284 lines
10 KiB
Python
284 lines
10 KiB
Python
|
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
import warnings
|
||
|
|
||
|
from sklearn.preprocessing import KBinsDiscretizer
|
||
|
from sklearn.preprocessing import OneHotEncoder
|
||
|
from sklearn.utils._testing import (
|
||
|
assert_array_almost_equal,
|
||
|
assert_array_equal,
|
||
|
assert_warns_message
|
||
|
)
|
||
|
|
||
|
X = [[-2, 1.5, -4, -1],
|
||
|
[-1, 2.5, -3, -0.5],
|
||
|
[0, 3.5, -2, 0.5],
|
||
|
[1, 4.5, -1, 2]]
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'strategy, expected',
|
||
|
[('uniform', [[0, 0, 0, 0], [1, 1, 1, 0], [2, 2, 2, 1], [2, 2, 2, 2]]),
|
||
|
('kmeans', [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]]),
|
||
|
('quantile', [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]])])
|
||
|
def test_fit_transform(strategy, expected):
|
||
|
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy=strategy)
|
||
|
est.fit(X)
|
||
|
assert_array_equal(expected, est.transform(X))
|
||
|
|
||
|
|
||
|
def test_valid_n_bins():
|
||
|
KBinsDiscretizer(n_bins=2).fit_transform(X)
|
||
|
KBinsDiscretizer(n_bins=np.array([2])[0]).fit_transform(X)
|
||
|
assert KBinsDiscretizer(n_bins=2).fit(X).n_bins_.dtype == np.dtype(np.int)
|
||
|
|
||
|
|
||
|
def test_invalid_n_bins():
|
||
|
est = KBinsDiscretizer(n_bins=1)
|
||
|
err_msg = ("KBinsDiscretizer received an invalid "
|
||
|
"number of bins. Received 1, expected at least 2.")
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit_transform(X)
|
||
|
|
||
|
est = KBinsDiscretizer(n_bins=1.1)
|
||
|
err_msg = ("KBinsDiscretizer received an invalid "
|
||
|
"n_bins type. Received float, expected int.")
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit_transform(X)
|
||
|
|
||
|
|
||
|
def test_invalid_n_bins_array():
|
||
|
# Bad shape
|
||
|
n_bins = np.full((2, 4), 2.)
|
||
|
est = KBinsDiscretizer(n_bins=n_bins)
|
||
|
err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit_transform(X)
|
||
|
|
||
|
# Incorrect number of features
|
||
|
n_bins = [1, 2, 2]
|
||
|
est = KBinsDiscretizer(n_bins=n_bins)
|
||
|
err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit_transform(X)
|
||
|
|
||
|
# Bad bin values
|
||
|
n_bins = [1, 2, 2, 1]
|
||
|
est = KBinsDiscretizer(n_bins=n_bins)
|
||
|
err_msg = ("KBinsDiscretizer received an invalid number of bins "
|
||
|
"at indices 0, 3. Number of bins must be at least 2, "
|
||
|
"and must be an int.")
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit_transform(X)
|
||
|
|
||
|
# Float bin values
|
||
|
n_bins = [2.1, 2, 2.1, 2]
|
||
|
est = KBinsDiscretizer(n_bins=n_bins)
|
||
|
err_msg = ("KBinsDiscretizer received an invalid number of bins "
|
||
|
"at indices 0, 2. Number of bins must be at least 2, "
|
||
|
"and must be an int.")
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit_transform(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'strategy, expected',
|
||
|
[('uniform', [[0, 0, 0, 0], [0, 1, 1, 0], [1, 2, 2, 1], [1, 2, 2, 2]]),
|
||
|
('kmeans', [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 2, 2, 2]]),
|
||
|
('quantile', [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]])])
|
||
|
def test_fit_transform_n_bins_array(strategy, expected):
|
||
|
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='ordinal',
|
||
|
strategy=strategy).fit(X)
|
||
|
assert_array_equal(expected, est.transform(X))
|
||
|
|
||
|
# test the shape of bin_edges_
|
||
|
n_features = np.array(X).shape[1]
|
||
|
assert est.bin_edges_.shape == (n_features, )
|
||
|
for bin_edges, n_bins in zip(est.bin_edges_, est.n_bins_):
|
||
|
assert bin_edges.shape == (n_bins + 1, )
|
||
|
|
||
|
|
||
|
def test_invalid_n_features():
|
||
|
est = KBinsDiscretizer(n_bins=3).fit(X)
|
||
|
bad_X = np.arange(25).reshape(5, -1)
|
||
|
err_msg = "Incorrect number of features. Expecting 4, received 5"
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.transform(bad_X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('strategy', ['uniform', 'kmeans', 'quantile'])
|
||
|
def test_same_min_max(strategy):
|
||
|
warnings.simplefilter("always")
|
||
|
X = np.array([[1, -2],
|
||
|
[1, -1],
|
||
|
[1, 0],
|
||
|
[1, 1]])
|
||
|
est = KBinsDiscretizer(strategy=strategy, n_bins=3, encode='ordinal')
|
||
|
assert_warns_message(UserWarning,
|
||
|
"Feature 0 is constant and will be replaced "
|
||
|
"with 0.", est.fit, X)
|
||
|
assert est.n_bins_[0] == 1
|
||
|
# replace the feature with zeros
|
||
|
Xt = est.transform(X)
|
||
|
assert_array_equal(Xt[:, 0], np.zeros(X.shape[0]))
|
||
|
|
||
|
|
||
|
def test_transform_1d_behavior():
|
||
|
X = np.arange(4)
|
||
|
est = KBinsDiscretizer(n_bins=2)
|
||
|
with pytest.raises(ValueError):
|
||
|
est.fit(X)
|
||
|
|
||
|
est = KBinsDiscretizer(n_bins=2)
|
||
|
est.fit(X.reshape(-1, 1))
|
||
|
with pytest.raises(ValueError):
|
||
|
est.transform(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('i', range(1, 9))
|
||
|
def test_numeric_stability(i):
|
||
|
X_init = np.array([2., 4., 6., 8., 10.]).reshape(-1, 1)
|
||
|
Xt_expected = np.array([0, 0, 1, 1, 1]).reshape(-1, 1)
|
||
|
|
||
|
# Test up to discretizing nano units
|
||
|
X = X_init / 10**i
|
||
|
Xt = KBinsDiscretizer(n_bins=2, encode='ordinal').fit_transform(X)
|
||
|
assert_array_equal(Xt_expected, Xt)
|
||
|
|
||
|
|
||
|
def test_invalid_encode_option():
|
||
|
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode='invalid-encode')
|
||
|
err_msg = (r"Valid options for 'encode' are "
|
||
|
r"\('onehot', 'onehot-dense', 'ordinal'\). "
|
||
|
r"Got encode='invalid-encode' instead.")
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit(X)
|
||
|
|
||
|
|
||
|
def test_encode_options():
|
||
|
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3],
|
||
|
encode='ordinal').fit(X)
|
||
|
Xt_1 = est.transform(X)
|
||
|
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3],
|
||
|
encode='onehot-dense').fit(X)
|
||
|
Xt_2 = est.transform(X)
|
||
|
assert not sp.issparse(Xt_2)
|
||
|
assert_array_equal(OneHotEncoder(
|
||
|
categories=[np.arange(i) for i in [2, 3, 3, 3]],
|
||
|
sparse=False)
|
||
|
.fit_transform(Xt_1), Xt_2)
|
||
|
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3],
|
||
|
encode='onehot').fit(X)
|
||
|
Xt_3 = est.transform(X)
|
||
|
assert sp.issparse(Xt_3)
|
||
|
assert_array_equal(OneHotEncoder(
|
||
|
categories=[np.arange(i) for i in [2, 3, 3, 3]],
|
||
|
sparse=True)
|
||
|
.fit_transform(Xt_1).toarray(),
|
||
|
Xt_3.toarray())
|
||
|
|
||
|
|
||
|
def test_invalid_strategy_option():
|
||
|
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], strategy='invalid-strategy')
|
||
|
err_msg = (r"Valid options for 'strategy' are "
|
||
|
r"\('uniform', 'quantile', 'kmeans'\). "
|
||
|
r"Got strategy='invalid-strategy' instead.")
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
est.fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'strategy, expected_2bins, expected_3bins, expected_5bins',
|
||
|
[('uniform', [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 2, 2], [0, 0, 1, 1, 4, 4]),
|
||
|
('kmeans', [0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 2, 2], [0, 0, 1, 2, 3, 4]),
|
||
|
('quantile', [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2], [0, 1, 2, 3, 4, 4])])
|
||
|
def test_nonuniform_strategies(
|
||
|
strategy, expected_2bins, expected_3bins, expected_5bins):
|
||
|
X = np.array([0, 0.5, 2, 3, 9, 10]).reshape(-1, 1)
|
||
|
|
||
|
# with 2 bins
|
||
|
est = KBinsDiscretizer(n_bins=2, strategy=strategy, encode='ordinal')
|
||
|
Xt = est.fit_transform(X)
|
||
|
assert_array_equal(expected_2bins, Xt.ravel())
|
||
|
|
||
|
# with 3 bins
|
||
|
est = KBinsDiscretizer(n_bins=3, strategy=strategy, encode='ordinal')
|
||
|
Xt = est.fit_transform(X)
|
||
|
assert_array_equal(expected_3bins, Xt.ravel())
|
||
|
|
||
|
# with 5 bins
|
||
|
est = KBinsDiscretizer(n_bins=5, strategy=strategy, encode='ordinal')
|
||
|
Xt = est.fit_transform(X)
|
||
|
assert_array_equal(expected_5bins, Xt.ravel())
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'strategy, expected_inv',
|
||
|
[('uniform', [[-1.5, 2., -3.5, -0.5], [-0.5, 3., -2.5, -0.5],
|
||
|
[0.5, 4., -1.5, 0.5], [0.5, 4., -1.5, 1.5]]),
|
||
|
('kmeans', [[-1.375, 2.125, -3.375, -0.5625],
|
||
|
[-1.375, 2.125, -3.375, -0.5625],
|
||
|
[-0.125, 3.375, -2.125, 0.5625],
|
||
|
[0.75, 4.25, -1.25, 1.625]]),
|
||
|
('quantile', [[-1.5, 2., -3.5, -0.75], [-0.5, 3., -2.5, 0.],
|
||
|
[0.5, 4., -1.5, 1.25], [0.5, 4., -1.5, 1.25]])])
|
||
|
@pytest.mark.parametrize('encode', ['ordinal', 'onehot', 'onehot-dense'])
|
||
|
def test_inverse_transform(strategy, encode, expected_inv):
|
||
|
kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, encode=encode)
|
||
|
Xt = kbd.fit_transform(X)
|
||
|
Xinv = kbd.inverse_transform(Xt)
|
||
|
assert_array_almost_equal(expected_inv, Xinv)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('strategy', ['uniform', 'kmeans', 'quantile'])
|
||
|
def test_transform_outside_fit_range(strategy):
|
||
|
X = np.array([0, 1, 2, 3])[:, None]
|
||
|
kbd = KBinsDiscretizer(n_bins=4, strategy=strategy, encode='ordinal')
|
||
|
kbd.fit(X)
|
||
|
|
||
|
X2 = np.array([-2, 5])[:, None]
|
||
|
X2t = kbd.transform(X2)
|
||
|
assert_array_equal(X2t.max(axis=0) + 1, kbd.n_bins_)
|
||
|
assert_array_equal(X2t.min(axis=0), [0])
|
||
|
|
||
|
|
||
|
def test_overwrite():
|
||
|
X = np.array([0, 1, 2, 3])[:, None]
|
||
|
X_before = X.copy()
|
||
|
|
||
|
est = KBinsDiscretizer(n_bins=3, encode="ordinal")
|
||
|
Xt = est.fit_transform(X)
|
||
|
assert_array_equal(X, X_before)
|
||
|
|
||
|
Xt_before = Xt.copy()
|
||
|
Xinv = est.inverse_transform(Xt)
|
||
|
assert_array_equal(Xt, Xt_before)
|
||
|
assert_array_equal(Xinv, np.array([[0.5], [1.5], [2.5], [2.5]]))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
'strategy, expected_bin_edges',
|
||
|
[('quantile', [0, 1, 3]), ('kmeans', [0, 1.5, 3])])
|
||
|
def test_redundant_bins(strategy, expected_bin_edges):
|
||
|
X = [[0], [0], [0], [0], [3], [3]]
|
||
|
kbd = KBinsDiscretizer(n_bins=3, strategy=strategy)
|
||
|
msg = ("Bins whose width are too small (i.e., <= 1e-8) in feature 0 "
|
||
|
"are removed. Consider decreasing the number of bins.")
|
||
|
assert_warns_message(UserWarning, msg, kbd.fit, X)
|
||
|
assert_array_almost_equal(kbd.bin_edges_[0], expected_bin_edges)
|
||
|
|
||
|
|
||
|
def test_percentile_numeric_stability():
|
||
|
X = np.array([0.05, 0.05, 0.95]).reshape(-1, 1)
|
||
|
bin_edges = np.array([0.05, 0.23, 0.41, 0.59, 0.77, 0.95])
|
||
|
Xt = np.array([0, 0, 4]).reshape(-1, 1)
|
||
|
kbd = KBinsDiscretizer(n_bins=10, encode='ordinal',
|
||
|
strategy='quantile')
|
||
|
msg = ("Bins whose width are too small (i.e., <= 1e-8) in feature 0 "
|
||
|
"are removed. Consider decreasing the number of bins.")
|
||
|
assert_warns_message(UserWarning, msg, kbd.fit, X)
|
||
|
assert_array_almost_equal(kbd.bin_edges_[0], bin_edges)
|
||
|
assert_array_almost_equal(kbd.transform(X), Xt)
|