):
|
||
|
check_array(X)
|
||
|
|
||
|
# tuple of tuples
|
||
|
X = ((1 + 2j, 3 + 4j, 5 + 7j), (2 + 3j, 4 + 5j, 6 + 7j))
|
||
|
with pytest.raises(ValueError, match="Complex data not supported"):
|
||
|
check_array(X)
|
||
|
|
||
|
# list of np arrays
|
||
|
X = [np.array([1 + 2j, 3 + 4j, 5 + 7j]),
|
||
|
np.array([2 + 3j, 4 + 5j, 6 + 7j])]
|
||
|
with pytest.raises(ValueError, match="Complex data not supported"):
|
||
|
check_array(X)
|
||
|
|
||
|
# tuple of np arrays
|
||
|
X = (np.array([1 + 2j, 3 + 4j, 5 + 7j]),
|
||
|
np.array([2 + 3j, 4 + 5j, 6 + 7j]))
|
||
|
with pytest.raises(ValueError, match="Complex data not supported"):
|
||
|
check_array(X)
|
||
|
|
||
|
# dataframe
|
||
|
X = MockDataFrame(
|
||
|
np.array([[1 + 2j, 3 + 4j, 5 + 7j], [2 + 3j, 4 + 5j, 6 + 7j]]))
|
||
|
with pytest.raises(ValueError, match="Complex data not supported"):
|
||
|
check_array(X)
|
||
|
|
||
|
# sparse matrix
|
||
|
X = sp.coo_matrix([[0, 1 + 2j], [0, 0]])
|
||
|
with pytest.raises(ValueError, match="Complex data not supported"):
|
||
|
check_array(X)
|
||
|
|
||
|
|
||
|
def test_has_fit_parameter():
|
||
|
assert not has_fit_parameter(KNeighborsClassifier, "sample_weight")
|
||
|
assert has_fit_parameter(RandomForestRegressor, "sample_weight")
|
||
|
assert has_fit_parameter(SVR, "sample_weight")
|
||
|
assert has_fit_parameter(SVR(), "sample_weight")
|
||
|
|
||
|
class TestClassWithDeprecatedFitMethod:
|
||
|
@deprecated("Deprecated for the purpose of testing has_fit_parameter")
|
||
|
def fit(self, X, y, sample_weight=None):
|
||
|
pass
|
||
|
|
||
|
assert has_fit_parameter(TestClassWithDeprecatedFitMethod,
|
||
|
"sample_weight"), \
|
||
|
"has_fit_parameter fails for class with deprecated fit method."
|
||
|
|
||
|
|
||
|
def test_check_symmetric():
|
||
|
arr_sym = np.array([[0, 1], [1, 2]])
|
||
|
arr_bad = np.ones(2)
|
||
|
arr_asym = np.array([[0, 2], [0, 2]])
|
||
|
|
||
|
test_arrays = {'dense': arr_asym,
|
||
|
'dok': sp.dok_matrix(arr_asym),
|
||
|
'csr': sp.csr_matrix(arr_asym),
|
||
|
'csc': sp.csc_matrix(arr_asym),
|
||
|
'coo': sp.coo_matrix(arr_asym),
|
||
|
'lil': sp.lil_matrix(arr_asym),
|
||
|
'bsr': sp.bsr_matrix(arr_asym)}
|
||
|
|
||
|
# check error for bad inputs
|
||
|
with pytest.raises(ValueError):
|
||
|
check_symmetric(arr_bad)
|
||
|
|
||
|
# check that asymmetric arrays are properly symmetrized
|
||
|
for arr_format, arr in test_arrays.items():
|
||
|
# Check for warnings and errors
|
||
|
with pytest.warns(UserWarning):
|
||
|
check_symmetric(arr)
|
||
|
with pytest.raises(ValueError):
|
||
|
check_symmetric(arr, raise_exception=True)
|
||
|
|
||
|
output = check_symmetric(arr, raise_warning=False)
|
||
|
if sp.issparse(output):
|
||
|
assert output.format == arr_format
|
||
|
assert_array_equal(output.toarray(), arr_sym)
|
||
|
else:
|
||
|
assert_array_equal(output, arr_sym)
|
||
|
|
||
|
|
||
|
def test_check_is_fitted():
|
||
|
# Check is TypeError raised when non estimator instance passed
|
||
|
with pytest.raises(TypeError):
|
||
|
check_is_fitted(ARDRegression)
|
||
|
with pytest.raises(TypeError):
|
||
|
check_is_fitted("SVR")
|
||
|
|
||
|
ard = ARDRegression()
|
||
|
svr = SVR()
|
||
|
|
||
|
try:
|
||
|
with pytest.raises(NotFittedError):
|
||
|
check_is_fitted(ard)
|
||
|
with pytest.raises(NotFittedError):
|
||
|
check_is_fitted(svr)
|
||
|
except ValueError:
|
||
|
assert False, "check_is_fitted failed with ValueError"
|
||
|
|
||
|
# NotFittedError is a subclass of both ValueError and AttributeError
|
||
|
try:
|
||
|
check_is_fitted(ard, msg="Random message %(name)s, %(name)s")
|
||
|
except ValueError as e:
|
||
|
assert str(e) == "Random message ARDRegression, ARDRegression"
|
||
|
|
||
|
try:
|
||
|
check_is_fitted(svr, msg="Another message %(name)s, %(name)s")
|
||
|
except AttributeError as e:
|
||
|
assert str(e) == "Another message SVR, SVR"
|
||
|
|
||
|
ard.fit(*make_blobs())
|
||
|
svr.fit(*make_blobs())
|
||
|
|
||
|
assert check_is_fitted(ard) is None
|
||
|
assert check_is_fitted(svr) is None
|
||
|
|
||
|
|
||
|
def test_check_is_fitted_attributes():
|
||
|
class MyEstimator():
|
||
|
def fit(self, X, y):
|
||
|
return self
|
||
|
|
||
|
msg = "not fitted"
|
||
|
est = MyEstimator()
|
||
|
|
||
|
with pytest.raises(NotFittedError, match=msg):
|
||
|
check_is_fitted(est, attributes=["a_", "b_"])
|
||
|
with pytest.raises(NotFittedError, match=msg):
|
||
|
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
|
||
|
with pytest.raises(NotFittedError, match=msg):
|
||
|
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any)
|
||
|
|
||
|
est.a_ = "a"
|
||
|
with pytest.raises(NotFittedError, match=msg):
|
||
|
check_is_fitted(est, attributes=["a_", "b_"])
|
||
|
with pytest.raises(NotFittedError, match=msg):
|
||
|
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
|
||
|
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any)
|
||
|
|
||
|
est.b_ = "b"
|
||
|
check_is_fitted(est, attributes=["a_", "b_"])
|
||
|
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=all)
|
||
|
check_is_fitted(est, attributes=["a_", "b_"], all_or_any=any)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("wrap",
|
||
|
[itemgetter(0), list, tuple],
|
||
|
ids=["single", "list", "tuple"])
|
||
|
def test_check_is_fitted_with_attributes(wrap):
|
||
|
ard = ARDRegression()
|
||
|
with pytest.raises(NotFittedError, match="is not fitted yet"):
|
||
|
check_is_fitted(ard, wrap(["coef_"]))
|
||
|
|
||
|
ard.fit(*make_blobs())
|
||
|
|
||
|
# Does not raise
|
||
|
check_is_fitted(ard, wrap(["coef_"]))
|
||
|
|
||
|
# Raises when using attribute that is not defined
|
||
|
with pytest.raises(NotFittedError, match="is not fitted yet"):
|
||
|
check_is_fitted(ard, wrap(["coef_bad_"]))
|
||
|
|
||
|
|
||
|
def test_check_consistent_length():
|
||
|
check_consistent_length([1], [2], [3], [4], [5])
|
||
|
check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b'])
|
||
|
check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2)))
|
||
|
with pytest.raises(ValueError, match="inconsistent numbers of samples"):
|
||
|
check_consistent_length([1, 2], [1])
|
||
|
with pytest.raises(TypeError, match=r"got <\w+ 'int'>"):
|
||
|
check_consistent_length([1, 2], 1)
|
||
|
with pytest.raises(TypeError, match=r"got <\w+ 'object'>"):
|
||
|
check_consistent_length([1, 2], object())
|
||
|
|
||
|
with pytest.raises(TypeError):
|
||
|
check_consistent_length([1, 2], np.array(1))
|
||
|
|
||
|
# Despite ensembles having __len__ they must raise TypeError
|
||
|
with pytest.raises(TypeError, match="Expected sequence or array-like"):
|
||
|
check_consistent_length([1, 2], RandomForestRegressor())
|
||
|
# XXX: We should have a test with a string, but what is correct behaviour?
|
||
|
|
||
|
|
||
|
def test_check_dataframe_fit_attribute():
|
||
|
# check pandas dataframe with 'fit' column does not raise error
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/8415
|
||
|
try:
|
||
|
import pandas as pd
|
||
|
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||
|
X_df = pd.DataFrame(X, columns=['a', 'b', 'fit'])
|
||
|
check_consistent_length(X_df)
|
||
|
except ImportError:
|
||
|
raise SkipTest("Pandas not found")
|
||
|
|
||
|
|
||
|
def test_suppress_validation():
|
||
|
X = np.array([0, np.inf])
|
||
|
with pytest.raises(ValueError):
|
||
|
assert_all_finite(X)
|
||
|
sklearn.set_config(assume_finite=True)
|
||
|
assert_all_finite(X)
|
||
|
sklearn.set_config(assume_finite=False)
|
||
|
with pytest.raises(ValueError):
|
||
|
assert_all_finite(X)
|
||
|
|
||
|
|
||
|
def test_check_array_series():
|
||
|
# regression test that check_array works on pandas Series
|
||
|
pd = importorskip("pandas")
|
||
|
res = check_array(pd.Series([1, 2, 3]), ensure_2d=False)
|
||
|
assert_array_equal(res, np.array([1, 2, 3]))
|
||
|
|
||
|
# with categorical dtype (not a numpy dtype) (GH12699)
|
||
|
s = pd.Series(['a', 'b', 'c']).astype('category')
|
||
|
res = check_array(s, dtype=None, ensure_2d=False)
|
||
|
assert_array_equal(res, np.array(['a', 'b', 'c'], dtype=object))
|
||
|
|
||
|
|
||
|
def test_check_dataframe_mixed_float_dtypes():
|
||
|
# pandas dataframe will coerce a boolean into a object, this is a mismatch
|
||
|
# with np.result_type which will return a float
|
||
|
# check_array needs to explicitly check for bool dtype in a dataframe for
|
||
|
# this situation
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/15787
|
||
|
|
||
|
pd = importorskip("pandas")
|
||
|
df = pd.DataFrame({
|
||
|
'int': [1, 2, 3],
|
||
|
'float': [0, 0.1, 2.1],
|
||
|
'bool': [True, False, True]}, columns=['int', 'float', 'bool'])
|
||
|
|
||
|
array = check_array(df, dtype=(np.float64, np.float32, np.float16))
|
||
|
expected_array = np.array(
|
||
|
[[1.0, 0.0, 1.0],
|
||
|
[2.0, 0.1, 0.0],
|
||
|
[3.0, 2.1, 1.0]], dtype=np.float)
|
||
|
assert_allclose_dense_sparse(array, expected_array)
|
||
|
|
||
|
|
||
|
class DummyMemory:
|
||
|
def cache(self, func):
|
||
|
return func
|
||
|
|
||
|
|
||
|
class WrongDummyMemory:
|
||
|
pass
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:The 'cachedir' attribute")
|
||
|
def test_check_memory():
|
||
|
memory = check_memory("cache_directory")
|
||
|
assert memory.cachedir == os.path.join('cache_directory', 'joblib')
|
||
|
memory = check_memory(None)
|
||
|
assert memory.cachedir is None
|
||
|
dummy = DummyMemory()
|
||
|
memory = check_memory(dummy)
|
||
|
assert memory is dummy
|
||
|
|
||
|
msg = "'memory' should be None, a string or have the same interface as" \
|
||
|
" joblib.Memory. Got memory='1' instead."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_memory(1)
|
||
|
dummy = WrongDummyMemory()
|
||
|
msg = "'memory' should be None, a string or have the same interface as" \
|
||
|
" joblib.Memory. Got memory='{}' instead.".format(dummy)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
check_memory(dummy)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('copy', [True, False])
|
||
|
def test_check_array_memmap(copy):
|
||
|
X = np.ones((4, 4))
|
||
|
with TempMemmap(X, mmap_mode='r') as X_memmap:
|
||
|
X_checked = check_array(X_memmap, copy=copy)
|
||
|
assert np.may_share_memory(X_memmap, X_checked) == (not copy)
|
||
|
assert X_checked.flags['WRITEABLE'] == copy
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('retype', [
|
||
|
np.asarray, sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.lil_matrix,
|
||
|
sp.bsr_matrix, sp.dok_matrix, sp.dia_matrix
|
||
|
])
|
||
|
def test_check_non_negative(retype):
|
||
|
A = np.array([[1, 1, 0, 0],
|
||
|
[1, 1, 0, 0],
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 0, 0, 0]])
|
||
|
X = retype(A)
|
||
|
check_non_negative(X, "")
|
||
|
X = retype([[0, 0], [0, 0]])
|
||
|
check_non_negative(X, "")
|
||
|
|
||
|
A[0, 0] = -1
|
||
|
X = retype(A)
|
||
|
with pytest.raises(ValueError, match="Negative "):
|
||
|
check_non_negative(X, "")
|
||
|
|
||
|
|
||
|
def test_check_X_y_informative_error():
|
||
|
X = np.ones((2, 2))
|
||
|
y = None
|
||
|
with pytest.raises(ValueError, match="y cannot be None"):
|
||
|
check_X_y(X, y)
|
||
|
|
||
|
|
||
|
def test_retrieve_samples_from_non_standard_shape():
|
||
|
class TestNonNumericShape:
|
||
|
def __init__(self):
|
||
|
self.shape = ("not numeric",)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len([1, 2, 3])
|
||
|
|
||
|
X = TestNonNumericShape()
|
||
|
assert _num_samples(X) == len(X)
|
||
|
|
||
|
# check that it gives a good error if there's no __len__
|
||
|
class TestNoLenWeirdShape:
|
||
|
def __init__(self):
|
||
|
self.shape = ("not numeric",)
|
||
|
|
||
|
with pytest.raises(TypeError, match="Expected sequence or array-like"):
|
||
|
_num_samples(TestNoLenWeirdShape())
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('x, target_type, min_val, max_val',
|
||
|
[(3, int, 2, 5),
|
||
|
(2.5, float, 2, 5)])
|
||
|
def test_check_scalar_valid(x, target_type, min_val, max_val):
|
||
|
"""Test that check_scalar returns no error/warning if valid inputs are
|
||
|
provided"""
|
||
|
with pytest.warns(None) as record:
|
||
|
check_scalar(x, "test_name", target_type=target_type,
|
||
|
min_val=min_val, max_val=max_val)
|
||
|
assert len(record) == 0
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('x, target_name, target_type, min_val, max_val, '
|
||
|
'err_msg',
|
||
|
[(1, "test_name1", float, 2, 4,
|
||
|
TypeError("`test_name1` must be an instance of "
|
||
|
"<class 'float'>, not <class 'int'>.")),
|
||
|
(1, "test_name2", int, 2, 4,
|
||
|
ValueError('`test_name2`= 1, must be >= 2.')),
|
||
|
(5, "test_name3", int, 2, 4,
|
||
|
ValueError('`test_name3`= 5, must be <= 4.'))])
|
||
|
def test_check_scalar_invalid(x, target_name, target_type, min_val, max_val,
|
||
|
err_msg):
|
||
|
"""Test that check_scalar returns the right error if a wrong input is
|
||
|
given"""
|
||
|
with pytest.raises(Exception) as raised_error:
|
||
|
check_scalar(x, target_name, target_type=target_type,
|
||
|
min_val=min_val, max_val=max_val)
|
||
|
assert str(raised_error.value) == str(err_msg)
|
||
|
assert type(raised_error.value) == type(err_msg)
|
||
|
|
||
|
|
||
|
_psd_cases_valid = {
|
||
|
'nominal': ((1, 2), np.array([1, 2]), None, ""),
|
||
|
'nominal_np_array': (np.array([1, 2]), np.array([1, 2]), None, ""),
|
||
|
'insignificant_imag': ((5, 5e-5j), np.array([5, 0]),
|
||
|
PositiveSpectrumWarning,
|
||
|
"There are imaginary parts in eigenvalues "
|
||
|
"\\(1e\\-05 of the maximum real part"),
|
||
|
'insignificant neg': ((5, -5e-5), np.array([5, 0]),
|
||
|
PositiveSpectrumWarning, ""),
|
||
|
'insignificant neg float32': (np.array([1, -1e-6], dtype=np.float32),
|
||
|
np.array([1, 0], dtype=np.float32),
|
||
|
PositiveSpectrumWarning,
|
||
|
"There are negative eigenvalues \\(1e\\-06 "
|
||
|
"of the maximum positive"),
|
||
|
'insignificant neg float64': (np.array([1, -1e-10], dtype=np.float64),
|
||
|
np.array([1, 0], dtype=np.float64),
|
||
|
PositiveSpectrumWarning,
|
||
|
"There are negative eigenvalues \\(1e\\-10 "
|
||
|
"of the maximum positive"),
|
||
|
'insignificant pos': ((5, 4e-12), np.array([5, 0]),
|
||
|
PositiveSpectrumWarning,
|
||
|
"the largest eigenvalue is more than 1e\\+12 "
|
||
|
"times the smallest"),
|
||
|
}
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("lambdas, expected_lambdas, w_type, w_msg",
|
||
|
list(_psd_cases_valid.values()),
|
||
|
ids=list(_psd_cases_valid.keys()))
|
||
|
@pytest.mark.parametrize("enable_warnings", [True, False])
|
||
|
def test_check_psd_eigenvalues_valid(lambdas, expected_lambdas, w_type, w_msg,
|
||
|
enable_warnings):
|
||
|
# Test that ``_check_psd_eigenvalues`` returns the right output for valid
|
||
|
# input, possibly raising the right warning
|
||
|
|
||
|
if not enable_warnings:
|
||
|
w_type = None
|
||
|
w_msg = ""
|
||
|
|
||
|
with pytest.warns(w_type, match=w_msg) as w:
|
||
|
assert_array_equal(
|
||
|
_check_psd_eigenvalues(lambdas, enable_warnings=enable_warnings),
|
||
|
expected_lambdas
|
||
|
)
|
||
|
if w_type is None:
|
||
|
assert not w
|
||
|
|
||
|
|
||
|
_psd_cases_invalid = {
|
||
|
'significant_imag': ((5, 5j), ValueError,
|
||
|
"There are significant imaginary parts in eigenv"),
|
||
|
'all negative': ((-5, -1), ValueError,
|
||
|
"All eigenvalues are negative \\(maximum is -1"),
|
||
|
'significant neg': ((5, -1), ValueError,
|
||
|
"There are significant negative eigenvalues"),
|
||
|
'significant neg float32': (np.array([3e-4, -2e-6], dtype=np.float32),
|
||
|
ValueError,
|
||
|
"There are significant negative eigenvalues"),
|
||
|
'significant neg float64': (np.array([1e-5, -2e-10], dtype=np.float64),
|
||
|
ValueError,
|
||
|
"There are significant negative eigenvalues"),
|
||
|
}
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("lambdas, err_type, err_msg",
|
||
|
list(_psd_cases_invalid.values()),
|
||
|
ids=list(_psd_cases_invalid.keys()))
|
||
|
def test_check_psd_eigenvalues_invalid(lambdas, err_type, err_msg):
|
||
|
# Test that ``_check_psd_eigenvalues`` raises the right error for invalid
|
||
|
# input
|
||
|
|
||
|
with pytest.raises(err_type, match=err_msg):
|
||
|
_check_psd_eigenvalues(lambdas)
|
||
|
|
||
|
|
||
|
def test_check_sample_weight():
|
||
|
# check array order
|
||
|
sample_weight = np.ones(10)[::2]
|
||
|
assert not sample_weight.flags["C_CONTIGUOUS"]
|
||
|
sample_weight = _check_sample_weight(sample_weight, X=np.ones((5, 1)))
|
||
|
assert sample_weight.flags["C_CONTIGUOUS"]
|
||
|
|
||
|
# check None input
|
||
|
sample_weight = _check_sample_weight(None, X=np.ones((5, 2)))
|
||
|
assert_allclose(sample_weight, np.ones(5))
|
||
|
|
||
|
# check numbers input
|
||
|
sample_weight = _check_sample_weight(2.0, X=np.ones((5, 2)))
|
||
|
assert_allclose(sample_weight, 2 * np.ones(5))
|
||
|
|
||
|
# check wrong number of dimensions
|
||
|
with pytest.raises(ValueError,
|
||
|
match="Sample weights must be 1D array or scalar"):
|
||
|
_check_sample_weight(np.ones((2, 4)), X=np.ones((2, 2)))
|
||
|
|
||
|
# check incorrect n_samples
|
||
|
msg = r"sample_weight.shape == \(4,\), expected \(2,\)!"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
_check_sample_weight(np.ones(4), X=np.ones((2, 2)))
|
||
|
|
||
|
# float32 dtype is preserved
|
||
|
X = np.ones((5, 2))
|
||
|
sample_weight = np.ones(5, dtype=np.float32)
|
||
|
sample_weight = _check_sample_weight(sample_weight, X)
|
||
|
assert sample_weight.dtype == np.float32
|
||
|
|
||
|
# int dtype will be converted to float64 instead
|
||
|
X = np.ones((5, 2), dtype=np.int)
|
||
|
sample_weight = _check_sample_weight(None, X, dtype=X.dtype)
|
||
|
assert sample_weight.dtype == np.float64
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("toarray", [
|
||
|
np.array, sp.csr_matrix, sp.csc_matrix])
|
||
|
def test_allclose_dense_sparse_equals(toarray):
|
||
|
base = np.arange(9).reshape(3, 3)
|
||
|
x, y = toarray(base), toarray(base)
|
||
|
assert _allclose_dense_sparse(x, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("toarray", [
|
||
|
np.array, sp.csr_matrix, sp.csc_matrix])
|
||
|
def test_allclose_dense_sparse_not_equals(toarray):
|
||
|
base = np.arange(9).reshape(3, 3)
|
||
|
x, y = toarray(base), toarray(base + 1)
|
||
|
assert not _allclose_dense_sparse(x, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("toarray", [sp.csr_matrix, sp.csc_matrix])
|
||
|
def test_allclose_dense_sparse_raise(toarray):
|
||
|
x = np.arange(9).reshape(3, 3)
|
||
|
y = toarray(x + 1)
|
||
|
|
||
|
msg = ("Can only compare two sparse matrices, not a sparse matrix "
|
||
|
"and an array")
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
_allclose_dense_sparse(x, y)
|
||
|
|
||
|
|
||
|
def test_deprecate_positional_args_warns_for_function():
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def f1(a, b, *, c=1, d=1):
|
||
|
pass
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass c=3 as keyword args"):
|
||
|
f1(1, 2, 3)
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass c=3, d=4 as keyword args"):
|
||
|
f1(1, 2, 3, 4)
|
||
|
|
||
|
@_deprecate_positional_args
|
||
|
def f2(a=1, *, b=1, c=1, d=1):
|
||
|
pass
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass b=2 as keyword args"):
|
||
|
f2(1, 2)
|
||
|
|
||
|
# The * is place before a keyword only argument without a default value
|
||
|
@_deprecate_positional_args
|
||
|
def f3(a, *, b, c=1, d=1):
|
||
|
pass
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass b=2 as keyword args"):
|
||
|
f3(1, 2)
|
||
|
|
||
|
|
||
|
def test_deprecate_positional_args_warns_for_class():
|
||
|
|
||
|
class A1:
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self, a, b, *, c=1, d=1):
|
||
|
pass
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass c=3 as keyword args"):
|
||
|
A1(1, 2, 3)
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass c=3, d=4 as keyword args"):
|
||
|
A1(1, 2, 3, 4)
|
||
|
|
||
|
class A2:
|
||
|
@_deprecate_positional_args
|
||
|
def __init__(self, a=1, b=1, *, c=1, d=1):
|
||
|
pass
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass c=3 as keyword args"):
|
||
|
A2(1, 2, 3)
|
||
|
|
||
|
with pytest.warns(FutureWarning,
|
||
|
match=r"Pass c=3, d=4 as keyword args"):
|
||
|
A2(1, 2, 3, 4)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("indices", [None, [1, 3]])
|
||
|
def test_check_fit_params(indices):
|
||
|
X = np.random.randn(4, 2)
|
||
|
fit_params = {
|
||
|
'list': [1, 2, 3, 4],
|
||
|
'array': np.array([1, 2, 3, 4]),
|
||
|
'sparse-col': sp.csc_matrix([1, 2, 3, 4]).T,
|
||
|
'sparse-row': sp.csc_matrix([1, 2, 3, 4]),
|
||
|
'scalar-int': 1,
|
||
|
'scalar-str': 'xxx',
|
||
|
'None': None,
|
||
|
}
|
||
|
result = _check_fit_params(X, fit_params, indices)
|
||
|
indices_ = indices if indices is not None else list(range(X.shape[0]))
|
||
|
|
||
|
for key in ['sparse-row', 'scalar-int', 'scalar-str', 'None']:
|
||
|
assert result[key] is fit_params[key]
|
||
|
|
||
|
assert result['list'] == _safe_indexing(fit_params['list'], indices_)
|
||
|
assert_array_equal(
|
||
|
result['array'], _safe_indexing(fit_params['array'], indices_)
|
||
|
)
|
||
|
assert_allclose_dense_sparse(
|
||
|
result['sparse-col'],
|
||
|
_safe_indexing(fit_params['sparse-col'], indices_)
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('sp_format', [True, 'csr', 'csc', 'coo', 'bsr'])
|
||
|
def test_check_sparse_pandas_sp_format(sp_format):
|
||
|
# check_array converts pandas dataframe with only sparse arrays into
|
||
|
# sparse matrix
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
sp_mat = _sparse_random_matrix(10, 3)
|
||
|
|
||
|
sdf = pd.DataFrame.sparse.from_spmatrix(sp_mat)
|
||
|
result = check_array(sdf, accept_sparse=sp_format)
|
||
|
|
||
|
if sp_format is True:
|
||
|
# by default pandas converts to coo when accept_sparse is True
|
||
|
sp_format = 'coo'
|
||
|
|
||
|
assert sp.issparse(result)
|
||
|
assert result.format == sp_format
|
||
|
assert_allclose_dense_sparse(sp_mat, result)
|