200 lines
6.8 KiB
Python
200 lines
6.8 KiB
Python
|
import re
|
||
|
from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union
|
||
|
|
||
|
from prompt_toolkit.document import Document
|
||
|
from prompt_toolkit.filters import FilterOrBool, to_filter
|
||
|
from prompt_toolkit.formatted_text import AnyFormattedText, StyleAndTextTuples
|
||
|
|
||
|
from .base import CompleteEvent, Completer, Completion
|
||
|
from .word_completer import WordCompleter
|
||
|
|
||
|
__all__ = [
|
||
|
"FuzzyCompleter",
|
||
|
"FuzzyWordCompleter",
|
||
|
]
|
||
|
|
||
|
|
||
|
class FuzzyCompleter(Completer):
|
||
|
"""
|
||
|
Fuzzy completion.
|
||
|
This wraps any other completer and turns it into a fuzzy completer.
|
||
|
|
||
|
If the list of words is: ["leopard" , "gorilla", "dinosaur", "cat", "bee"]
|
||
|
Then trying to complete "oar" would yield "leopard" and "dinosaur", but not
|
||
|
the others, because they match the regular expression 'o.*a.*r'.
|
||
|
Similar, in another application "djm" could expand to "django_migrations".
|
||
|
|
||
|
The results are sorted by relevance, which is defined as the start position
|
||
|
and the length of the match.
|
||
|
|
||
|
Notice that this is not really a tool to work around spelling mistakes,
|
||
|
like what would be possible with difflib. The purpose is rather to have a
|
||
|
quicker or more intuitive way to filter the given completions, especially
|
||
|
when many completions have a common prefix.
|
||
|
|
||
|
Fuzzy algorithm is based on this post:
|
||
|
https://blog.amjith.com/fuzzyfinder-in-10-lines-of-python
|
||
|
|
||
|
:param completer: A :class:`~.Completer` instance.
|
||
|
:param WORD: When True, use WORD characters.
|
||
|
:param pattern: Regex pattern which selects the characters before the
|
||
|
cursor that are considered for the fuzzy matching.
|
||
|
:param enable_fuzzy: (bool or `Filter`) Enabled the fuzzy behavior. For
|
||
|
easily turning fuzzyness on or off according to a certain condition.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
completer: Completer,
|
||
|
WORD: bool = False,
|
||
|
pattern: Optional[str] = None,
|
||
|
enable_fuzzy: FilterOrBool = True,
|
||
|
):
|
||
|
|
||
|
assert pattern is None or pattern.startswith("^")
|
||
|
|
||
|
self.completer = completer
|
||
|
self.pattern = pattern
|
||
|
self.WORD = WORD
|
||
|
self.pattern = pattern
|
||
|
self.enable_fuzzy = to_filter(enable_fuzzy)
|
||
|
|
||
|
def get_completions(
|
||
|
self, document: Document, complete_event: CompleteEvent
|
||
|
) -> Iterable[Completion]:
|
||
|
if self.enable_fuzzy():
|
||
|
return self._get_fuzzy_completions(document, complete_event)
|
||
|
else:
|
||
|
return self.completer.get_completions(document, complete_event)
|
||
|
|
||
|
def _get_pattern(self) -> str:
|
||
|
if self.pattern:
|
||
|
return self.pattern
|
||
|
if self.WORD:
|
||
|
return r"[^\s]+"
|
||
|
return "^[a-zA-Z0-9_]*"
|
||
|
|
||
|
def _get_fuzzy_completions(
|
||
|
self, document: Document, complete_event: CompleteEvent
|
||
|
) -> Iterable[Completion]:
|
||
|
|
||
|
word_before_cursor = document.get_word_before_cursor(
|
||
|
pattern=re.compile(self._get_pattern())
|
||
|
)
|
||
|
|
||
|
# Get completions
|
||
|
document2 = Document(
|
||
|
text=document.text[: document.cursor_position - len(word_before_cursor)],
|
||
|
cursor_position=document.cursor_position - len(word_before_cursor),
|
||
|
)
|
||
|
|
||
|
completions = list(self.completer.get_completions(document2, complete_event))
|
||
|
|
||
|
fuzzy_matches: List[_FuzzyMatch] = []
|
||
|
|
||
|
pat = ".*?".join(map(re.escape, word_before_cursor))
|
||
|
pat = "(?=({0}))".format(pat) # lookahead regex to manage overlapping matches
|
||
|
regex = re.compile(pat, re.IGNORECASE)
|
||
|
for compl in completions:
|
||
|
matches = list(regex.finditer(compl.text))
|
||
|
if matches:
|
||
|
# Prefer the match, closest to the left, then shortest.
|
||
|
best = min(matches, key=lambda m: (m.start(), len(m.group(1))))
|
||
|
fuzzy_matches.append(
|
||
|
_FuzzyMatch(len(best.group(1)), best.start(), compl)
|
||
|
)
|
||
|
|
||
|
def sort_key(fuzzy_match: "_FuzzyMatch") -> Tuple[int, int]:
|
||
|
" Sort by start position, then by the length of the match. "
|
||
|
return fuzzy_match.start_pos, fuzzy_match.match_length
|
||
|
|
||
|
fuzzy_matches = sorted(fuzzy_matches, key=sort_key)
|
||
|
|
||
|
for match in fuzzy_matches:
|
||
|
# Include these completions, but set the correct `display`
|
||
|
# attribute and `start_position`.
|
||
|
yield Completion(
|
||
|
match.completion.text,
|
||
|
start_position=match.completion.start_position
|
||
|
- len(word_before_cursor),
|
||
|
display_meta=match.completion.display_meta,
|
||
|
display=self._get_display(match, word_before_cursor),
|
||
|
style=match.completion.style,
|
||
|
)
|
||
|
|
||
|
def _get_display(
|
||
|
self, fuzzy_match: "_FuzzyMatch", word_before_cursor: str
|
||
|
) -> AnyFormattedText:
|
||
|
"""
|
||
|
Generate formatted text for the display label.
|
||
|
"""
|
||
|
m = fuzzy_match
|
||
|
word = m.completion.text
|
||
|
|
||
|
if m.match_length == 0:
|
||
|
# No highlighting when we have zero length matches (no input text).
|
||
|
return word
|
||
|
|
||
|
result: StyleAndTextTuples = []
|
||
|
|
||
|
# Text before match.
|
||
|
result.append(("class:fuzzymatch.outside", word[: m.start_pos]))
|
||
|
|
||
|
# The match itself.
|
||
|
characters = list(word_before_cursor)
|
||
|
|
||
|
for c in word[m.start_pos : m.start_pos + m.match_length]:
|
||
|
classname = "class:fuzzymatch.inside"
|
||
|
if characters and c.lower() == characters[0].lower():
|
||
|
classname += ".character"
|
||
|
del characters[0]
|
||
|
|
||
|
result.append((classname, c))
|
||
|
|
||
|
# Text after match.
|
||
|
result.append(
|
||
|
("class:fuzzymatch.outside", word[m.start_pos + m.match_length :])
|
||
|
)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
class FuzzyWordCompleter(Completer):
|
||
|
"""
|
||
|
Fuzzy completion on a list of words.
|
||
|
|
||
|
(This is basically a `WordCompleter` wrapped in a `FuzzyCompleter`.)
|
||
|
|
||
|
:param words: List of words or callable that returns a list of words.
|
||
|
:param meta_dict: Optional dict mapping words to their meta-information.
|
||
|
:param WORD: When True, use WORD characters.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
words: Union[List[str], Callable[[], List[str]]],
|
||
|
meta_dict: Optional[Dict[str, str]] = None,
|
||
|
WORD: bool = False,
|
||
|
) -> None:
|
||
|
|
||
|
self.words = words
|
||
|
self.meta_dict = meta_dict or {}
|
||
|
self.WORD = WORD
|
||
|
|
||
|
self.word_completer = WordCompleter(
|
||
|
words=self.words, WORD=self.WORD, meta_dict=self.meta_dict
|
||
|
)
|
||
|
|
||
|
self.fuzzy_completer = FuzzyCompleter(self.word_completer, WORD=self.WORD)
|
||
|
|
||
|
def get_completions(
|
||
|
self, document: Document, complete_event: CompleteEvent
|
||
|
) -> Iterable[Completion]:
|
||
|
return self.fuzzy_completer.get_completions(document, complete_event)
|
||
|
|
||
|
|
||
|
_FuzzyMatch = NamedTuple(
|
||
|
"_FuzzyMatch",
|
||
|
[("match_length", int), ("start_pos", int), ("completion", Completion)],
|
||
|
)
|