233 lines
7.8 KiB
Python
233 lines
7.8 KiB
Python
|
from warnings import warn
|
||
|
import numpy as np
|
||
|
from scipy.ndimage import uniform_filter, gaussian_filter
|
||
|
|
||
|
from ..util.dtype import dtype_range
|
||
|
from ..util.arraycrop import crop
|
||
|
from .._shared.utils import warn, check_shape_equality
|
||
|
|
||
|
__all__ = ['structural_similarity']
|
||
|
|
||
|
|
||
|
def structural_similarity(im1, im2,
|
||
|
*,
|
||
|
win_size=None, gradient=False, data_range=None,
|
||
|
multichannel=False, gaussian_weights=False,
|
||
|
full=False, **kwargs):
|
||
|
"""
|
||
|
Compute the mean structural similarity index between two images.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
im1, im2 : ndarray
|
||
|
Images. Any dimensionality with same shape.
|
||
|
win_size : int or None, optional
|
||
|
The side-length of the sliding window used in comparison. Must be an
|
||
|
odd value. If `gaussian_weights` is True, this is ignored and the
|
||
|
window size will depend on `sigma`.
|
||
|
gradient : bool, optional
|
||
|
If True, also return the gradient with respect to im2.
|
||
|
data_range : float, optional
|
||
|
The data range of the input image (distance between minimum and
|
||
|
maximum possible values). By default, this is estimated from the image
|
||
|
data-type.
|
||
|
multichannel : bool, optional
|
||
|
If True, treat the last dimension of the array as channels. Similarity
|
||
|
calculations are done independently for each channel then averaged.
|
||
|
gaussian_weights : bool, optional
|
||
|
If True, each patch has its mean and variance spatially weighted by a
|
||
|
normalized Gaussian kernel of width sigma=1.5.
|
||
|
full : bool, optional
|
||
|
If True, also return the full structural similarity image.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
use_sample_covariance : bool
|
||
|
If True, normalize covariances by N-1 rather than, N where N is the
|
||
|
number of pixels within the sliding window.
|
||
|
K1 : float
|
||
|
Algorithm parameter, K1 (small constant, see [1]_).
|
||
|
K2 : float
|
||
|
Algorithm parameter, K2 (small constant, see [1]_).
|
||
|
sigma : float
|
||
|
Standard deviation for the Gaussian when `gaussian_weights` is True.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mssim : float
|
||
|
The mean structural similarity index over the image.
|
||
|
grad : ndarray
|
||
|
The gradient of the structural similarity between im1 and im2 [2]_.
|
||
|
This is only returned if `gradient` is set to True.
|
||
|
S : ndarray
|
||
|
The full SSIM image. This is only returned if `full` is set to True.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
To match the implementation of Wang et. al. [1]_, set `gaussian_weights`
|
||
|
to True, `sigma` to 1.5, and `use_sample_covariance` to False.
|
||
|
|
||
|
.. versionchanged:: 0.16
|
||
|
This function was renamed from ``skimage.measure.compare_ssim`` to
|
||
|
``skimage.metrics.structural_similarity``.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
|
||
|
(2004). Image quality assessment: From error visibility to
|
||
|
structural similarity. IEEE Transactions on Image Processing,
|
||
|
13, 600-612.
|
||
|
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
|
||
|
:DOI:`10.1109/TIP.2003.819861`
|
||
|
|
||
|
.. [2] Avanaki, A. N. (2009). Exact global histogram specification
|
||
|
optimized for structural similarity. Optical Review, 16, 613-621.
|
||
|
:arxiv:`0901.0065`
|
||
|
:DOI:`10.1007/s10043-009-0119-z`
|
||
|
|
||
|
"""
|
||
|
check_shape_equality(im1, im2)
|
||
|
|
||
|
if multichannel:
|
||
|
# loop over channels
|
||
|
args = dict(win_size=win_size,
|
||
|
gradient=gradient,
|
||
|
data_range=data_range,
|
||
|
multichannel=False,
|
||
|
gaussian_weights=gaussian_weights,
|
||
|
full=full)
|
||
|
args.update(kwargs)
|
||
|
nch = im1.shape[-1]
|
||
|
mssim = np.empty(nch)
|
||
|
if gradient:
|
||
|
G = np.empty(im1.shape)
|
||
|
if full:
|
||
|
S = np.empty(im1.shape)
|
||
|
for ch in range(nch):
|
||
|
ch_result = structural_similarity(im1[..., ch],
|
||
|
im2[..., ch], **args)
|
||
|
if gradient and full:
|
||
|
mssim[..., ch], G[..., ch], S[..., ch] = ch_result
|
||
|
elif gradient:
|
||
|
mssim[..., ch], G[..., ch] = ch_result
|
||
|
elif full:
|
||
|
mssim[..., ch], S[..., ch] = ch_result
|
||
|
else:
|
||
|
mssim[..., ch] = ch_result
|
||
|
mssim = mssim.mean()
|
||
|
if gradient and full:
|
||
|
return mssim, G, S
|
||
|
elif gradient:
|
||
|
return mssim, G
|
||
|
elif full:
|
||
|
return mssim, S
|
||
|
else:
|
||
|
return mssim
|
||
|
|
||
|
K1 = kwargs.pop('K1', 0.01)
|
||
|
K2 = kwargs.pop('K2', 0.03)
|
||
|
sigma = kwargs.pop('sigma', 1.5)
|
||
|
if K1 < 0:
|
||
|
raise ValueError("K1 must be positive")
|
||
|
if K2 < 0:
|
||
|
raise ValueError("K2 must be positive")
|
||
|
if sigma < 0:
|
||
|
raise ValueError("sigma must be positive")
|
||
|
use_sample_covariance = kwargs.pop('use_sample_covariance', True)
|
||
|
|
||
|
if gaussian_weights:
|
||
|
# Set to give an 11-tap filter with the default sigma of 1.5 to match
|
||
|
# Wang et. al. 2004.
|
||
|
truncate = 3.5
|
||
|
|
||
|
if win_size is None:
|
||
|
if gaussian_weights:
|
||
|
# set win_size used by crop to match the filter size
|
||
|
r = int(truncate * sigma + 0.5) # radius as in ndimage
|
||
|
win_size = 2 * r + 1
|
||
|
else:
|
||
|
win_size = 7 # backwards compatibility
|
||
|
|
||
|
if np.any((np.asarray(im1.shape) - win_size) < 0):
|
||
|
raise ValueError(
|
||
|
"win_size exceeds image extent. If the input is a multichannel "
|
||
|
"(color) image, set multichannel=True.")
|
||
|
|
||
|
if not (win_size % 2 == 1):
|
||
|
raise ValueError('Window size must be odd.')
|
||
|
|
||
|
if data_range is None:
|
||
|
if im1.dtype != im2.dtype:
|
||
|
warn("Inputs have mismatched dtype. Setting data_range based on "
|
||
|
"im1.dtype.", stacklevel=2)
|
||
|
dmin, dmax = dtype_range[im1.dtype.type]
|
||
|
data_range = dmax - dmin
|
||
|
|
||
|
ndim = im1.ndim
|
||
|
|
||
|
if gaussian_weights:
|
||
|
filter_func = gaussian_filter
|
||
|
filter_args = {'sigma': sigma, 'truncate': truncate}
|
||
|
else:
|
||
|
filter_func = uniform_filter
|
||
|
filter_args = {'size': win_size}
|
||
|
|
||
|
# ndimage filters need floating point data
|
||
|
im1 = im1.astype(np.float64)
|
||
|
im2 = im2.astype(np.float64)
|
||
|
|
||
|
NP = win_size ** ndim
|
||
|
|
||
|
# filter has already normalized by NP
|
||
|
if use_sample_covariance:
|
||
|
cov_norm = NP / (NP - 1) # sample covariance
|
||
|
else:
|
||
|
cov_norm = 1.0 # population covariance to match Wang et. al. 2004
|
||
|
|
||
|
# compute (weighted) means
|
||
|
ux = filter_func(im1, **filter_args)
|
||
|
uy = filter_func(im2, **filter_args)
|
||
|
|
||
|
# compute (weighted) variances and covariances
|
||
|
uxx = filter_func(im1 * im1, **filter_args)
|
||
|
uyy = filter_func(im2 * im2, **filter_args)
|
||
|
uxy = filter_func(im1 * im2, **filter_args)
|
||
|
vx = cov_norm * (uxx - ux * ux)
|
||
|
vy = cov_norm * (uyy - uy * uy)
|
||
|
vxy = cov_norm * (uxy - ux * uy)
|
||
|
|
||
|
R = data_range
|
||
|
C1 = (K1 * R) ** 2
|
||
|
C2 = (K2 * R) ** 2
|
||
|
|
||
|
A1, A2, B1, B2 = ((2 * ux * uy + C1,
|
||
|
2 * vxy + C2,
|
||
|
ux ** 2 + uy ** 2 + C1,
|
||
|
vx + vy + C2))
|
||
|
D = B1 * B2
|
||
|
S = (A1 * A2) / D
|
||
|
|
||
|
# to avoid edge effects will ignore filter radius strip around edges
|
||
|
pad = (win_size - 1) // 2
|
||
|
|
||
|
# compute (weighted) mean of ssim
|
||
|
mssim = crop(S, pad).mean()
|
||
|
|
||
|
if gradient:
|
||
|
# The following is Eqs. 7-8 of Avanaki 2009.
|
||
|
grad = filter_func(A1 / D, **filter_args) * im1
|
||
|
grad += filter_func(-S / B2, **filter_args) * im2
|
||
|
grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D,
|
||
|
**filter_args)
|
||
|
grad *= (2 / im1.size)
|
||
|
|
||
|
if full:
|
||
|
return mssim, grad, S
|
||
|
else:
|
||
|
return mssim, grad
|
||
|
else:
|
||
|
if full:
|
||
|
return mssim, S
|
||
|
else:
|
||
|
return mssim
|