Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/covariance/_elliptic_envelope.py

231 lines
7.9 KiB
Python
Raw Normal View History

2020-11-12 16:05:57 +00:00
# Author: Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD 3 clause
import numpy as np
from . import MinCovDet
from ..utils.validation import check_is_fitted, check_array
from ..utils.validation import _deprecate_positional_args
from ..metrics import accuracy_score
from ..base import OutlierMixin
class EllipticEnvelope(OutlierMixin, MinCovDet):
"""An object for detecting outliers in a Gaussian distributed dataset.
Read more in the :ref:`User Guide <outlier_detection>`.
Parameters
----------
store_precision : bool, default=True
Specify if the estimated precision is stored.
assume_centered : bool, default=False
If True, the support of robust location and covariance estimates
is computed, and a covariance estimate is recomputed from it,
without centering the data.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, the robust location and covariance are directly computed
with the FastMCD algorithm without additional treatment.
support_fraction : float, default=None
The proportion of points to be included in the support of the raw
MCD estimate. If None, the minimum value of support_fraction will
be used within the algorithm: `[n_sample + n_features + 1] / 2`.
Range is (0, 1).
contamination : float, default=0.1
The amount of contamination of the data set, i.e. the proportion
of outliers in the data set. Range is (0, 0.5).
random_state : int or RandomState instance, default=None
Determines the pseudo random number generator for shuffling
the data. Pass an int for reproducible results across multiple function
calls. See :term: `Glossary <random_state>`.
Attributes
----------
location_ : ndarray of shape (n_features,)
Estimated robust location
covariance_ : ndarray of shape (n_features, n_features)
Estimated robust covariance matrix
precision_ : ndarray of shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
support_ : ndarray of shape (n_samples,)
A mask of the observations that have been used to compute the
robust estimates of location and shape.
offset_ : float
Offset used to define the decision function from the raw scores.
We have the relation: ``decision_function = score_samples - offset_``.
The offset depends on the contamination parameter and is defined in
such a way we obtain the expected number of outliers (samples with
decision function < 0) in training.
.. versionadded:: 0.20
raw_location_ : ndarray of shape (n_features,)
The raw robust estimated location before correction and re-weighting.
raw_covariance_ : ndarray of shape (n_features, n_features)
The raw robust estimated covariance before correction and re-weighting.
raw_support_ : ndarray of shape (n_samples,)
A mask of the observations that have been used to compute
the raw robust estimates of location and shape, before correction
and re-weighting.
dist_ : ndarray of shape (n_samples,)
Mahalanobis distances of the training set (on which :meth:`fit` is
called) observations.
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import EllipticEnvelope
>>> true_cov = np.array([[.8, .3],
... [.3, .4]])
>>> X = np.random.RandomState(0).multivariate_normal(mean=[0, 0],
... cov=true_cov,
... size=500)
>>> cov = EllipticEnvelope(random_state=0).fit(X)
>>> # predict returns 1 for an inlier and -1 for an outlier
>>> cov.predict([[0, 0],
... [3, 3]])
array([ 1, -1])
>>> cov.covariance_
array([[0.7411..., 0.2535...],
[0.2535..., 0.3053...]])
>>> cov.location_
array([0.0813... , 0.0427...])
See Also
--------
EmpiricalCovariance, MinCovDet
Notes
-----
Outlier detection from covariance estimation may break or not
perform well in high-dimensional settings. In particular, one will
always take care to work with ``n_samples > n_features ** 2``.
References
----------
.. [1] Rousseeuw, P.J., Van Driessen, K. "A fast algorithm for the
minimum covariance determinant estimator" Technometrics 41(3), 212
(1999)
"""
@_deprecate_positional_args
def __init__(self, *, store_precision=True, assume_centered=False,
support_fraction=None, contamination=0.1,
random_state=None):
super().__init__(
store_precision=store_precision,
assume_centered=assume_centered,
support_fraction=support_fraction,
random_state=random_state)
self.contamination = contamination
def fit(self, X, y=None):
"""Fit the EllipticEnvelope model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : Ignored
Not used, present for API consistency by convention.
"""
super().fit(X)
self.offset_ = np.percentile(-self.dist_, 100. * self.contamination)
return self
def decision_function(self, X):
"""Compute the decision function of the given observations.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
Returns
-------
decision : ndarray of shape (n_samples, )
Decision function of the samples.
It is equal to the shifted Mahalanobis distances.
The threshold for being an outlier is 0, which ensures a
compatibility with other outlier detection algorithms.
"""
check_is_fitted(self)
negative_mahal_dist = self.score_samples(X)
return negative_mahal_dist - self.offset_
def score_samples(self, X):
"""Compute the negative Mahalanobis distances.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
Returns
-------
negative_mahal_distances : array-like of shape (n_samples,)
Opposite of the Mahalanobis distances.
"""
check_is_fitted(self)
return -self.mahalanobis(X)
def predict(self, X):
"""
Predict the labels (1 inlier, -1 outlier) of X according to the
fitted model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
Returns
-------
is_inlier : ndarray of shape (n_samples,)
Returns -1 for anomalies/outliers and +1 for inliers.
"""
X = check_array(X)
is_inlier = np.full(X.shape[0], -1, dtype=int)
values = self.decision_function(X)
is_inlier[values >= 0] = 1
return is_inlier
def score(self, X, y, sample_weight=None):
"""Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
Mean accuracy of self.predict(X) w.r.t. y.
"""
return accuracy_score(y, self.predict(X), sample_weight=sample_weight)