183 lines
6.6 KiB
Python
183 lines
6.6 KiB
Python
|
"""Testing for Gaussian process classification """
|
||
|
|
||
|
# Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy.optimize import approx_fprime
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from sklearn.gaussian_process import GaussianProcessClassifier
|
||
|
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C
|
||
|
from sklearn.gaussian_process.tests._mini_sequence_kernel import MiniSeqKernel
|
||
|
|
||
|
from sklearn.utils._testing import assert_almost_equal, assert_array_equal
|
||
|
|
||
|
|
||
|
def f(x):
|
||
|
return np.sin(x)
|
||
|
|
||
|
|
||
|
X = np.atleast_2d(np.linspace(0, 10, 30)).T
|
||
|
X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T
|
||
|
y = np.array(f(X).ravel() > 0, dtype=int)
|
||
|
fX = f(X).ravel()
|
||
|
y_mc = np.empty(y.shape, dtype=int) # multi-class
|
||
|
y_mc[fX < -0.35] = 0
|
||
|
y_mc[(fX >= -0.35) & (fX < 0.35)] = 1
|
||
|
y_mc[fX > 0.35] = 2
|
||
|
|
||
|
|
||
|
fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed")
|
||
|
kernels = [RBF(length_scale=0.1), fixed_kernel,
|
||
|
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)),
|
||
|
C(1.0, (1e-2, 1e2)) *
|
||
|
RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))]
|
||
|
non_fixed_kernels = [kernel for kernel in kernels
|
||
|
if kernel != fixed_kernel]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', kernels)
|
||
|
def test_predict_consistent(kernel):
|
||
|
# Check binary predict decision has also predicted probability above 0.5.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
assert_array_equal(gpc.predict(X),
|
||
|
gpc.predict_proba(X)[:, 1] >= 0.5)
|
||
|
|
||
|
|
||
|
def test_predict_consistent_structured():
|
||
|
# Check binary predict decision has also predicted probability above 0.5.
|
||
|
X = ['A', 'AB', 'B']
|
||
|
y = np.array([True, False, True])
|
||
|
kernel = MiniSeqKernel(baseline_similarity_bounds='fixed')
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
assert_array_equal(gpc.predict(X),
|
||
|
gpc.predict_proba(X)[:, 1] >= 0.5)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||
|
def test_lml_improving(kernel):
|
||
|
# Test that hyperparameter-tuning improves log-marginal likelihood.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
assert (gpc.log_marginal_likelihood(gpc.kernel_.theta) >
|
||
|
gpc.log_marginal_likelihood(kernel.theta))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', kernels)
|
||
|
def test_lml_precomputed(kernel):
|
||
|
# Test that lml of optimized kernel is stored correctly.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta),
|
||
|
gpc.log_marginal_likelihood(), 7)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', kernels)
|
||
|
def test_lml_without_cloning_kernel(kernel):
|
||
|
# Test that clone_kernel=False has side-effects of kernel.theta.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
input_theta = np.ones(gpc.kernel_.theta.shape, dtype=np.float64)
|
||
|
|
||
|
gpc.log_marginal_likelihood(input_theta, clone_kernel=False)
|
||
|
assert_almost_equal(gpc.kernel_.theta, input_theta, 7)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||
|
def test_converged_to_local_maximum(kernel):
|
||
|
# Test that we are in local maximum after hyperparameter-optimization.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
|
||
|
lml, lml_gradient = \
|
||
|
gpc.log_marginal_likelihood(gpc.kernel_.theta, True)
|
||
|
|
||
|
assert np.all((np.abs(lml_gradient) < 1e-4) |
|
||
|
(gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) |
|
||
|
(gpc.kernel_.theta == gpc.kernel_.bounds[:, 1]))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', kernels)
|
||
|
def test_lml_gradient(kernel):
|
||
|
# Compare analytic and numeric gradient of log marginal likelihood.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
||
|
|
||
|
lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True)
|
||
|
lml_gradient_approx = \
|
||
|
approx_fprime(kernel.theta,
|
||
|
lambda theta: gpc.log_marginal_likelihood(theta,
|
||
|
False),
|
||
|
1e-10)
|
||
|
|
||
|
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
|
||
|
|
||
|
|
||
|
def test_random_starts():
|
||
|
# Test that an increasing number of random-starts of GP fitting only
|
||
|
# increases the log marginal likelihood of the chosen theta.
|
||
|
n_samples, n_features = 25, 2
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(n_samples, n_features) * 2 - 1
|
||
|
y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0
|
||
|
|
||
|
kernel = C(1.0, (1e-2, 1e2)) \
|
||
|
* RBF(length_scale=[1e-3] * n_features,
|
||
|
length_scale_bounds=[(1e-4, 1e+2)] * n_features)
|
||
|
last_lml = -np.inf
|
||
|
for n_restarts_optimizer in range(5):
|
||
|
gp = GaussianProcessClassifier(
|
||
|
kernel=kernel, n_restarts_optimizer=n_restarts_optimizer,
|
||
|
random_state=0).fit(X, y)
|
||
|
lml = gp.log_marginal_likelihood(gp.kernel_.theta)
|
||
|
assert lml > last_lml - np.finfo(np.float32).eps
|
||
|
last_lml = lml
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', non_fixed_kernels)
|
||
|
def test_custom_optimizer(kernel):
|
||
|
# Test that GPC can use externally defined optimizers.
|
||
|
# Define a dummy optimizer that simply tests 10 random hyperparameters
|
||
|
def optimizer(obj_func, initial_theta, bounds):
|
||
|
rng = np.random.RandomState(0)
|
||
|
theta_opt, func_min = \
|
||
|
initial_theta, obj_func(initial_theta, eval_gradient=False)
|
||
|
for _ in range(10):
|
||
|
theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]),
|
||
|
np.minimum(1, bounds[:, 1])))
|
||
|
f = obj_func(theta, eval_gradient=False)
|
||
|
if f < func_min:
|
||
|
theta_opt, func_min = theta, f
|
||
|
return theta_opt, func_min
|
||
|
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer)
|
||
|
gpc.fit(X, y_mc)
|
||
|
# Checks that optimizer improved marginal likelihood
|
||
|
assert (gpc.log_marginal_likelihood(gpc.kernel_.theta) >
|
||
|
gpc.log_marginal_likelihood(kernel.theta))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', kernels)
|
||
|
def test_multi_class(kernel):
|
||
|
# Test GPC for multi-class classification problems.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel)
|
||
|
gpc.fit(X, y_mc)
|
||
|
|
||
|
y_prob = gpc.predict_proba(X2)
|
||
|
assert_almost_equal(y_prob.sum(1), 1)
|
||
|
|
||
|
y_pred = gpc.predict(X2)
|
||
|
assert_array_equal(np.argmax(y_prob, 1), y_pred)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('kernel', kernels)
|
||
|
def test_multi_class_n_jobs(kernel):
|
||
|
# Test that multi-class GPC produces identical results with n_jobs>1.
|
||
|
gpc = GaussianProcessClassifier(kernel=kernel)
|
||
|
gpc.fit(X, y_mc)
|
||
|
|
||
|
gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2)
|
||
|
gpc_2.fit(X, y_mc)
|
||
|
|
||
|
y_prob = gpc.predict_proba(X2)
|
||
|
y_prob_2 = gpc_2.predict_proba(X2)
|
||
|
assert_almost_equal(y_prob, y_prob_2)
|