136 lines
4.9 KiB
Python
136 lines
4.9 KiB
Python
|
import itertools
|
||
|
from numpy.testing import assert_array_almost_equal, assert_allclose, assert_
|
||
|
from numpy import (array, eye, zeros, empty_like, empty, tril_indices_from,
|
||
|
tril, triu_indices_from, spacing, float32, float64,
|
||
|
complex64, complex128)
|
||
|
from numpy.random import rand, randint, seed
|
||
|
from scipy.linalg import ldl
|
||
|
from pytest import raises as assert_raises, warns
|
||
|
from numpy import ComplexWarning
|
||
|
|
||
|
|
||
|
def test_args():
|
||
|
A = eye(3)
|
||
|
# Nonsquare array
|
||
|
assert_raises(ValueError, ldl, A[:, :2])
|
||
|
# Complex matrix with imaginary diagonal entries with "hermitian=True"
|
||
|
with warns(ComplexWarning):
|
||
|
ldl(A*1j)
|
||
|
|
||
|
|
||
|
def test_empty_array():
|
||
|
a = empty((0, 0), dtype=complex)
|
||
|
l, d, p = ldl(empty((0, 0)))
|
||
|
assert_array_almost_equal(l, empty_like(a))
|
||
|
assert_array_almost_equal(d, empty_like(a))
|
||
|
assert_array_almost_equal(p, array([], dtype=int))
|
||
|
|
||
|
|
||
|
def test_simple():
|
||
|
a = array([[-0.39-0.71j, 5.14-0.64j, -7.86-2.96j, 3.80+0.92j],
|
||
|
[5.14-0.64j, 8.86+1.81j, -3.52+0.58j, 5.32-1.59j],
|
||
|
[-7.86-2.96j, -3.52+0.58j, -2.83-0.03j, -1.54-2.86j],
|
||
|
[3.80+0.92j, 5.32-1.59j, -1.54-2.86j, -0.56+0.12j]])
|
||
|
b = array([[5., 10, 1, 18],
|
||
|
[10., 2, 11, 1],
|
||
|
[1., 11, 19, 9],
|
||
|
[18., 1, 9, 0]])
|
||
|
c = array([[52., 97, 112, 107, 50],
|
||
|
[97., 114, 89, 98, 13],
|
||
|
[112., 89, 64, 33, 6],
|
||
|
[107., 98, 33, 60, 73],
|
||
|
[50., 13, 6, 73, 77]])
|
||
|
|
||
|
d = array([[2., 2, -4, 0, 4],
|
||
|
[2., -2, -2, 10, -8],
|
||
|
[-4., -2, 6, -8, -4],
|
||
|
[0., 10, -8, 6, -6],
|
||
|
[4., -8, -4, -6, 10]])
|
||
|
e = array([[-1.36+0.00j, 0+0j, 0+0j, 0+0j],
|
||
|
[1.58-0.90j, -8.87+0j, 0+0j, 0+0j],
|
||
|
[2.21+0.21j, -1.84+0.03j, -4.63+0j, 0+0j],
|
||
|
[3.91-1.50j, -1.78-1.18j, 0.11-0.11j, -1.84+0.00j]])
|
||
|
for x in (b, c, d):
|
||
|
l, d, p = ldl(x)
|
||
|
assert_allclose(l.dot(d).dot(l.T), x, atol=spacing(1000.), rtol=0)
|
||
|
|
||
|
u, d, p = ldl(x, lower=False)
|
||
|
assert_allclose(u.dot(d).dot(u.T), x, atol=spacing(1000.), rtol=0)
|
||
|
|
||
|
l, d, p = ldl(a, hermitian=False)
|
||
|
assert_allclose(l.dot(d).dot(l.T), a, atol=spacing(1000.), rtol=0)
|
||
|
|
||
|
u, d, p = ldl(a, lower=False, hermitian=False)
|
||
|
assert_allclose(u.dot(d).dot(u.T), a, atol=spacing(1000.), rtol=0)
|
||
|
|
||
|
# Use upper part for the computation and use the lower part for comparison
|
||
|
l, d, p = ldl(e.conj().T, lower=0)
|
||
|
assert_allclose(tril(l.dot(d).dot(l.conj().T)-e), zeros((4, 4)),
|
||
|
atol=spacing(1000.), rtol=0)
|
||
|
|
||
|
|
||
|
def test_permutations():
|
||
|
seed(1234)
|
||
|
for _ in range(10):
|
||
|
n = randint(1, 100)
|
||
|
# Random real/complex array
|
||
|
x = rand(n, n) if randint(2) else rand(n, n) + rand(n, n)*1j
|
||
|
x = x + x.conj().T
|
||
|
x += eye(n)*randint(5, 1e6)
|
||
|
l_ind = tril_indices_from(x, k=-1)
|
||
|
u_ind = triu_indices_from(x, k=1)
|
||
|
|
||
|
# Test whether permutations lead to a triangular array
|
||
|
u, d, p = ldl(x, lower=0)
|
||
|
# lower part should be zero
|
||
|
assert_(not any(u[p, :][l_ind]), 'Spin {} failed'.format(_))
|
||
|
|
||
|
l, d, p = ldl(x, lower=1)
|
||
|
# upper part should be zero
|
||
|
assert_(not any(l[p, :][u_ind]), 'Spin {} failed'.format(_))
|
||
|
|
||
|
|
||
|
def test_ldl_type_size_combinations():
|
||
|
seed(1234)
|
||
|
sizes = [30, 750]
|
||
|
real_dtypes = [float32, float64]
|
||
|
complex_dtypes = [complex64, complex128]
|
||
|
|
||
|
for n, dtype in itertools.product(sizes, real_dtypes):
|
||
|
msg = ("Failed for size: {}, dtype: {}".format(n, dtype))
|
||
|
|
||
|
x = rand(n, n).astype(dtype)
|
||
|
x = x + x.T
|
||
|
x += eye(n, dtype=dtype)*dtype(randint(5, 1e6))
|
||
|
|
||
|
l, d1, p = ldl(x)
|
||
|
u, d2, p = ldl(x, lower=0)
|
||
|
rtol = 1e-4 if dtype is float32 else 1e-10
|
||
|
assert_allclose(l.dot(d1).dot(l.T), x, rtol=rtol, err_msg=msg)
|
||
|
assert_allclose(u.dot(d2).dot(u.T), x, rtol=rtol, err_msg=msg)
|
||
|
|
||
|
for n, dtype in itertools.product(sizes, complex_dtypes):
|
||
|
msg1 = ("Her failed for size: {}, dtype: {}".format(n, dtype))
|
||
|
msg2 = ("Sym failed for size: {}, dtype: {}".format(n, dtype))
|
||
|
|
||
|
# Complex hermitian upper/lower
|
||
|
x = (rand(n, n)+1j*rand(n, n)).astype(dtype)
|
||
|
x = x+x.conj().T
|
||
|
x += eye(n, dtype=dtype)*dtype(randint(5, 1e6))
|
||
|
|
||
|
l, d1, p = ldl(x)
|
||
|
u, d2, p = ldl(x, lower=0)
|
||
|
rtol = 1e-4 if dtype is complex64 else 1e-10
|
||
|
assert_allclose(l.dot(d1).dot(l.conj().T), x, rtol=rtol, err_msg=msg1)
|
||
|
assert_allclose(u.dot(d2).dot(u.conj().T), x, rtol=rtol, err_msg=msg1)
|
||
|
|
||
|
# Complex symmetric upper/lower
|
||
|
x = (rand(n, n)+1j*rand(n, n)).astype(dtype)
|
||
|
x = x+x.T
|
||
|
x += eye(n, dtype=dtype)*dtype(randint(5, 1e6))
|
||
|
|
||
|
l, d1, p = ldl(x, hermitian=0)
|
||
|
u, d2, p = ldl(x, lower=0, hermitian=0)
|
||
|
assert_allclose(l.dot(d1).dot(l.T), x, rtol=rtol, err_msg=msg2)
|
||
|
assert_allclose(u.dot(d2).dot(u.T), x, rtol=rtol, err_msg=msg2)
|