230 lines
6.9 KiB
Python
230 lines
6.9 KiB
Python
|
import pytest
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from sklearn.utils._testing import assert_allclose
|
||
|
from sklearn.utils._cython_blas import _dot_memview
|
||
|
from sklearn.utils._cython_blas import _asum_memview
|
||
|
from sklearn.utils._cython_blas import _axpy_memview
|
||
|
from sklearn.utils._cython_blas import _nrm2_memview
|
||
|
from sklearn.utils._cython_blas import _copy_memview
|
||
|
from sklearn.utils._cython_blas import _scal_memview
|
||
|
from sklearn.utils._cython_blas import _rotg_memview
|
||
|
from sklearn.utils._cython_blas import _rot_memview
|
||
|
from sklearn.utils._cython_blas import _gemv_memview
|
||
|
from sklearn.utils._cython_blas import _ger_memview
|
||
|
from sklearn.utils._cython_blas import _gemm_memview
|
||
|
from sklearn.utils._cython_blas import RowMajor, ColMajor
|
||
|
from sklearn.utils._cython_blas import Trans, NoTrans
|
||
|
|
||
|
|
||
|
def _numpy_to_cython(dtype):
|
||
|
cython = pytest.importorskip("cython")
|
||
|
if dtype == np.float32:
|
||
|
return cython.float
|
||
|
elif dtype == np.float64:
|
||
|
return cython.double
|
||
|
|
||
|
|
||
|
RTOL = {np.float32: 1e-6, np.float64: 1e-12}
|
||
|
ORDER = {RowMajor: 'C', ColMajor: 'F'}
|
||
|
|
||
|
|
||
|
def _no_op(x):
|
||
|
return x
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_dot(dtype):
|
||
|
dot = _dot_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
y = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
|
||
|
expected = x.dot(y)
|
||
|
actual = dot(x, y)
|
||
|
|
||
|
assert_allclose(actual, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_asum(dtype):
|
||
|
asum = _asum_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
|
||
|
expected = np.abs(x).sum()
|
||
|
actual = asum(x)
|
||
|
|
||
|
assert_allclose(actual, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_axpy(dtype):
|
||
|
axpy = _axpy_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
y = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
alpha = 2.5
|
||
|
|
||
|
expected = alpha * x + y
|
||
|
axpy(alpha, x, y)
|
||
|
|
||
|
assert_allclose(y, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_nrm2(dtype):
|
||
|
nrm2 = _nrm2_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
|
||
|
expected = np.linalg.norm(x)
|
||
|
actual = nrm2(x)
|
||
|
|
||
|
assert_allclose(actual, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_copy(dtype):
|
||
|
copy = _copy_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
y = np.empty_like(x)
|
||
|
|
||
|
expected = x.copy()
|
||
|
copy(x, y)
|
||
|
|
||
|
assert_allclose(y, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_scal(dtype):
|
||
|
scal = _scal_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
alpha = 2.5
|
||
|
|
||
|
expected = alpha * x
|
||
|
scal(alpha, x)
|
||
|
|
||
|
assert_allclose(x, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_rotg(dtype):
|
||
|
rotg = _rotg_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
a = dtype(rng.randn())
|
||
|
b = dtype(rng.randn())
|
||
|
c, s = 0.0, 0.0
|
||
|
|
||
|
def expected_rotg(a, b):
|
||
|
roe = a if abs(a) > abs(b) else b
|
||
|
if a == 0 and b == 0:
|
||
|
c, s, r, z = (1, 0, 0, 0)
|
||
|
else:
|
||
|
r = np.sqrt(a**2 + b**2) * (1 if roe >= 0 else -1)
|
||
|
c, s = a/r, b/r
|
||
|
z = s if roe == a else (1 if c == 0 else 1 / c)
|
||
|
return r, z, c, s
|
||
|
|
||
|
expected = expected_rotg(a, b)
|
||
|
actual = rotg(a, b, c, s)
|
||
|
|
||
|
assert_allclose(actual, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
def test_rot(dtype):
|
||
|
rot = _rot_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
y = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
c = dtype(rng.randn())
|
||
|
s = dtype(rng.randn())
|
||
|
|
||
|
expected_x = c * x + s * y
|
||
|
expected_y = c * y - s * x
|
||
|
|
||
|
rot(x, y, c, s)
|
||
|
|
||
|
assert_allclose(x, expected_x)
|
||
|
assert_allclose(y, expected_y)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
@pytest.mark.parametrize("opA, transA",
|
||
|
[(_no_op, NoTrans), (np.transpose, Trans)],
|
||
|
ids=["NoTrans", "Trans"])
|
||
|
@pytest.mark.parametrize("order", [RowMajor, ColMajor],
|
||
|
ids=["RowMajor", "ColMajor"])
|
||
|
def test_gemv(dtype, opA, transA, order):
|
||
|
gemv = _gemv_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
A = np.asarray(opA(rng.random_sample((20, 10)).astype(dtype, copy=False)),
|
||
|
order=ORDER[order])
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
y = rng.random_sample(20).astype(dtype, copy=False)
|
||
|
alpha, beta = 2.5, -0.5
|
||
|
|
||
|
expected = alpha * opA(A).dot(x) + beta * y
|
||
|
gemv(transA, alpha, A, x, beta, y)
|
||
|
|
||
|
assert_allclose(y, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
@pytest.mark.parametrize("order", [RowMajor, ColMajor],
|
||
|
ids=["RowMajor", "ColMajor"])
|
||
|
def test_ger(dtype, order):
|
||
|
ger = _ger_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
x = rng.random_sample(10).astype(dtype, copy=False)
|
||
|
y = rng.random_sample(20).astype(dtype, copy=False)
|
||
|
A = np.asarray(rng.random_sample((10, 20)).astype(dtype, copy=False),
|
||
|
order=ORDER[order])
|
||
|
alpha = 2.5
|
||
|
|
||
|
expected = alpha * np.outer(x, y) + A
|
||
|
ger(alpha, x, y, A)
|
||
|
|
||
|
assert_allclose(A, expected, rtol=RTOL[dtype])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
||
|
@pytest.mark.parametrize("opB, transB",
|
||
|
[(_no_op, NoTrans), (np.transpose, Trans)],
|
||
|
ids=["NoTrans", "Trans"])
|
||
|
@pytest.mark.parametrize("opA, transA",
|
||
|
[(_no_op, NoTrans), (np.transpose, Trans)],
|
||
|
ids=["NoTrans", "Trans"])
|
||
|
@pytest.mark.parametrize("order", [RowMajor, ColMajor],
|
||
|
ids=["RowMajor", "ColMajor"])
|
||
|
def test_gemm(dtype, opA, transA, opB, transB, order):
|
||
|
gemm = _gemm_memview[_numpy_to_cython(dtype)]
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
A = np.asarray(opA(rng.random_sample((30, 10)).astype(dtype, copy=False)),
|
||
|
order=ORDER[order])
|
||
|
B = np.asarray(opB(rng.random_sample((10, 20)).astype(dtype, copy=False)),
|
||
|
order=ORDER[order])
|
||
|
C = np.asarray(rng.random_sample((30, 20)).astype(dtype, copy=False),
|
||
|
order=ORDER[order])
|
||
|
alpha, beta = 2.5, -0.5
|
||
|
|
||
|
expected = alpha * opA(A).dot(opB(B)) + beta * C
|
||
|
gemm(transA, transB, alpha, A, B, beta, C)
|
||
|
|
||
|
assert_allclose(C, expected, rtol=RTOL[dtype])
|