36 lines
1.3 KiB
Python
36 lines
1.3 KiB
Python
|
"""
|
||
|
The :mod:`sklearn.covariance` module includes methods and algorithms to
|
||
|
robustly estimate the covariance of features given a set of points. The
|
||
|
precision matrix defined as the inverse of the covariance is also estimated.
|
||
|
Covariance estimation is closely related to the theory of Gaussian Graphical
|
||
|
Models.
|
||
|
"""
|
||
|
|
||
|
from ._empirical_covariance import (empirical_covariance,
|
||
|
EmpiricalCovariance,
|
||
|
log_likelihood)
|
||
|
from ._shrunk_covariance import (shrunk_covariance, ShrunkCovariance,
|
||
|
ledoit_wolf, ledoit_wolf_shrinkage,
|
||
|
LedoitWolf, oas, OAS)
|
||
|
from ._robust_covariance import fast_mcd, MinCovDet
|
||
|
from ._graph_lasso import graphical_lasso, GraphicalLasso, GraphicalLassoCV
|
||
|
from ._elliptic_envelope import EllipticEnvelope
|
||
|
|
||
|
|
||
|
__all__ = ['EllipticEnvelope',
|
||
|
'EmpiricalCovariance',
|
||
|
'GraphicalLasso',
|
||
|
'GraphicalLassoCV',
|
||
|
'LedoitWolf',
|
||
|
'MinCovDet',
|
||
|
'OAS',
|
||
|
'ShrunkCovariance',
|
||
|
'empirical_covariance',
|
||
|
'fast_mcd',
|
||
|
'graphical_lasso',
|
||
|
'ledoit_wolf',
|
||
|
'ledoit_wolf_shrinkage',
|
||
|
'log_likelihood',
|
||
|
'oas',
|
||
|
'shrunk_covariance']
|