Vehicle-Anti-Theft-Face-Rec.../venv/Lib/site-packages/sklearn/ensemble/_gb_losses.py

882 lines
30 KiB
Python
Raw Normal View History

2020-11-12 11:05:57 -05:00
"""Losses and corresponding default initial estimators for gradient boosting
decision trees.
"""
from abc import ABCMeta
from abc import abstractmethod
import numpy as np
from scipy.special import expit, logsumexp
from ..tree._tree import TREE_LEAF
from ..utils.stats import _weighted_percentile
from ..dummy import DummyClassifier
from ..dummy import DummyRegressor
class LossFunction(metaclass=ABCMeta):
"""Abstract base class for various loss functions.
Parameters
----------
n_classes : int
Number of classes.
Attributes
----------
K : int
The number of regression trees to be induced;
1 for regression and binary classification;
``n_classes`` for multi-class classification.
"""
is_multi_class = False
def __init__(self, n_classes):
self.K = n_classes
def init_estimator(self):
"""Default ``init`` estimator for loss function. """
raise NotImplementedError()
@abstractmethod
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the loss.
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves).
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
@abstractmethod
def negative_gradient(self, y, raw_predictions, **kargs):
"""Compute the negative gradient.
Parameters
----------
y : ndarray of shape (n_samples,)
The target labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
"""
def update_terminal_regions(self, tree, X, y, residual, raw_predictions,
sample_weight, sample_mask,
learning_rate=0.1, k=0):
"""Update the terminal regions (=leaves) of the given tree and
updates the current predictions of the model. Traverses tree
and invokes template method `_update_terminal_region`.
Parameters
----------
tree : tree.Tree
The tree object.
X : ndarray of shape (n_samples, n_features)
The data array.
y : ndarray of shape (n_samples,)
The target labels.
residual : ndarray of shape (n_samples,)
The residuals (usually the negative gradient).
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
sample_weight : ndarray of shape (n_samples,)
The weight of each sample.
sample_mask : ndarray of shape (n_samples,)
The sample mask to be used.
learning_rate : float, default=0.1
Learning rate shrinks the contribution of each tree by
``learning_rate``.
k : int, default=0
The index of the estimator being updated.
"""
# compute leaf for each sample in ``X``.
terminal_regions = tree.apply(X)
# mask all which are not in sample mask.
masked_terminal_regions = terminal_regions.copy()
masked_terminal_regions[~sample_mask] = -1
# update each leaf (= perform line search)
for leaf in np.where(tree.children_left == TREE_LEAF)[0]:
self._update_terminal_region(tree, masked_terminal_regions,
leaf, X, y, residual,
raw_predictions[:, k], sample_weight)
# update predictions (both in-bag and out-of-bag)
raw_predictions[:, k] += \
learning_rate * tree.value[:, 0, 0].take(terminal_regions, axis=0)
@abstractmethod
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
"""Template method for updating terminal regions (i.e., leaves)."""
@abstractmethod
def get_init_raw_predictions(self, X, estimator):
"""Return the initial raw predictions.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
The data array.
estimator : object
The estimator to use to compute the predictions.
Returns
-------
raw_predictions : ndarray of shape (n_samples, K)
The initial raw predictions. K is equal to 1 for binary
classification and regression, and equal to the number of classes
for multiclass classification. ``raw_predictions`` is casted
into float64.
"""
pass
class RegressionLossFunction(LossFunction, metaclass=ABCMeta):
"""Base class for regression loss functions.
Parameters
----------
n_classes : int
Number of classes.
"""
def __init__(self, n_classes):
if n_classes != 1:
raise ValueError("``n_classes`` must be 1 for regression but "
"was %r" % n_classes)
super().__init__(n_classes)
def check_init_estimator(self, estimator):
"""Make sure estimator has the required fit and predict methods.
Parameters
----------
estimator : object
The init estimator to check.
"""
if not (hasattr(estimator, 'fit') and hasattr(estimator, 'predict')):
raise ValueError(
"The init parameter must be a valid estimator and "
"support both fit and predict."
)
def get_init_raw_predictions(self, X, estimator):
predictions = estimator.predict(X)
return predictions.reshape(-1, 1).astype(np.float64)
class LeastSquaresError(RegressionLossFunction):
"""Loss function for least squares (LS) estimation.
Terminal regions do not need to be updated for least squares.
Parameters
----------
n_classes : int
Number of classes.
"""
def init_estimator(self):
return DummyRegressor(strategy='mean')
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the least squares loss.
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves).
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
if sample_weight is None:
return np.mean((y - raw_predictions.ravel()) ** 2)
else:
return (1 / sample_weight.sum() * np.sum(
sample_weight * ((y - raw_predictions.ravel()) ** 2)))
def negative_gradient(self, y, raw_predictions, **kargs):
"""Compute the negative gradient.
Parameters
----------
y : ndarray of shape (n_samples,)
The target labels.
raw_predictions : ndarray of shape (n_samples,)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
"""
return y - raw_predictions.ravel()
def update_terminal_regions(self, tree, X, y, residual, raw_predictions,
sample_weight, sample_mask,
learning_rate=0.1, k=0):
"""Least squares does not need to update terminal regions.
But it has to update the predictions.
Parameters
----------
tree : tree.Tree
The tree object.
X : ndarray of shape (n_samples, n_features)
The data array.
y : ndarray of shape (n_samples,)
The target labels.
residual : ndarray of shape (n_samples,)
The residuals (usually the negative gradient).
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
sample_weight : ndarray of shape (n,)
The weight of each sample.
sample_mask : ndarray of shape (n,)
The sample mask to be used.
learning_rate : float, default=0.1
Learning rate shrinks the contribution of each tree by
``learning_rate``.
k : int, default=0
The index of the estimator being updated.
"""
# update predictions
raw_predictions[:, k] += learning_rate * tree.predict(X).ravel()
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
pass
class LeastAbsoluteError(RegressionLossFunction):
"""Loss function for least absolute deviation (LAD) regression.
Parameters
----------
n_classes : int
Number of classes
"""
def init_estimator(self):
return DummyRegressor(strategy='quantile', quantile=.5)
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the least absolute error.
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves).
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
if sample_weight is None:
return np.abs(y - raw_predictions.ravel()).mean()
else:
return (1 / sample_weight.sum() * np.sum(
sample_weight * np.abs(y - raw_predictions.ravel())))
def negative_gradient(self, y, raw_predictions, **kargs):
"""Compute the negative gradient.
1.0 if y - raw_predictions > 0.0 else -1.0
Parameters
----------
y : ndarray of shape (n_samples,)
The target labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
"""
raw_predictions = raw_predictions.ravel()
return 2 * (y - raw_predictions > 0) - 1
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
"""LAD updates terminal regions to median estimates."""
terminal_region = np.where(terminal_regions == leaf)[0]
sample_weight = sample_weight.take(terminal_region, axis=0)
diff = (y.take(terminal_region, axis=0) -
raw_predictions.take(terminal_region, axis=0))
tree.value[leaf, 0, 0] = _weighted_percentile(diff, sample_weight,
percentile=50)
class HuberLossFunction(RegressionLossFunction):
"""Huber loss function for robust regression.
M-Regression proposed in Friedman 2001.
Parameters
----------
n_classes : int
Number of classes.
alpha : float, default=0.9
Percentile at which to extract score.
References
----------
J. Friedman, Greedy Function Approximation: A Gradient Boosting
Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
"""
def __init__(self, n_classes, alpha=0.9):
super().__init__(n_classes)
self.alpha = alpha
self.gamma = None
def init_estimator(self):
return DummyRegressor(strategy='quantile', quantile=.5)
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the Huber loss.
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble.
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
raw_predictions = raw_predictions.ravel()
diff = y - raw_predictions
gamma = self.gamma
if gamma is None:
if sample_weight is None:
gamma = np.percentile(np.abs(diff), self.alpha * 100)
else:
gamma = _weighted_percentile(np.abs(diff), sample_weight,
self.alpha * 100)
gamma_mask = np.abs(diff) <= gamma
if sample_weight is None:
sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2)
lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) -
gamma / 2))
loss = (sq_loss + lin_loss) / y.shape[0]
else:
sq_loss = np.sum(0.5 * sample_weight[gamma_mask] *
diff[gamma_mask] ** 2)
lin_loss = np.sum(gamma * sample_weight[~gamma_mask] *
(np.abs(diff[~gamma_mask]) - gamma / 2))
loss = (sq_loss + lin_loss) / sample_weight.sum()
return loss
def negative_gradient(self, y, raw_predictions, sample_weight=None,
**kargs):
"""Compute the negative gradient.
Parameters
----------
y : ndarray of shape (n_samples,)
The target labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
raw_predictions = raw_predictions.ravel()
diff = y - raw_predictions
if sample_weight is None:
gamma = np.percentile(np.abs(diff), self.alpha * 100)
else:
gamma = _weighted_percentile(np.abs(diff), sample_weight,
self.alpha * 100)
gamma_mask = np.abs(diff) <= gamma
residual = np.zeros((y.shape[0],), dtype=np.float64)
residual[gamma_mask] = diff[gamma_mask]
residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask])
self.gamma = gamma
return residual
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
terminal_region = np.where(terminal_regions == leaf)[0]
sample_weight = sample_weight.take(terminal_region, axis=0)
gamma = self.gamma
diff = (y.take(terminal_region, axis=0)
- raw_predictions.take(terminal_region, axis=0))
median = _weighted_percentile(diff, sample_weight, percentile=50)
diff_minus_median = diff - median
tree.value[leaf, 0] = median + np.mean(
np.sign(diff_minus_median) *
np.minimum(np.abs(diff_minus_median), gamma))
class QuantileLossFunction(RegressionLossFunction):
"""Loss function for quantile regression.
Quantile regression allows to estimate the percentiles
of the conditional distribution of the target.
Parameters
----------
n_classes : int
Number of classes.
alpha : float, default=0.9
The percentile.
"""
def __init__(self, n_classes, alpha=0.9):
super().__init__(n_classes)
self.alpha = alpha
self.percentile = alpha * 100
def init_estimator(self):
return DummyRegressor(strategy='quantile', quantile=self.alpha)
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the Quantile loss.
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble.
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
raw_predictions = raw_predictions.ravel()
diff = y - raw_predictions
alpha = self.alpha
mask = y > raw_predictions
if sample_weight is None:
loss = (alpha * diff[mask].sum() -
(1 - alpha) * diff[~mask].sum()) / y.shape[0]
else:
loss = ((alpha * np.sum(sample_weight[mask] * diff[mask]) -
(1 - alpha) * np.sum(sample_weight[~mask] *
diff[~mask])) / sample_weight.sum())
return loss
def negative_gradient(self, y, raw_predictions, **kargs):
"""Compute the negative gradient.
Parameters
----------
y : ndarray of shape (n_samples,)
The target labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
"""
alpha = self.alpha
raw_predictions = raw_predictions.ravel()
mask = y > raw_predictions
return (alpha * mask) - ((1 - alpha) * ~mask)
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
terminal_region = np.where(terminal_regions == leaf)[0]
diff = (y.take(terminal_region, axis=0)
- raw_predictions.take(terminal_region, axis=0))
sample_weight = sample_weight.take(terminal_region, axis=0)
val = _weighted_percentile(diff, sample_weight, self.percentile)
tree.value[leaf, 0] = val
class ClassificationLossFunction(LossFunction, metaclass=ABCMeta):
"""Base class for classification loss functions. """
def _raw_prediction_to_proba(self, raw_predictions):
"""Template method to convert raw predictions into probabilities.
Parameters
----------
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble.
Returns
-------
probas : ndarray of shape (n_samples, K)
The predicted probabilities.
"""
@abstractmethod
def _raw_prediction_to_decision(self, raw_predictions):
"""Template method to convert raw predictions to decisions.
Parameters
----------
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble.
Returns
-------
encoded_predictions : ndarray of shape (n_samples, K)
The predicted encoded labels.
"""
def check_init_estimator(self, estimator):
"""Make sure estimator has fit and predict_proba methods.
Parameters
----------
estimator : object
The init estimator to check.
"""
if not (hasattr(estimator, 'fit') and
hasattr(estimator, 'predict_proba')):
raise ValueError(
"The init parameter must be a valid estimator "
"and support both fit and predict_proba."
)
class BinomialDeviance(ClassificationLossFunction):
"""Binomial deviance loss function for binary classification.
Binary classification is a special case; here, we only need to
fit one tree instead of ``n_classes`` trees.
Parameters
----------
n_classes : int
Number of classes.
"""
def __init__(self, n_classes):
if n_classes != 2:
raise ValueError("{0:s} requires 2 classes; got {1:d} class(es)"
.format(self.__class__.__name__, n_classes))
# we only need to fit one tree for binary clf.
super().__init__(n_classes=1)
def init_estimator(self):
# return the most common class, taking into account the samples
# weights
return DummyClassifier(strategy='prior')
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the deviance (= 2 * negative log-likelihood).
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble.
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
# logaddexp(0, v) == log(1.0 + exp(v))
raw_predictions = raw_predictions.ravel()
if sample_weight is None:
return -2 * np.mean((y * raw_predictions) -
np.logaddexp(0, raw_predictions))
else:
return (-2 / sample_weight.sum() * np.sum(
sample_weight * ((y * raw_predictions) -
np.logaddexp(0, raw_predictions))))
def negative_gradient(self, y, raw_predictions, **kargs):
"""Compute the residual (= negative gradient).
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
"""
return y - expit(raw_predictions.ravel())
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
"""Make a single Newton-Raphson step.
our node estimate is given by:
sum(w * (y - prob)) / sum(w * prob * (1 - prob))
we take advantage that: y - prob = residual
"""
terminal_region = np.where(terminal_regions == leaf)[0]
residual = residual.take(terminal_region, axis=0)
y = y.take(terminal_region, axis=0)
sample_weight = sample_weight.take(terminal_region, axis=0)
numerator = np.sum(sample_weight * residual)
denominator = np.sum(sample_weight *
(y - residual) * (1 - y + residual))
# prevents overflow and division by zero
if abs(denominator) < 1e-150:
tree.value[leaf, 0, 0] = 0.0
else:
tree.value[leaf, 0, 0] = numerator / denominator
def _raw_prediction_to_proba(self, raw_predictions):
proba = np.ones((raw_predictions.shape[0], 2), dtype=np.float64)
proba[:, 1] = expit(raw_predictions.ravel())
proba[:, 0] -= proba[:, 1]
return proba
def _raw_prediction_to_decision(self, raw_predictions):
proba = self._raw_prediction_to_proba(raw_predictions)
return np.argmax(proba, axis=1)
def get_init_raw_predictions(self, X, estimator):
probas = estimator.predict_proba(X)
proba_pos_class = probas[:, 1]
eps = np.finfo(np.float32).eps
proba_pos_class = np.clip(proba_pos_class, eps, 1 - eps)
# log(x / (1 - x)) is the inverse of the sigmoid (expit) function
raw_predictions = np.log(proba_pos_class / (1 - proba_pos_class))
return raw_predictions.reshape(-1, 1).astype(np.float64)
class MultinomialDeviance(ClassificationLossFunction):
"""Multinomial deviance loss function for multi-class classification.
For multi-class classification we need to fit ``n_classes`` trees at
each stage.
Parameters
----------
n_classes : int
Number of classes.
"""
is_multi_class = True
def __init__(self, n_classes):
if n_classes < 3:
raise ValueError("{0:s} requires more than 2 classes.".format(
self.__class__.__name__))
super().__init__(n_classes)
def init_estimator(self):
return DummyClassifier(strategy='prior')
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the Multinomial deviance.
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble.
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
# create one-hot label encoding
Y = np.zeros((y.shape[0], self.K), dtype=np.float64)
for k in range(self.K):
Y[:, k] = y == k
return np.average(
-1 * (Y * raw_predictions).sum(axis=1) +
logsumexp(raw_predictions, axis=1),
weights=sample_weight
)
def negative_gradient(self, y, raw_predictions, k=0, **kwargs):
"""Compute negative gradient for the ``k``-th class.
Parameters
----------
y : ndarray of shape (n_samples,)
The target labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
k : int, default=0
The index of the class.
"""
return y - np.nan_to_num(np.exp(raw_predictions[:, k] -
logsumexp(raw_predictions, axis=1)))
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
"""Make a single Newton-Raphson step. """
terminal_region = np.where(terminal_regions == leaf)[0]
residual = residual.take(terminal_region, axis=0)
y = y.take(terminal_region, axis=0)
sample_weight = sample_weight.take(terminal_region, axis=0)
numerator = np.sum(sample_weight * residual)
numerator *= (self.K - 1) / self.K
denominator = np.sum(sample_weight * (y - residual) *
(1 - y + residual))
# prevents overflow and division by zero
if abs(denominator) < 1e-150:
tree.value[leaf, 0, 0] = 0.0
else:
tree.value[leaf, 0, 0] = numerator / denominator
def _raw_prediction_to_proba(self, raw_predictions):
return np.nan_to_num(
np.exp(raw_predictions -
(logsumexp(raw_predictions, axis=1)[:, np.newaxis])))
def _raw_prediction_to_decision(self, raw_predictions):
proba = self._raw_prediction_to_proba(raw_predictions)
return np.argmax(proba, axis=1)
def get_init_raw_predictions(self, X, estimator):
probas = estimator.predict_proba(X)
eps = np.finfo(np.float32).eps
probas = np.clip(probas, eps, 1 - eps)
raw_predictions = np.log(probas).astype(np.float64)
return raw_predictions
class ExponentialLoss(ClassificationLossFunction):
"""Exponential loss function for binary classification.
Same loss as AdaBoost.
Parameters
----------
n_classes : int
Number of classes.
References
----------
Greg Ridgeway, Generalized Boosted Models: A guide to the gbm package, 2007
"""
def __init__(self, n_classes):
if n_classes != 2:
raise ValueError("{0:s} requires 2 classes; got {1:d} class(es)"
.format(self.__class__.__name__, n_classes))
# we only need to fit one tree for binary clf.
super().__init__(n_classes=1)
def init_estimator(self):
return DummyClassifier(strategy='prior')
def __call__(self, y, raw_predictions, sample_weight=None):
"""Compute the exponential loss
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble.
sample_weight : ndarray of shape (n_samples,), default=None
Sample weights.
"""
raw_predictions = raw_predictions.ravel()
if sample_weight is None:
return np.mean(np.exp(-(2. * y - 1.) * raw_predictions))
else:
return (1.0 / sample_weight.sum() * np.sum(
sample_weight * np.exp(-(2 * y - 1) * raw_predictions)))
def negative_gradient(self, y, raw_predictions, **kargs):
"""Compute the residual (= negative gradient).
Parameters
----------
y : ndarray of shape (n_samples,)
True labels.
raw_predictions : ndarray of shape (n_samples, K)
The raw predictions (i.e. values from the tree leaves) of the
tree ensemble at iteration ``i - 1``.
"""
y_ = -(2. * y - 1.)
return y_ * np.exp(y_ * raw_predictions.ravel())
def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
residual, raw_predictions, sample_weight):
terminal_region = np.where(terminal_regions == leaf)[0]
raw_predictions = raw_predictions.take(terminal_region, axis=0)
y = y.take(terminal_region, axis=0)
sample_weight = sample_weight.take(terminal_region, axis=0)
y_ = 2. * y - 1.
numerator = np.sum(y_ * sample_weight * np.exp(-y_ * raw_predictions))
denominator = np.sum(sample_weight * np.exp(-y_ * raw_predictions))
# prevents overflow and division by zero
if abs(denominator) < 1e-150:
tree.value[leaf, 0, 0] = 0.0
else:
tree.value[leaf, 0, 0] = numerator / denominator
def _raw_prediction_to_proba(self, raw_predictions):
proba = np.ones((raw_predictions.shape[0], 2), dtype=np.float64)
proba[:, 1] = expit(2.0 * raw_predictions.ravel())
proba[:, 0] -= proba[:, 1]
return proba
def _raw_prediction_to_decision(self, raw_predictions):
return (raw_predictions.ravel() >= 0).astype(np.int)
def get_init_raw_predictions(self, X, estimator):
probas = estimator.predict_proba(X)
proba_pos_class = probas[:, 1]
eps = np.finfo(np.float32).eps
proba_pos_class = np.clip(proba_pos_class, eps, 1 - eps)
# according to The Elements of Statistical Learning sec. 10.5, the
# minimizer of the exponential loss is .5 * log odds ratio. So this is
# the equivalent to .5 * binomial_deviance.get_init_raw_predictions()
raw_predictions = .5 * np.log(proba_pos_class / (1 - proba_pos_class))
return raw_predictions.reshape(-1, 1).astype(np.float64)
LOSS_FUNCTIONS = {
'ls': LeastSquaresError,
'lad': LeastAbsoluteError,
'huber': HuberLossFunction,
'quantile': QuantileLossFunction,
'deviance': None, # for both, multinomial and binomial
'exponential': ExponentialLoss,
}