Vehicle-Anti-Theft-Face-Rec.../Facial_Recognition_Wrapper.py

280 lines
9 KiB
Python
Raw Normal View History

2020-11-08 21:57:59 +00:00
import sys
import os
import math
import cv2
import dlib
import numpy as np
import Facial_Recognition_Render as fr
import _pickle as cPickle
import glob
faceWidth = 320
faceHeight = 320
SKIP_FRAMES = 1
def alignFace(imFace, landmarks):
l_x = landmarks[39][0]
l_y = landmarks[39][1]
r_x = landmarks[42][0]
r_y = landmarks[42][1]
dy = r_y - l_y
dx = r_x - l_x
# Convert from radians to degrees
angle = math.atan2(dy, dx) * 180.0 / math.pi
eyesCenter = ((l_x + r_x)*0.5, (l_y + r_y)*0.5)
rotMatrix = cv2.getRotationMatrix2D(eyesCenter, angle, 1)
alignedImFace = np.zeros(imFace.shape, dtype=np.uint8)
alignedImFace = cv2.warpAffine(imFace, rotMatrix, (imFace.shape[1],imFace.shape[0]))
return alignedImFace
def face_detector_haarcascade(image):
grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
resize_fx = 1
resize_fy = 1
grey = cv2.resize(grey, dsize=None, fx=resize_fx, fy=resize_fy, interpolation = cv2.INTER_AREA)
pwd = sys.path[0]
classfier = cv2.CascadeClassifier(pwd + "/Facial_models/haarcascade_frontalface_alt2.xml")
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=1, minSize=(16, 16))
if len(faceRects) > 0:
for faceRect in faceRects:
x, y, w, h = faceRect
x = int(x/resize_fx)
y = int(y/resize_fy)
w = int(w/resize_fx)
h = int(h/resize_fy)
cv2.rectangle(image, (x - 10, y - 10), (x + w + 10, y + h + 10), (0, 255, 0), 5)
return image
def face_detector_ssd(image):
pwd = sys.path[0]
net = cv2.dnn.readNetFromCaffe(pwd+"/Facial_models/deploy.prototxt", pwd+"/Facial_models/res10_300x300_ssd_iter_140000_fp16.caffemodel")
resize = (300, 300)
confidence_thres = 0.65
blob = cv2.dnn.blobFromImage(cv2.resize(image, dsize=resize), 1.0, resize, (104.0, 177.0, 123.0))
# blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
h,w,c=image.shape
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > confidence_thres:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(image, (startX, startY), (endX, endY),(0, 255,0), 5)
cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 1.00, (0, 255, 0), 3)
return image
def training_data_loader():
imagesFolder = sys.path[0]+"/Facial_images/face_rec/train/"
subfolders = []
for x in os.listdir(imagesFolder):
xpath = os.path.join(imagesFolder, x)
if os.path.isdir(xpath):
subfolders.append(xpath)
imagePaths = []
labels = []
labelsMap = {}
labelsMap[-1] = "unknown"
for i, subfolder in enumerate(subfolders):
labelsMap[i] = os.path.basename(subfolder)
for x in os.listdir(subfolder):
xpath = os.path.join(subfolder, x)
if x.endswith('jpg') or x.endswith('pgm'):
imagePaths.append(xpath)
labels.append(i)
imagesFaceTrain = []
labelsFaceTrain = []
faceDetector = dlib.get_frontal_face_detector()
landmarkDetector = dlib.shape_predictor(sys.path[0]+"/Facial_models/shape_predictor_68_face_landmarks.dat")
for j, imagePath in enumerate(imagePaths):
im = cv2.imread(imagePath, 0)
imHeight, imWidth = im.shape[:2]
landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im)
landmarks = np.array(landmarks)
if len(landmarks) == 68:
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1])
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
x1 = max(x1Limit,0)
x2 = min(x2Limit, imWidth)
y1 = max(y1Limit, 0)
y2 = min(y2Limit, imHeight)
imFace = im[y1:y2, x1:x2]
alignedFace = alignFace(imFace, landmarks)
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
imagesFaceTrain.append(np.float32(alignedFace)/255.0)
labelsFaceTrain.append(labels[j])
return imagesFaceTrain, labelsFaceTrain, labelsMap
def training_recognizer(rec_type):
imagesFaceTrain, labelsFaceTrain, labelsMap = training_data_loader()
if (rec_type=='LBPH'):
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
print("Training using LBPH Faces")
elif (rec_type=='Eigen'):
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
print("Training using Eigen Faces")
elif (rec_type=='Fisher'):
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
print("Training using Fisher Faces")
faceRecognizer.train(imagesFaceTrain, np.array(labelsFaceTrain))
faceRecognizer.write(sys.path[0]+'/Facial_models/face_rec_model.yml')
with open(sys.path[0]+'/Facial_models/labels_map.pkl', 'wb') as f:
cPickle.dump(labelsMap, f)
def face_recognition_inference(rec_type):
#testFiles = glob.glob(sys.path[0]+'/Facial_test_images/face_rec/test/*.jpg')
#testFiles.sort()
i = 0
correct = 0
error = 0
faceDetector = dlib.get_frontal_face_detector()
landmarkDetector = dlib.shape_predictor(sys.path[0]+'/Facial_models/shape_predictor_68_face_landmarks.dat')
if (rec_type=='LBPH'):
faceRecognizer = cv2.face.LBPHFaceRecognizer_create()
print("Test using LBPH Faces")
elif (rec_type=='Eigen'):
faceRecognizer = cv2.face.EigenFaceRecognizer_create()
print("Test using Eigen Faces")
elif (rec_type=='Fisher'):
faceRecognizer = cv2.face.FisherFaceRecognizer_create()
print("Test using Fisher Faces")
faceRecognizer.read(sys.path[0]+'/Facial_models/face_rec_model.yml')
labelsMap = np.load(sys.path[0]+'/Facial_models/labels_map.pkl', allow_pickle=True)
cam = cv2.VideoCapture(1)
while(True):
#imagePath = testFiles[i]
success, original = cam.read()
im = cv2.resize(original, (640, 480))
i += 1
im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
imHeight, imWidth = im.shape[:2]
landmarks = fr.getLandmarks(faceDetector, landmarkDetector, im)
landmarks = np.array(landmarks)
if len(landmarks) == 68:
x1Limit = landmarks[0][0] - (landmarks[36][0] - landmarks[0][0])
x2Limit = landmarks[16][0] + (landmarks[16][0] - landmarks[45][0])
y1Limit = landmarks[27][1] - 3*(landmarks[30][1] - landmarks[27][1])
y2Limit = landmarks[8][1] + (landmarks[30][1] - landmarks[29][1])
x1 = max(x1Limit,0)
x2 = min(x2Limit, imWidth)
y1 = max(y1Limit, 0)
y2 = min(y2Limit, imHeight)
imFace = im[y1:y2, x1:x2]
alignedFace = alignFace(imFace, landmarks)
alignedFace = cv2.resize(alignedFace, (faceHeight, faceWidth))
imFaceFloat = np.float32(alignedFace)/255.0
predictedLabel = -1
predictedLabel, score = faceRecognizer.predict(imFaceFloat)
center = ( int((x1 + x2) /2), int((y1 + y2)/2) )
radius = int((y2-y1)/2.0)
text = '{} {}%'.format(labelsMap[predictedLabel],round(score, 5))
cv2.rectangle(original, (x1, y1), (x2, y2), (0, 255, 0), 5)
cv2.putText(original, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3)
cv2.imshow('Face Recognition Demo', original)
k = cv2.waitKey(10)
cam.release()
cv2.destroyAllWindows()
if __name__=="__main__":
mode = 'test'
2020-11-08 22:44:15 +00:00
rec_type = 'Fisher' # 'LBPH' 'Fisher' 'Eigen'
2020-11-08 21:57:59 +00:00
if mode == 'train':
training_recognizer(rec_type)
elif (mode == 'test'):
face_recognition_inference(rec_type)
# video process (keep it in case if needed)
'''
cameraCapture = cv2.VideoCapture(1)
success, frame = cameraCapture.read()
while success and cv2.waitKey(1) == -1:
success, frame = cameraCapture.read()
face_detector_ssd(frame)
cv2.imshow("video", frame)
cameraCapture.release()
cv2.destroyAllWindows()
'''
# image process (keep it in case if needed)
'''
image_name = "8.jpg"
split_name = image_name.split(".")
image_read_path = sys.path[0]+"/Facial_test_images/"+image_name
image_save_path = sys.path[0]+"/Facial_test_images/output/"+split_name[0]+"_result."+split_name[1]
image = cv2.imread(image_read_path)
image = face_detector_ssd(image)
image = face_detector_haarcascade(image)
print(image_save_path)
cv2.imwrite(image_save_path, image)
cv2.imshow("result", image)
cv2.waitKey()
cv2.destroyAllWindows()
'''